CN109475038A - 螺旋磁路结构及应用其的粒子加速器 - Google Patents

螺旋磁路结构及应用其的粒子加速器 Download PDF

Info

Publication number
CN109475038A
CN109475038A CN201810866063.3A CN201810866063A CN109475038A CN 109475038 A CN109475038 A CN 109475038A CN 201810866063 A CN201810866063 A CN 201810866063A CN 109475038 A CN109475038 A CN 109475038A
Authority
CN
China
Prior art keywords
group
magnets
magnetic structure
spiral
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810866063.3A
Other languages
English (en)
Inventor
郭政颖
张正星
张正祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN109475038A publication Critical patent/CN109475038A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0903Free-electron laser
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/041Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam bunching, e.g. undulators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Particle Accelerators (AREA)

Abstract

本发明提供一种螺旋磁路结构及应用其的粒子加速器,螺旋磁路结构包含至少一个磁铁组,磁铁组又包含数量相同的多个永久磁铁与铁芯。永久磁铁具有磁化方向且并排成螺旋曲面,而螺旋曲面的中心具有轴向通道以供带电粒子通过。铁芯吸附于各个永久磁铁的一侧,并且受永久磁铁磁化。本发明以螺旋形状的磁铁组构成磁路结构,由此产生真正的螺旋磁场,能够同时提升螺旋状磁场的强度与均匀性。

Description

螺旋磁路结构及应用其的粒子加速器
技术领域
本发明涉及一种磁路结构及应用其的粒子加速器,尤其指一种螺旋磁路结构及应用其的粒子加速器。
背景技术
粒子加速器为近代研发出的设备,其被广泛地投入放射实验、固态物理、生物学以及医疗等多种领域,截至今日,各种应用的可能性仍持续不断地被探勘出现。
较早期的粒子加速器为直线式粒子加速器(Linear Accelerator),藉由直线排列的多个电场装置(例如电极环)来产生电场,并控制各电场表面的电性来吸引或排斥带电粒子,以此方式不断地加快带电粒子的移动速度。然而,由于带电粒子的速度不断提高,电场装置需维持在高电压环境下运作,不仅有成本与安全上的疑虑,其表面的感应电荷也容易对带电粒子产生干扰。此外,直线式粒子加速器的粒子移动路径直接由粒子加速器本身的长度来决定,此特性意味着直线式粒子加速器的体积相当可观,除了建置成本高昂以外,也存在浪费空间的缺点。
一种近期的粒子加速器为同步加速器(Synchrotron),例如美国史丹佛大学的SLAC实验室于2014年发表极化聚频磁铁做为粒子加速器(COMMISSIONING OF THE DELTAPOLARIZING UNDULATOR AT LCLS,SLAC-PUB-16404),以磁场与电场同时作用于带电粒子,带电粒子在加速过程中受螺旋状磁场影响而以螺旋形路径前进,如此可在相同线性长度内延长带电粒子的移动路径。
然而,上述同步加速器的聚频磁铁设置于带电粒子的四个方向,故其螺旋状磁场实际上以X-Y平面的四个磁场方向近似而成,故其极化效果较差,磁场强度也较弱。此外,上述磁路结构使得磁场在四个方向的磁极的空间受限,此导致磁场强度的均匀性较低,而不均匀的磁场对粒子加速器的应用将造成不良影响。
发明内容
因此,为了解决现有磁路结构的上述问题,本发明提出一种螺旋磁路结构,其采用螺旋状的磁铁组作为组成单元,使磁路结构产生真正的螺旋磁场,可提高磁路结构的磁场强度及均匀性。
根据本发明的一目的,提供一种螺旋磁路结构,其包含至少一个磁铁组,磁铁组包含数量相同的多个永久磁铁与铁芯,永久磁铁具有磁化方向,且永久磁铁为螺旋状且并排成螺旋曲面。螺旋曲面的中心具有轴向通道以供带电粒子通过。铁芯吸附于永久磁铁的一侧,并且受永久磁铁磁化。
由此,利用永久磁铁对铁芯进行磁化,可使铁芯被极化而产生螺旋状磁场,以令轴向通道内的带电粒子以螺旋形路径前进。此外,由于本发明的螺旋磁路结构为连续的螺旋曲面,故可避免磁场强度在特定方向出现峰值,大幅提升磁场强度的均匀性。
在一实施例中,前述的磁铁组可以为多个,这些磁铁组彼此串接而延伸轴向通道。另外,磁铁组也可以彼此交错成双股螺旋,在此状态下,交错的磁铁组的磁化方向可互为相反。
在一实施例中,螺旋磁路结构可另包含限位支架,限位支架环设于磁铁组外部而限位磁铁组。螺旋磁路结构可另包含定位件,其定位前述的永久磁铁及铁芯于限位支架上。螺旋磁路结构可另包含多个导轨,导轨固定设置且对应限位支架的形状,以供限位支架于其上推移。
在一实施例中,前述永久磁铁可包含钕、铁以及硼。另外,前述铁芯可以为钒钢、铁、钴或其合金。
在一实施例中,前述轴向通道的截面可以为圆形或椭圆形。
在一实施例中,磁铁组的永久磁铁的数量可以为四个。
通过上述实施例,本发明的螺旋磁路结构可将磁铁组彼此串接而延伸磁场的作用区间。除了轴向的长度变化外,磁铁组可交错成双股螺旋,在此状态下,两磁铁组的磁化方向互为相反,可使各铁芯取得更好的磁化效果。此外,在每个磁铁组由四个永久磁铁组成的实施例下,螺旋磁路结构可以均分为上下磁列的两个区块,藉由平移改变上下磁列的相对距离,即可调整螺旋状磁场的强度。
根据本发明的另一目的,提供一种粒子加速器,其包含前述的螺旋磁路结构,螺旋磁路结构的技术特征细节如前所述,此处不再重复说明。
本发明的螺旋磁路结构可应用在粒子加速器,例如自由电子激光器或同步辐射光源加速器,但不限于此。
在一实施例中,前述粒子加速器的螺旋磁路结构的磁铁组可以为多个,这些磁铁组彼此串接而延伸轴向通道。另外,磁铁组也可以彼此交错成双股螺旋,在此状态下,交错的磁铁组的磁化方向可互为相反。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的螺旋磁路结构的***视图;
图2A为本发明的螺旋磁路结构的剖示图;
图2B为本发明的螺旋磁路结构的正面视图;
图3A为本发明的螺旋磁路结构的磁铁组示意图;
图3B为本发明的螺旋磁路结构的永久磁铁示意图;
图3C为本发明的螺旋磁路结构的铁芯示意图;
图4A为本发明的螺旋磁路结构的磁铁组示意图;
图4B为图4A的磁铁组的磁场分布图;
图5A为本发明的螺旋磁路结构的磁铁组示意图;
图5B为图5A的磁铁组的磁场分布图;
图6A为本发明的螺旋磁路结构的磁铁组示意图;
图6B为图6A的磁铁组的磁场分布图;
图7A为本发明的螺旋磁路结构的磁铁组示意图;
图7B为图7A的磁铁组的磁场分布图;以及
图8为本发明的螺旋磁路结构的磁化方向示意图。
附图标记:
100 螺旋磁路结构
200 磁铁组
210 永久磁铁
220 铁芯
300 限位支架
400 定位件
500 导轨
600 外框架
M 磁化方向
P 轴向通道
具体实施方式
为充分了解本发明的目的、特征及功效,兹藉由下述具体的实施例,并配合附图,对本发明做详细说明,说明如后:
请参照图1、图2A及图2B,本发明的螺旋磁路结构100包含多个磁铁组200、限位支架300、多个定位件400、多个导轨500以及外框架600。如图2A所示,各个磁铁组200包含多个永久磁铁210以及铁芯220,这些永久磁铁210与铁芯220彼此串连成柱状,并且被外部环设的限位支架300所限位。限位支架300的外侧具有与导轨500形状相对应的凹槽,而导轨500则固定设置于外框架600,藉以供限位支架300相对外框架600推移。
由于磁铁组200在串连过程中需要克服磁力影响,因此各个永久磁铁210与铁芯220的外侧同样具有配合定位件400形状的凹槽。利用定位件400来定位永久磁铁210及铁芯220于限位支架300上,由此确保各个磁铁组200被精准地对齐。
如图2B所示,限位支架300或定位件400的大小或两者的相对位置可以改变,由此可调整永久磁铁210之间的间隙,从而使磁场强度发生变化。
配合参照图3A,本发明的螺旋磁路结构100的最小单位为一个磁铁组200。如同图3A所示,磁铁组200包含四个永久磁铁210与铁芯220,四个永久磁铁210与铁芯220构成一个螺旋曲面,且螺旋曲面的中心具有轴向通道P以供带电粒子通过。铁芯220则吸附于永久磁铁210的一侧。需注意的是,由于永久磁铁210与铁芯220也可被分割成不同数量,故上述永久磁铁210与铁芯220的数量并不构成本发明的限制。
再参照图3B及图3C,为清楚显示磁铁组200的构造,图3B及图3C仅分别显示永久磁铁210以及铁芯220。在本实施例中,各个磁铁组200交错为双股螺旋形,据此构成轴向通道P,且依据使用需要,磁铁组200可以彼此串接成磁列而延伸轴向通道P。
请参照图4A以及图4B,在螺旋状螺旋磁路结构100的一般状态下,水平磁场与垂直磁场于轴向(Z轴)为相等且周期性地分布。配合参照图5A以及图5B,由于磁铁组200分为A、B、C、D个区块,因此串接的磁列可被轴向推移而改变整个磁路结构的磁场相位,由此灵活应用于各种情况。如图5A所示,将对角的A、C两个磁列轴向地推移三分之一周期(磁场周期与永久磁铁210与铁芯220的厚度有关,在本实施例中,周期的长度为24mm),可使磁路结构只出现垂直方向磁场。再参照图6A以及图6B,当A、C磁列轴向地推移二分之一周期时,可使水平磁场与垂直磁场互换,此代表螺旋磁场的旋转方向由顺时针转变为逆时针。再参照图7A以及图7B,当A、C磁列轴向地推移三分之二周期时,则可使磁路结构只出现水平方向磁场。此外,改变四个磁列在径向上的间隙大小,则可调整磁场的强度。
再参照图8,由于螺旋状螺旋磁路结构100的水平与垂直方向的磁场在轴方向的相位相差90度。利用此特性,两个交错的磁铁组200的永久磁铁210可具有相反的磁化方向M,如此可令铁芯220受磁化后产生双倍的磁场强度。在本实施例中,永久磁铁210包含钕、铁以及硼材料,而铁芯220可以为钒钢、铁、钴或其合金。此外,前述轴向通道P的截面可以为圆形或椭圆形。
本发明的螺旋磁路结构100可应用于粒子加速器,包括但不限于自由电子激光器或同步辐射光源加速器。
由上述实施例可知,本发明利用螺旋状的磁路结构以产生高圆极化率磁场,在短周期内即可提供更高的磁场强度以及均匀性。相较于现有磁路结构,本发明可大幅提升粒子加速器的效能。
本发明在上文中已以较佳实施例说明,然而本领域技术人员应理解的是,前述的实施例仅用于描绘本发明,而不应解读为限制本发明的范围。应注意的是,举凡与前述发明等效的变化与置换,均应设为涵盖于本发明的范围内。因此,本发明的保护范围当以权利要求书所界定的范围为准。

Claims (16)

1.一种螺旋磁路结构,其特征在于,包含:
至少一个磁铁组,其包含:
多个永久磁铁,所述永久磁铁具有磁化方向,所述各永久磁铁为螺旋状且并排成螺旋曲面,而所述螺旋曲面的中心具有轴向通道以供带电粒子通过;以及
多个铁芯,数量与所述永久磁铁相同,所述铁芯吸附于所述永久磁铁的一侧,并且受所述各永久磁铁磁化。
2.根据权利要求1所述的螺旋磁路结构,其特征在于,所述磁铁组为多个,且所述各磁铁组彼此串接而延伸所述轴向通道。
3.根据权利要求1所述的螺旋磁路结构,其特征在于,所述磁铁组为多个,且所述各磁铁组彼此交错成双股螺旋。
4.根据权利要求3所述的螺旋磁路结构,其特征在于,所述的两个磁铁组的磁化方向相反。
5.根据权利要求1所述的螺旋磁路结构,其特征在于,另包含:
限位支架,其环设于所述磁铁组外部而限位所述磁铁组。
6.根据权利要求5所述的螺旋磁路结构,其特征在于,所述磁铁组另包含:
多个定位件,其定位所述各永久磁铁及铁芯于所述限位支架内。
7.根据权利要求5所述的螺旋磁路结构,其特征在于,另包含:
多个导轨,固定设置且对应所述限位支架的形状,以供所述限位支架于其上推移。
8.根据权利要求1所述的螺旋磁路结构,其特征在于,所述永久磁铁包含钕、铁以及硼。
9.根据权利要求1所述的螺旋磁路结构,其特征在于,所述铁芯包含钒钢、铁、钴或其合金。
10.根据权利要求1所述的螺旋磁路结构,其特征在于,所述轴向通道的截面为圆形或椭圆形。
11.根据权利要求1所述的螺旋磁路结构,其特征在于,所述永久磁铁的数量为四个。
12.一种粒子加速器,其特征在于,包含:
根据权利要求1所述的螺旋磁路结构。
13.根据权利要求12所述的粒子加速器,其特征在于,所述粒子加速器为自由电子激光器或同步辐射光源加速器。
14.根据权利要求12所述的粒子加速器,其特征在于,所述磁铁组为多个,且所述各磁铁组彼此串接而延伸所述轴向通道。
15.根据权利要求12所述的粒子加速器,其特征在于,所述磁铁组为多个,且所述各磁铁组彼此交错成双股螺旋。
16.根据权利要求15所述的粒子加速器,其特征在于,所述的两个磁铁组的磁化方向相反。
CN201810866063.3A 2017-09-07 2018-08-01 螺旋磁路结构及应用其的粒子加速器 Pending CN109475038A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/697,481 2017-09-07
US15/697,481 US10485089B2 (en) 2017-09-07 2017-09-07 Helical permanent magnet structure and undulator using the same

Publications (1)

Publication Number Publication Date
CN109475038A true CN109475038A (zh) 2019-03-15

Family

ID=63254547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810866063.3A Pending CN109475038A (zh) 2017-09-07 2018-08-01 螺旋磁路结构及应用其的粒子加速器

Country Status (6)

Country Link
US (1) US10485089B2 (zh)
EP (1) EP3454628B1 (zh)
JP (1) JP6566221B2 (zh)
KR (1) KR102060252B1 (zh)
CN (1) CN109475038A (zh)
TW (1) TWI684387B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409129B (zh) * 2014-11-17 2017-02-22 中国科学院上海微***与信息技术研究所 一种波荡器
FR3125670B1 (fr) * 2021-07-20 2023-07-21 Synchrotron Soleil Onduleur bi-périodique, dispositif, installation et procédé associé.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764743A (en) * 1987-10-26 1988-08-16 The United States Of America As Represented By The Secretary Of The Army Permanent magnet structures for the production of transverse helical fields
US5099217A (en) * 1991-09-16 1992-03-24 The United States Of America As Represented By The Secretary Of The Army Constant gap cladded twister
EP0551027A1 (en) * 1992-01-10 1993-07-14 THOMSON TUBES & DISPLAYS S.A. Magnetic focusing device
US5945899A (en) * 1996-09-13 1999-08-31 The United States Of America As Represented By The Secretary Of The Army Permanent magnet twister
CN102239625A (zh) * 2008-09-23 2011-11-09 艾罗威罗门特公司 无铁芯电动机的通量集中器
CN104065188A (zh) * 2013-03-21 2014-09-24 株式会社捷太格特 磁铁嵌入型转子、磁铁嵌入型转子的制造方法、以及定向磁化装置
US20150255201A1 (en) * 2012-08-24 2015-09-10 Korea Atomic Energy Research Institute Variable-cycle permanent-magnet undulator
WO2015189805A1 (en) * 2014-06-13 2015-12-17 Hamberg Bengt Mathias Adjustable magnet undulator
CN105529883A (zh) * 2014-10-20 2016-04-27 株式会社捷太格特 埋入磁铁型转子单元的制造方法以及磁化装置
CN106505808A (zh) * 2015-09-07 2017-03-15 株式会社捷太格特 埋入磁铁型转子单元的制造方法及其制造装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461004A (en) * 1981-06-30 1984-07-17 Madey John M J Excitation cancelling free electron laser
US4800353A (en) * 1986-10-30 1989-01-24 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Micropole undulator
US4829277A (en) * 1986-11-20 1989-05-09 General Motors Corporation Isotropic rare earth-iron field magnets for magnetic resonance imaging
US4876687A (en) * 1987-05-05 1989-10-24 Varian Associates, Inc. Short-period electron beam wiggler
US4731598A (en) * 1987-08-24 1988-03-15 The United States Of America As Represented By The Secretary Of The Army Periodic permanent magnet structure with increased useful field
USRE33736E (en) * 1987-08-24 1991-11-05 The United States Of America As Represented By The Secretary Of The Army Periodic permanent magnet structure with increased useful field
US5019863A (en) * 1987-09-30 1991-05-28 Amoco Corporation Wedged-pole hybrid undulator
US4977384A (en) * 1988-11-25 1990-12-11 The Board Of Trustees Of The Leland Stanford Junior University Micropole undulator
US4893103A (en) * 1989-02-24 1990-01-09 The United States Of America As Represented By The Secretary Of The Army Superconducting PYX structures
US5010640A (en) * 1989-07-21 1991-04-30 Amoco Corporation Method for improving a wiggler
US5280209A (en) * 1989-11-14 1994-01-18 The United States Of America As Represented By The Secretary Of The Army Permanent magnet structure for use in electric machinery
US5014028A (en) * 1990-04-25 1991-05-07 The United States Of America As Represented By The Secretary Of The Army Triangular section permanent magnetic structure
FR2665297B1 (fr) * 1990-07-30 1992-10-09 Centre Nat Rech Scient Aimant permanent pour installation d'imagerie par resonance magnetique nucleaire.
US5055812A (en) * 1990-09-24 1991-10-08 The United States Of America As Represented By The Secretary Of The Army. Compensation for magnetic nonuniformities of permanent magnet structures
US5099175A (en) * 1991-03-20 1992-03-24 The United States Of America As Represented By The United States Department Of Energy Tunability enhanced electromagnetic wiggler
JPH0810279B2 (ja) * 1992-04-28 1996-01-31 日本原子力研究所 円偏光及び垂直直線偏光特性を持つ放射光を得るための挿入光源用磁場発生装置
US5383049A (en) * 1993-02-10 1995-01-17 The Board Of Trustees Of Leland Stanford University Elliptically polarizing adjustable phase insertion device
US5596304A (en) * 1994-03-29 1997-01-21 The Board Of Trustees Of The Leland Stanford Junior University Permanent magnet edge-field quadrupole
JPH0831599A (ja) * 1994-07-15 1996-02-02 Japan Atom Energy Res Inst 無理数次高調波を発生するアンジュレータに用いられる磁場発生装置
US5635889A (en) * 1995-09-21 1997-06-03 Permag Corporation Dipole permanent magnet structure
US5666098A (en) * 1996-05-28 1997-09-09 The United States Of America As Represented By The Secretary Of The Army Permanent magnet toroidal wiggler and undulator
US6573817B2 (en) * 2001-03-30 2003-06-03 Sti Optronics, Inc. Variable-strength multipole beamline magnet
US6858998B1 (en) * 2002-09-04 2005-02-22 The United States Of America As Represented By The United States Department Of Energy Variable-period undulators for synchrotron radiation
US8760251B2 (en) * 2010-09-27 2014-06-24 Correlated Magnetics Research, Llc System and method for producing stacked field emission structures
US10173292B2 (en) * 2009-01-23 2019-01-08 Correlated Magnetics Research, Llc Method for assembling a magnetic attachment mechanism
US8704626B2 (en) * 2010-05-10 2014-04-22 Correlated Magnetics Research, Llc System and method for moving an object
US9711268B2 (en) * 2009-09-22 2017-07-18 Correlated Magnetics Research, Llc System and method for tailoring magnetic forces
EP2553686A4 (en) * 2010-03-29 2015-01-21 Glenn Lane Family Ltd Liability Ltd Partnership SPATIAL SEGREGATION OF PLASMA COMPONENTS
WO2012013205A1 (de) * 2010-07-30 2012-02-02 Babcock Noell Gmbh Hochtemperatur-supraleiter-magnetsystem
US8638016B2 (en) * 2010-09-17 2014-01-28 Correlated Magnetics Research, Llc Electromagnetic structure having a core element that extends magnetic coupling around opposing surfaces of a circular magnetic structure
US9330825B2 (en) * 2011-04-12 2016-05-03 Mohammad Sarai Magnetic configurations
US8963380B2 (en) * 2011-07-11 2015-02-24 Correlated Magnetics Research LLC. System and method for power generation system
FR2987433B1 (fr) * 2012-02-28 2014-03-28 Cooltech Applications Generateur de champ magnetique pour appareil thermique magnetocalorique
US9245677B2 (en) * 2012-08-06 2016-01-26 Correlated Magnetics Research, Llc. System for concentrating and controlling magnetic flux of a multi-pole magnetic structure
US8749179B2 (en) * 2012-08-14 2014-06-10 Kla-Tencor Corporation Optical characterization systems employing compact synchrotron radiation sources
US20150129772A1 (en) * 2013-10-18 2015-05-14 The Regents Of The University Of California Surface micro-machined multi-pole electromagnets
US9952513B2 (en) * 2014-03-31 2018-04-24 Asml Netherlands B.V. Undulator
WO2015164531A1 (en) * 2014-04-22 2015-10-29 The Regents Of The University Of California Tapering enhanced stimulated superradiant amplification
US9355767B2 (en) * 2014-09-03 2016-05-31 Uchicago Argonne, Llc Undulator with dynamic compensation of magnetic forces
US10321552B2 (en) * 2014-10-21 2019-06-11 Riken Undulator magnet array and undulator
JP6393929B1 (ja) * 2017-09-12 2018-09-26 大学共同利用機関法人 高エネルギー加速器研究機構 アンジュレータ用磁石、アンジュレータおよび、放射光発生装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764743A (en) * 1987-10-26 1988-08-16 The United States Of America As Represented By The Secretary Of The Army Permanent magnet structures for the production of transverse helical fields
US5099217A (en) * 1991-09-16 1992-03-24 The United States Of America As Represented By The Secretary Of The Army Constant gap cladded twister
EP0551027A1 (en) * 1992-01-10 1993-07-14 THOMSON TUBES & DISPLAYS S.A. Magnetic focusing device
US5945899A (en) * 1996-09-13 1999-08-31 The United States Of America As Represented By The Secretary Of The Army Permanent magnet twister
CN102239625A (zh) * 2008-09-23 2011-11-09 艾罗威罗门特公司 无铁芯电动机的通量集中器
US20150255201A1 (en) * 2012-08-24 2015-09-10 Korea Atomic Energy Research Institute Variable-cycle permanent-magnet undulator
CN104065188A (zh) * 2013-03-21 2014-09-24 株式会社捷太格特 磁铁嵌入型转子、磁铁嵌入型转子的制造方法、以及定向磁化装置
WO2015189805A1 (en) * 2014-06-13 2015-12-17 Hamberg Bengt Mathias Adjustable magnet undulator
CN105529883A (zh) * 2014-10-20 2016-04-27 株式会社捷太格特 埋入磁铁型转子单元的制造方法以及磁化装置
CN106505808A (zh) * 2015-09-07 2017-03-15 株式会社捷太格特 埋入磁铁型转子单元的制造方法及其制造装置

Also Published As

Publication number Publication date
EP3454628B1 (en) 2022-04-06
US20190075646A1 (en) 2019-03-07
TWI684387B (zh) 2020-02-01
EP3454628A1 (en) 2019-03-13
KR20190027718A (ko) 2019-03-15
JP6566221B2 (ja) 2019-08-28
KR102060252B1 (ko) 2019-12-27
JP2019050194A (ja) 2019-03-28
TW201914371A (zh) 2019-04-01
US10485089B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
US8067863B2 (en) Detent force correcting
JP5835235B2 (ja) マグネトロンスパッタリング用磁場発生装置
JP5836369B2 (ja) サイクロトロン、加速された荷電粒子のビームを発生させる方法及びその使用
JP2005533353A5 (zh)
CN109475038A (zh) 螺旋磁路结构及应用其的粒子加速器
CN105112871B (zh) 一种靶材溅射装置及其溅射靶材的方法
CN108566721A (zh) 直线加速器和同步加速器
Mun et al. Variable-period permanent-magnet helical undulator
CN207676667U (zh) 一种多相绕组的偏转扫描装置
Peng et al. Axial magnetic field produced by axially and radially magnetized permanent rings
CN204939603U (zh) 一种靶材溅射装置
KR20140126297A (ko) 마그네트론 스퍼터링용 자장 발생 장치
CN103440953A (zh) 一种超导波荡器磁体
EP2754336B1 (en) Improved septum magnet
KR20180029134A (ko) 발전부의 영구자석과 코일이 직렬배치된 자성유체를 이용한 고효율 연속발전 사이클 장치
US2904720A (en) Ion accelerator
Modena The ZEPTO dipole: zero power tuneable optics for CLIC
JP4515852B2 (ja) Ecrイオン源に用いられるプラズマ閉じ込め用のミラー磁場発生装置及び方法
US20180023189A1 (en) Magnetic-field-generating apparatus for magnetron sputtering
JP2011113901A (ja) 誘導加速セクターサイクロトロン
Varfolomeev et al. Development of focusing undulators on the basis of side magnet arrays
KR20150117640A (ko) 마그네트론 스퍼터링용 자장 발생 장치
KR20170039045A (ko) 자성유체 열분무를 이용한 연속발전 사이클 장치
JP2014210967A (ja) マグネトロンスパッタリング用磁場発生装置
WO2020188276A1 (en) A multipole magnet

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190315