CN109474182A - A kind of cascade buck-boost type DC-DC converter - Google Patents

A kind of cascade buck-boost type DC-DC converter Download PDF

Info

Publication number
CN109474182A
CN109474182A CN201811336766.1A CN201811336766A CN109474182A CN 109474182 A CN109474182 A CN 109474182A CN 201811336766 A CN201811336766 A CN 201811336766A CN 109474182 A CN109474182 A CN 109474182A
Authority
CN
China
Prior art keywords
port
energy storage
diode
capacitive energy
storage module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811336766.1A
Other languages
Chinese (zh)
Inventor
陈怡�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811336766.1A priority Critical patent/CN109474182A/en
Publication of CN109474182A publication Critical patent/CN109474182A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A kind of cascade buck-boost type DC-DC converter, including inductance L1 to inductance L3,1 booster type capacitive energy storage module, 1 voltage-dropping type capacitive energy storage module and capacitor Co, booster type capacitive energy storage module includes diode Da_1, capacitor Ca_1, diode Da_2 and electronic switch Sa, voltage-dropping type capacitive energy storage module includes diode Db_1, capacitor Cb_1, diode Db_2 and electronic switch Sb, electronic switch Sa includes diode Da_3, N-type metal-oxide-semiconductor Ma_1 and controller a, and electronic switch Sb includes diode Db_3, N-type metal-oxide-semiconductor Mb_1 and controller b.The present invention has a following operating characteristic: simple, the applicable control method multiplicity of circuit structure, output and input electric current is continuous, output with input voltage altogether and polarity is consistent, output voltage Vo is more than or less than or equal to direct current power source voltage Vi.

Description

A kind of cascade buck-boost type DC-DC converter
Technical field
The present invention relates to DC-DC (DC-DC) converter, especially one kind, to output and input electric current continuous and input With the cascade buck-boost type DC-DC converter of output voltage same polarity, it can be used as basic unit and set up multi input and multi output DC power system, such as: DC power supplier parallel system, LED array drive system, distributed photovoltaic power generation system.
Background technique
The existing basic DC-DC converter with stepping functions include One Buck-Boost converter body, Cuk converter, Sepic converter and Zeta converter.As listed in table 1, in the case where not considering output capacitance, above-mentioned this 4 kinds have lifting The basic DC-DC converter of pressure function is all unsatisfactory for " output and input electric current continuous and output and input voltage same polarity " It is required that.
Table 1
By the way of cascading basic DC-DC converter, Boost and Buck converter are cascaded, can be obtained It is continuous and output and input the buck-boost type DC-DC converter of voltage same polarity that electric current must be output and input, but a combination thereof There are the discontinuous problems of electric current for inside.
Summary of the invention
In order to overcome the buck-boost type DC- of existing " output and input electric current continuous and output and input voltage same polarity " There are the discontinuous problem of electric current inside the combination of Boost and Buck in DC converter concatenated schemes, the present invention provides a kind of grade The buck-boost type DC-DC converter of connection, can be realized output and input that electric current is continuous, electric current is still continuous between grade and input and Output common ground expands the type of buck-boost type DC-DC converter with this.
The technical solution adopted by the present invention to solve the technical problems is:
A kind of cascade buck-boost type DC-DC converter, including inductance L1 to inductance L3,1 booster type capacitive energy storage mould Block, 1 voltage-dropping type capacitive energy storage module and capacitor Co, booster type capacitive energy storage module have port Via+, port Voa+ and end Mouth Gnda, voltage-dropping type capacitive energy storage module have port Vib+, port Vob+ and port Gndb, one end of inductance L1 and direct current The anode of source Vi is connected, and the other end of inductance L3 is connected with one end of one end of capacitor Co and load Z simultaneously, loads the another of Z End simultaneously with the other end of capacitor Co, the negative terminal of DC power supply Vi, booster type capacitive energy storage module port Gnda and voltage-dropping type The port Gndb of capacitive energy storage module is connected, and the rest part of booster type capacitive energy storage module and voltage-dropping type capacitive energy storage module is inserted Enter inductance L1 between inductance L3 and in series relationship;
The booster type capacitive energy storage module includes diode Da_1, capacitor Ca_1, diode Da_2 and electronic switch Sa, The electronic switch Sa has port c and port d, the anode of diode Da_1 while the port with booster type capacitive energy storage module Via+ is connected with the port c of electronic switch Sa, the cathode of diode Da_1 one end with capacitor Ca_1 and booster type capacitor simultaneously The port Voa+ of energy-storage module is connected, the port d of electronic switch Sa simultaneously with the other end of capacitor Ca_1 and diode Da_2 Anode is connected, and the cathode of diode Da_2 is connected with the port Gnda of booster type capacitive energy storage module;
The voltage-dropping type capacitive energy storage module includes diode Db_1, capacitor Cb_1, diode Db_2 and electronic switch Sb, The electronic switch Sb has port e and port f, one end of capacitor Cb_1 while the port with voltage-dropping type capacitive energy storage module Vib+ is connected with the port e of electronic switch Sb, the other end of capacitor Cb_1 while anode and diode Db_ with diode Db_1 2 cathode is connected, the cathode of diode Db_1 simultaneously with the port Vob+ and electronic switch Sb of voltage-dropping type capacitive energy storage module Port f is connected, and the anode of diode Db_2 is connected with the port Gndb of voltage-dropping type capacitive energy storage module.
A kind of preferred connection type is: the port Via+ phase of the other end of inductance L1 and booster type capacitive energy storage module Even, the port Voa+ of booster type capacitive energy storage module is connected with one end of inductance L2, the other end and voltage-dropping type capacitor of inductance L2 The port Vib+ of energy-storage module is connected, and the port Vob+ of voltage-dropping type capacitive energy storage module is connected with one end of inductance L3.
When electronic switch Sa cut-off, diode Da_1 conducting, DC power supply Vi, inductance L1, diode Da_1, inductance L2 With one circuit of voltage-dropping type capacitive energy storage module composition, DC power supply Vi, inductance L1, diode Da_1, capacitor Ca_1 and two poles Pipe Da_2 constitutes another circuit.
When electronic switch Sa conducting, diode Da_1 cut-off, DC power supply Vi, inductance L1, electronic switch Sa and two poles Pipe Da_2 constitutes a circuit, DC power supply Vi, inductance L1, electronic switch Sa, capacitor Ca_1, inductance L2 and the storage of voltage-dropping type capacitor It can another circuit of module composition.
When electronic switch Sb cut-off when, diode Db_1 conducting, booster type capacitive energy storage module, inductance L2, capacitor Cb_1, Diode Db_1, inductance L3, capacitor Co and load Z constitute a circuit, diode Db_2, diode Db_1, inductance L3, capacitor Co and load Z constitute another circuit.
When electronic switch Sb conducting, diode Db_1 cut-off, booster type capacitive energy storage module, inductance L2, electronic switch Sb, inductance L3, capacitor Co and load Z constitute a circuit, diode Db_2, capacitor Cb_1, electronic switch Sb, inductance L3, electricity Hold Co and load Z constitutes another circuit.
Another preferred connection type is: the port Vib+ phase of the other end of inductance L1 and voltage-dropping type capacitive energy storage module Even, the port Vob+ of voltage-dropping type capacitive energy storage module is connected with one end of inductance L2, the other end and booster type capacitor of inductance L2 The port Via+ of energy-storage module is connected, and the port Voa+ of booster type capacitive energy storage module is connected with one end of inductance L3.
When electronic switch Sb cut-off, diode Db_1 conducting, DC power supply Vi, inductance L1, capacitor Cb_1, diode Db_1, inductance L2 and one circuit of booster type capacitive energy storage module composition, diode Db_2, diode Db_1, inductance L2 and liter Another circuit of die mould capacitive energy storage module composition.
When electronic switch Sb conducting, diode Db_1 cut-off, DC power supply Vi, inductance L1, electronic switch Sb, inductance L2 With one circuit of booster type capacitive energy storage module composition, diode Db_2, capacitor Cb_1, electronic switch Sb, inductance L2 and boosting Another circuit of type capacitive energy storage module composition.
When electronic switch Sa cut-off, diode Da_1 conducting, voltage-dropping type capacitive energy storage module, inductance L2, diode Da_ 1, inductance L3, capacitor Co and load Z constitute a circuit, voltage-dropping type capacitive energy storage module, inductance L2, diode Da_1, capacitor Ca_1 and diode Da_2 constitute another circuit.
When electronic switch Sa conducting, diode Da_1 cut-off, voltage-dropping type capacitive energy storage module, inductance L2, electronic switch Sa and diode Da_2 constitutes a circuit, voltage-dropping type capacitive energy storage module, inductance L2, electronic switch Sa, capacitor Ca_1, inductance L3, capacitor Co and load Z constitute another circuit.
Further, electronic switch Sa uses the electronic switch of one-way conduction, i.e. its electric current is from end when electronic switch Sa is connected Mouth c is flowed into and is flowed out from port d;Electronic switch Sb uses the electronic switch of one-way conduction, i.e. Shi Qi electricity is connected in electronic switch Sb Stream is flowed into from port e and is flowed out from port f.The preferred embodiment is electric current reflux in order to prevent.
Further, the electronic switch Sa includes diode Da_3, N-type metal-oxide-semiconductor Ma_1 and controller a, the control Device a has port vga, and the anode of diode Da_3 is connected with the port c of the electronic switch Sa, the cathode of diode Da_3 and The drain electrode of N-type metal-oxide-semiconductor Ma_1 is connected, and the source electrode of N-type metal-oxide-semiconductor Ma_1 is connected with the port d of the electronic switch Sa, N-type metal-oxide-semiconductor The gate pole of Ma_1 is connected with the port vga of the controller a;
The electronic switch Sb includes that diode Db_3, N-type metal-oxide-semiconductor Mb_1 and controller b, the controller b have end Mouth vgb, the anode of diode Db_3 are connected with the port e of the electronic switch Sb, the cathode and N-type metal-oxide-semiconductor of diode Db_3 The drain electrode of Mb_1 is connected, and the source electrode of N-type metal-oxide-semiconductor Mb_1 is connected with the port f of the electronic switch Sb, the door of N-type metal-oxide-semiconductor Mb_1 Pole is connected with the port vgb of the controller b.
The controller a determines the working condition of N-type metal-oxide-semiconductor Ma_1, and controller b determines the work shape of N-type metal-oxide-semiconductor Mb_1 State, the controller a and controller b are all made of power supply control chip.
Further, the phase of the output signal vgsa and vgsb of controller a and controller b successively lag the angle of setting The value range of θ, θ are 0 to 2 π.
Technical concept of the invention are as follows: use 3 inductance by booster type capacitive energy storage module and voltage-dropping type capacitive energy storage mould Block cascades up, and has not only realized efficient buck transformation, but also realizes that electric current is continuous between continuous input current, grade, exports electric current Continuously, it outputs and inputs total ground and output voltage polarity is constant.
Beneficial effects of the present invention are mainly manifested in: the cascade buck-boost type DC-DC converter circuit structure is simple, Applicable control method multiplicity has high efficiency, outputs and inputs continuous electric current, output and input voltage altogether and polarity one It causes, output voltage Vo is greater than, less than or equal to the operating characteristic of direct current power source voltage Vi.
Detailed description of the invention
Fig. 1 is a kind of circuit diagram of the invention.
Fig. 2 is another circuit diagram of the invention.
Fig. 3 be in the present invention controller 1 to the timing diagram of controller n output signal.
Fig. 4 is simulation work waveform diagram of the embodiment of the present invention 1 under conditions of θ=0.
Fig. 5 is simulation work waveform diagram of the embodiment of the present invention 1 under conditions of θ=π.
Fig. 6 is simulation work waveform diagram of the embodiment of the present invention 2 under conditions of θ=0.
Fig. 7 is simulation work waveform diagram of the embodiment of the present invention 2 under conditions of θ=π.
Specific embodiment
The invention will be further described below in conjunction with the accompanying drawings.
Embodiment 1
With reference to Fig. 1 and Fig. 3~Fig. 5, a kind of cascade buck-boost type DC-DC converter, including inductance L1 is to inductance L3,1 A booster type capacitive energy storage module, 1 voltage-dropping type capacitive energy storage module and capacitor Co, booster type capacitive energy storage module have port Via+, port Voa+ and port Gnda, voltage-dropping type capacitive energy storage module have port Vib+, port Vob+ and port Gndb, electricity One end of sense L1 is connected with the anode of DC power supply Vi, the other end of inductance L3 and meanwhile with one end of capacitor Co and load Z one End be connected, load Z the other end simultaneously with the other end of capacitor Co, the negative terminal of DC power supply Vi, booster type capacitive energy storage module Port Gnda be connected with the port Gndb of voltage-dropping type capacitive energy storage module, booster type capacitive energy storage module and voltage-dropping type capacitor storage The rest part of energy module is inserted into inductance L1 between inductance L3 and in series relationship, the other end and booster type capacitor of inductance L1 The port Via+ of energy-storage module is connected, and the port Voa+ of booster type capacitive energy storage module is connected with one end of inductance L2, inductance L2 The other end be connected with the port Vib+ of voltage-dropping type capacitive energy storage module, the port Vob+ and inductance of voltage-dropping type capacitive energy storage module One end of L3 is connected.
The booster type capacitive energy storage module includes diode Da_1, capacitor Ca_1, diode Da_2 and electronic switch Sa, The electronic switch Sa has port c and port d, the anode of diode Da_1 while the port with booster type capacitive energy storage module Via+ is connected with the port c of electronic switch Sa, the cathode of diode Da_1 one end with capacitor Ca_1 and booster type capacitor simultaneously The port Voa+ of energy-storage module is connected, the port d of electronic switch Sa simultaneously with the other end of capacitor Ca_1 and diode Da_2 Anode is connected, and the cathode of diode Da_2 is connected with the port Gnda of booster type capacitive energy storage module.
The voltage-dropping type capacitive energy storage module includes diode Db_1, capacitor Cb_1, diode Db_2 and electronic switch Sb, The electronic switch Sb has port e and port f, one end of capacitor Cb_1 while the port with voltage-dropping type capacitive energy storage module Vib+ is connected with the port e of electronic switch Sb, the other end of capacitor Cb_1 while anode and diode Db_ with diode Db_1 2 cathode is connected, the cathode of diode Db_1 simultaneously with the port Vob+ and electronic switch Sb of voltage-dropping type capacitive energy storage module Port f is connected, and the anode of diode Db_2 is connected with the port Gndb of voltage-dropping type capacitive energy storage module.
Further, electric current reflux, electronic switch Sa use the electronic switch of one-way conduction, i.e. electronic switch Sa in order to prevent Its electric current is flowed into from port c and is flowed out from port d when conducting;Electronic switch Sb uses the electronic switch of one-way conduction, i.e. electronics Its electric current is flowed into from port e and is flowed out from port f when switch Sb is connected.
Further, the electronic switch Sa includes diode Da_3, N-type metal-oxide-semiconductor Ma_1 and controller a, the control Device a has port vga, and the anode of diode Da_3 is connected with the port c of the electronic switch Sa, the cathode of diode Da_3 and The drain electrode of N-type metal-oxide-semiconductor Ma_1 is connected, and the source electrode of N-type metal-oxide-semiconductor Ma_1 is connected with the port d of the electronic switch Sa, N-type metal-oxide-semiconductor The gate pole of Ma_1 is connected with the port vga of the controller a;
The electronic switch Sb includes that diode Db_3, N-type metal-oxide-semiconductor Mb_1 and controller b, the controller b have end Mouth vgb, the anode of diode Db_3 are connected with the port e of the electronic switch Sb, the cathode and N-type metal-oxide-semiconductor of diode Db_3 The drain electrode of Mb_1 is connected, and the source electrode of N-type metal-oxide-semiconductor Mb_1 is connected with the port f of the electronic switch Sb, the door of N-type metal-oxide-semiconductor Mb_1 Pole is connected with the port vgb of the controller b.
The controller a determines the working condition of N-type metal-oxide-semiconductor Ma_1, and controller b determines the work shape of N-type metal-oxide-semiconductor Mb_1 State, the controller a and controller b are all made of conventional power supply control chip, such as: UC3842 etc. can be used in controller a, control The combination of UC3842 and IR2110 etc. can be used in device b processed.
Further, the phase of the output signal vgsa and vgsb of controller a and controller b successively lag the angle of setting The value range of θ, θ are 0 to 2 π.
When embodiment 1 is in continuous conduction mode (CCM), steady operation process includes following multiple stages.
(1) when N-type metal-oxide-semiconductor Ma_1 end when, diode Da_1 conducting, DC power supply Vi, inductance L1, diode Da_1, One circuit inductance L2 and voltage-dropping type capacitive energy storage module composition, DC power supply Vi, inductance L1, diode Da_1, capacitor Ca_1 Another circuit is constituted with diode Da_2.At this point, Ca_1 charges, L1 puts magnetic, and the working condition of L2 and voltage-dropping type capacitor store up The working condition of energy module is related.
(2) when N-type metal-oxide-semiconductor Ma_1 is connected, diode Da_1 cut-off, DC power supply Vi, inductance L1, diode Da_3, N Type metal-oxide-semiconductor Ma_1 and diode Da_2 constitutes a circuit, DC power supply Vi, inductance L1, diode Da_3, N-type metal-oxide-semiconductor Ma_ 1, capacitor Ca_1, inductance L2 and another circuit of voltage-dropping type capacitive energy storage module composition.At this point, Ca_1 discharges, L1 magnetizes, and L2 Working condition it is related to the working condition of voltage-dropping type capacitive energy storage module.
(3) when N-type metal-oxide-semiconductor Mb_1 ends, diode Db_1 conducting, booster type capacitive energy storage module, inductance L2, capacitor Cb_1, diode Db_1, inductance L3, capacitor Co and load Z constitute a circuit, diode Db_2, diode Db_1, inductance L3, capacitor Co and load Z constitute another circuit.At this point, Cb_1 charges, L3 puts magnetic.
(4) when N-type metal-oxide-semiconductor Mb_1 is connected, diode Db_1 cut-off, booster type capacitive energy storage module, inductance L2, two poles Pipe Db_3, N-type metal-oxide-semiconductor Mb_1, inductance L3, capacitor Co and load Z constitute a circuit, diode Db_2, capacitor Cb_1, two poles Pipe Db_3, N-type metal-oxide-semiconductor Mb_1, inductance L3, capacitor Co and load Z constitute another circuit.At this point, Cb_1 discharges, L3 magnetizes.
Fig. 4 is simulation work waveform diagram of the embodiment 1 under conditions of θ=0.Fig. 5 is embodiment 1 under conditions of θ=π Simulation work waveform diagram.By Fig. 4 and Fig. 5 it is found that the input current ii of embodiment 1 is continuous, output electric current iob is continuous, between grade Electric current ioa is also continuous, and output voltage Vo, which can be greater than, is also smaller than direct current power source voltage Vi, Vo and Vi altogether and same polarity.Comparison Fig. 4 and Fig. 5 is it is found that there is influence to the ripple of ii, ioa and iob in θ.
Embodiment 2
With reference to Fig. 2, Fig. 3, Fig. 6 and Fig. 7, a kind of cascade buck-boost type DC-DC converter, the other end and drop of inductance L1 The port Vib+ of die mould capacitive energy storage module is connected, one end phase of the port Vob+ and inductance L2 of voltage-dropping type capacitive energy storage module Even, the other end of inductance L2 is connected with the port Via+ of booster type capacitive energy storage module, the port of booster type capacitive energy storage module Voa+ is connected with one end of inductance L3.
Remaining structure and embodiment 1 of embodiment 2 are identical.
When embodiment 2 is in continuous conduction mode (CCM), steady operation process includes following multiple stages.
(1) when N-type metal-oxide-semiconductor Mb_1 ends, diode Db_1 conducting, DC power supply Vi, inductance L1, capacitor Cb_1, two Pole pipe Db_1, inductance L2 and one circuit of booster type capacitive energy storage module composition, diode Db_2, diode Db_1, inductance L2 With another circuit of booster type capacitive energy storage module composition.At this point, Cb_1 charges, the working condition and booster type capacitive energy storage of L2 The working condition of module is related.
(2) when N-type metal-oxide-semiconductor Mb_1 is connected, diode Db_1 cut-off, DC power supply Vi, inductance L1, diode Db_3, N Type metal-oxide-semiconductor Mb_1, inductance L2 and one circuit of booster type capacitive energy storage module composition, diode Db_2, capacitor Cb_1, diode Db_3, N-type metal-oxide-semiconductor Mb_1, inductance L2 and another circuit of booster type capacitive energy storage module composition.At this point, Cb_1 discharges, L2's Working condition is related to the working condition of booster type capacitive energy storage module.
(3) when N-type metal-oxide-semiconductor Ma_1 ends, diode Da_1 conducting, voltage-dropping type capacitive energy storage module, inductance L2, two poles Pipe Da_1, inductance L3, capacitor Co and load Z constitute a circuit, voltage-dropping type capacitive energy storage module, inductance L2, diode Da_1, Capacitor Ca_1 and diode Da_2 constitute another circuit.At this point, Ca_1 charges.
(4) when N-type metal-oxide-semiconductor Ma_1 is connected, diode Da_1 cut-off, voltage-dropping type capacitive energy storage module, inductance L2, electronics Switch Sa and diode Da_2 constitute a circuit, voltage-dropping type capacitive energy storage module, inductance L2, electronic switch Sa, capacitor Ca_1, Inductance L3, capacitor Co and load Z constitute another circuit.At this point, Ca_1 discharges.
Fig. 6 is simulation work waveform diagram of the embodiment 2 under conditions of θ=0.Fig. 7 is embodiment 2 under conditions of θ=π Simulation work waveform diagram.By Fig. 6 and Fig. 7 it is found that the input current ii of embodiment 2 is continuous, output electric current ioa is continuous, between grade Electric current iob is also continuous, and output voltage Vo, which can be greater than, is also smaller than direct current power source voltage Vi, Vo and Vi altogether and same polarity.Comparison Fig. 6 and Fig. 7 is it is found that there is influence to the ripple of iob in θ.
Content described in this specification embodiment is only enumerating to the way of realization of inventive concept, protection of the invention Range should not be construed as being limited to the specific forms stated in the embodiments, and protection scope of the present invention is also and in this field skill Art personnel conceive according to the present invention it is conceivable that equivalent technologies mean.

Claims (7)

1. a kind of cascade buck-boost type DC-DC converter, it is characterised in that: the cascade buck-boost type DC-DC converter Including inductance L1 to inductance L3,1 booster type capacitive energy storage module, 1 voltage-dropping type capacitive energy storage module and capacitor Co, booster type Capacitive energy storage module has port Via+, port Voa+ and port Gnda, and voltage-dropping type capacitive energy storage module has port Vib+, end Mouth Vob+ and port Gndb, one end of inductance L1 are connected with the anode of DC power supply Vi, the other end of inductance L3 while and capacitor One end of Co is connected with one end of load Z, load the other end of Z and meanwhile with the other end of capacitor Co, DC power supply Vi negative terminal, The port Gnda of booster type capacitive energy storage module is connected with the port Gndb of voltage-dropping type capacitive energy storage module, booster type capacitive energy storage The rest part of module and voltage-dropping type capacitive energy storage module is inserted into inductance L1 between inductance L3 and in series relationship;
The booster type capacitive energy storage module includes diode Da_1, capacitor Ca_1, diode Da_2 and electronic switch Sa, described Electronic switch Sa has port c and port d, the anode of diode Da_1 while the port Via+ with booster type capacitive energy storage module It is connected with the port c of electronic switch Sa, the cathode of diode Da_1 one end with capacitor Ca_1 and booster type capacitive energy storage simultaneously The port Voa+ of module is connected, the port d of electronic switch Sa simultaneously with the other end of capacitor Ca_1 and the anode of diode Da_2 It is connected, the cathode of diode Da_2 is connected with the port Gnda of booster type capacitive energy storage module;
The voltage-dropping type capacitive energy storage module includes diode Db_1, capacitor Cb_1, diode Db_2 and electronic switch Sb, described Electronic switch Sb has a port e and port f, one end of capacitor Cb_1 simultaneously with the port Vib+ of voltage-dropping type capacitive energy storage module and The port e of electronic switch Sb is connected, the other end of capacitor Cb_1 simultaneously with the anode of diode Db_1 and the yin of diode Db_2 Extremely it is connected, the cathode of diode Db_1 while the port f with the port Vob+ and electronic switch Sb of voltage-dropping type capacitive energy storage module It is connected, the anode of diode Db_2 is connected with the port Gndb of voltage-dropping type capacitive energy storage module.
2. a kind of cascade buck-boost type DC-DC converter as described in claim 1, it is characterised in that: the inductance L1's The other end is connected with the port Via+ of booster type capacitive energy storage module, the port Voa+ and inductance L2 of booster type capacitive energy storage module One end be connected, the other end of inductance L2 is connected with the port Vib+ of voltage-dropping type capacitive energy storage module, voltage-dropping type capacitive energy storage mould The port Vob+ of block is connected with one end of inductance L3.
3. a kind of cascade buck-boost type DC-DC converter as described in claim 1, it is characterised in that: the inductance L1's The other end is connected with the port Vib+ of voltage-dropping type capacitive energy storage module, the port Vob+ and inductance L2 of voltage-dropping type capacitive energy storage module One end be connected, the other end of inductance L2 is connected with the port Via+ of booster type capacitive energy storage module, booster type capacitive energy storage mould The port Voa+ of block is connected with one end of inductance L3.
4. a kind of cascade buck-boost type DC-DC converter as described in one of claims 1 to 3, it is characterised in that: the electricity Sub switch Sa uses the electronic switch of one-way conduction, i.e. its electric current is flowed into from port c and from end when the electronic switch Sa is connected Mouthful d outflow, the electronic switch Sb use the electronic switch of one-way conduction, i.e. its electric current is from end when the electronic switch Sb is connected Mouth e is flowed into and is flowed out from port f.
5. a kind of cascade buck-boost type DC-DC converter as claimed in claim 4, it is characterised in that: the electronic switch Sa includes that diode Da_3, N-type metal-oxide-semiconductor Ma_1 and controller a, the controller a have port vga, the sun of diode Da_3 Pole is connected with the port c of the electronic switch Sa, and the cathode of diode Da_3 is connected with the drain electrode of N-type metal-oxide-semiconductor Ma_1, N-type MOS The source electrode of pipe Ma_1 is connected with the port d of the electronic switch Sa, the port of the gate pole of N-type metal-oxide-semiconductor Ma_1 and the controller a Vga is connected;
The electronic switch Sb includes that diode Db_3, N-type metal-oxide-semiconductor Mb_1 and controller b, the controller b have port Vgb, the anode of diode Db_3 are connected with the port e of the electronic switch Sb, the cathode and N-type metal-oxide-semiconductor Mb_ of diode Db_3 1 drain electrode is connected, and the source electrode of N-type metal-oxide-semiconductor Mb_1 is connected with the port f of the electronic switch Sb, the gate pole of N-type metal-oxide-semiconductor Mb_1 It is connected with the port vgb of the controller b.
6. a kind of cascade buck-boost type DC-DC converter as claimed in claim 5, it is characterised in that: the controller a and Controller b is all made of power supply control chip.
7. such as a kind of cascade buck-boost type DC-DC converter described in claim 5 or 6, it is characterised in that: the controller The phase of the output signal vgsa and vgsb of a and controller b successively lag the angle, θ of setting, and the value range of θ is 0 to 2 π.
CN201811336766.1A 2018-11-12 2018-11-12 A kind of cascade buck-boost type DC-DC converter Pending CN109474182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811336766.1A CN109474182A (en) 2018-11-12 2018-11-12 A kind of cascade buck-boost type DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811336766.1A CN109474182A (en) 2018-11-12 2018-11-12 A kind of cascade buck-boost type DC-DC converter

Publications (1)

Publication Number Publication Date
CN109474182A true CN109474182A (en) 2019-03-15

Family

ID=65672469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811336766.1A Pending CN109474182A (en) 2018-11-12 2018-11-12 A kind of cascade buck-boost type DC-DC converter

Country Status (1)

Country Link
CN (1) CN109474182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190749A (en) * 2019-06-18 2019-08-30 浙江工业大学 The One Buck-Boost converter body of the current compensation branch containing output

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035998A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
CN102290985A (en) * 2011-08-12 2011-12-21 南京航空航天大学 Coupling inductor based voltage boosting and reducing direct current (DC) converter
CN103312159A (en) * 2013-06-20 2013-09-18 江苏大学 Novel double-input buck-boost DC (direct current)-DC converter
CN105958823A (en) * 2016-06-28 2016-09-21 华南理工大学 Current continuous high-gain switch voltage rise quasi-Z-source converter circuit
CN106059301A (en) * 2016-08-15 2016-10-26 北京飞跃新能科技有限公司 Voltage transformation device
TW201642562A (en) * 2015-05-29 2016-12-01 Chang-Chi Lee Low input-output current ripple buck-boost power converter
CN108183609A (en) * 2018-01-04 2018-06-19 东南大学 A kind of cascade connection type DC/DC converters of the asymmetric boosting unit of photovoltaic system
CN108599563A (en) * 2018-07-02 2018-09-28 浙江工业大学 A kind of buck DC-DC converter
CN211791277U (en) * 2018-11-12 2020-10-27 浙江工业大学 Cascaded buck-boost DC-DC converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035998A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
CN102290985A (en) * 2011-08-12 2011-12-21 南京航空航天大学 Coupling inductor based voltage boosting and reducing direct current (DC) converter
CN103312159A (en) * 2013-06-20 2013-09-18 江苏大学 Novel double-input buck-boost DC (direct current)-DC converter
TW201642562A (en) * 2015-05-29 2016-12-01 Chang-Chi Lee Low input-output current ripple buck-boost power converter
CN105958823A (en) * 2016-06-28 2016-09-21 华南理工大学 Current continuous high-gain switch voltage rise quasi-Z-source converter circuit
CN106059301A (en) * 2016-08-15 2016-10-26 北京飞跃新能科技有限公司 Voltage transformation device
CN108183609A (en) * 2018-01-04 2018-06-19 东南大学 A kind of cascade connection type DC/DC converters of the asymmetric boosting unit of photovoltaic system
CN108599563A (en) * 2018-07-02 2018-09-28 浙江工业大学 A kind of buck DC-DC converter
CN211791277U (en) * 2018-11-12 2020-10-27 浙江工业大学 Cascaded buck-boost DC-DC converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陆治国等: ""一种适用于燃料电池***的DC/DC变换器"", 《电力电子技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190749A (en) * 2019-06-18 2019-08-30 浙江工业大学 The One Buck-Boost converter body of the current compensation branch containing output
CN110190749B (en) * 2019-06-18 2024-04-12 浙江工业大学 Buck-Boost converter with output current compensation branch

Similar Documents

Publication Publication Date Title
CN101247053B (en) Battery-connected voltage-boosting and reducing converting circuit and device, DC back-up power device
CN108599564A (en) A kind of capacitance voltage discontinuous mode capacitance series formula crisscross parallel Bcuk pfc converters
CN105939107B (en) A kind of quasi- boost switching DC-DC converter of mixed type
CN108988634B (en) Three-phase interleaved bidirectional large-transformation-ratio DCDC converter and control method thereof
CN108736715A (en) Buck DC-DC converter
CN105634275A (en) Boost converter of switch inductor
CN203911753U (en) Zero-voltage switch-off interleaved parallel DC/DC converter
CN109510463A (en) The continuous buck DC-DC converter of input and output electric current
CN103066841A (en) Voltage-multiplying DC converter based on charge pump capacitor
CN104578772A (en) Boosting circuit
CN104270085A (en) DC/DC conversion circuit in solar photovoltaic power generation system
CN109309448A (en) A kind of wide output Cuk DC-DC converter of wide input
CN211296564U (en) Step-up DC-DC converter with continuous input and output currents
CN109391151A (en) Cascade step-up dc-dc converter
CN109391145A (en) Cascade buck DC-DC converter
CN109474181A (en) A kind of cascade buck DC-DC converter
CN211791267U (en) Cascaded boost type DC-DC converter
CN109474182A (en) A kind of cascade buck-boost type DC-DC converter
CN211296565U (en) Cascaded buck DC-DC converter
CN211791274U (en) Cascaded boost DC-DC converter
CN104052271A (en) Z-source high-gain direct current boost converter
CN211791275U (en) Cascaded buck-boost DC-DC converter
CN211791277U (en) Cascaded buck-boost DC-DC converter
CN109274267A (en) A kind of novel expansible Zeta DC-DC converter
CN104852571B (en) Zero-voltage-transition power supply-capacitor series connection type DC converter and working method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190315

RJ01 Rejection of invention patent application after publication