CN109465404A - 航空发动机复杂铝合金壳体铸造工艺及模具 - Google Patents

航空发动机复杂铝合金壳体铸造工艺及模具 Download PDF

Info

Publication number
CN109465404A
CN109465404A CN201811369395.7A CN201811369395A CN109465404A CN 109465404 A CN109465404 A CN 109465404A CN 201811369395 A CN201811369395 A CN 201811369395A CN 109465404 A CN109465404 A CN 109465404A
Authority
CN
China
Prior art keywords
mold
casting
metal mold
sand
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811369395.7A
Other languages
English (en)
Inventor
杨立新
唐桢
纪旭辉
张江峰
卢鑫
毛娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Aero Engine Xian Power Control Technology Co Ltd
Original Assignee
AECC Aero Engine Xian Power Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Aero Engine Xian Power Control Technology Co Ltd filed Critical AECC Aero Engine Xian Power Control Technology Co Ltd
Priority to CN201811369395.7A priority Critical patent/CN109465404A/zh
Publication of CN109465404A publication Critical patent/CN109465404A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

本发明属于铝合金铸造技术领域,涉及一种航空发动机复杂铝合金壳体铸造工艺及模具,包括对待铸造的复杂铝合金壳体的结构进行分析是否存在混合壳体,混合壳体是无密封性要求壳体以及有致密性要求壳体自上而下的叠加;对于无密封性要求壳体采用砂型铸造工艺成型砂型铸型;对于有致密性要求壳体采用金属型铸造工艺成型金属型铸型;将砂型铸型以及金属型铸型合模;对得到的混合铸型进行模流分析,优化混合铸型;制造模具实物;对所得到的模具实物进行浇铸得到成品。本发明提供了一种铸造质量完好、力学性能高、可实现航空发动机壳体镂空结构成形及减重制造目的的航空发动机复杂铝合金壳体铸造工艺及模具。

Description

航空发动机复杂铝合金壳体铸造工艺及模具
技术领域
本发明属于铝合金铸造技术领域,涉及一种铝合金壳体铸造工艺及模具,尤其涉及一种航空发动机复杂铝合金壳体铸造工艺及模具。
背景技术
航空发动机燃油附件的铝合金壳体具有精密型、轻型化的特征,多呈现结构复杂、壁厚不均、结构镂空、铸造油路多等特点。该铝合金壳体的各项性能和技术指标要求非常高,压力腔体往往要进行非常高的强度试验及气密性试验,要求铸件必须有相当高的组织致密性,而电磁阀壳体部分则对组织致密性的要求略低,是具有不同功能的复杂铝合金壳体。现有技术中,燃油附件铝合金壳体铸件的质量严重制约着航空发动机燃油控制***的使用性能,制约新研产品整体研制进度,且集合多项功能的薄壁复杂结构壳体是航空发动机发展趋势,但其铸造成型工艺技术的要求较高。
发明内容
为了解决背景技术中存在的上述技术问题,本发明提供了一种铸造质量完好、力学性能高、可实现镂空结构成形及减重制造为目的航空发动机复杂铝合金壳体铸造工艺及模具。
为了实现上述目的,本发明采用如下技术方案:
一种航空发动机复杂铝合金壳体铸造工艺,其特征在于:所述航空发动机复杂铝合金壳体铸造工艺包括以下步骤:
1)对待铸造的复杂铝合金壳体的结构进行分析,判断待铸造的复杂铝合金壳体是否存在混合壳体,若是则进行步骤2);若否,则直接退出;所述混合壳体是无密封性要求壳体以及有致密性要求壳体自上而下的叠加;
2)对于无密封性要求壳体,采用砂型铸造工艺成型砂型铸型;对于有致密性要求壳体,采用金属型铸造工艺成型金属型铸型;
3)将砂型铸型以及金属型铸型合模,形成混合铸型;
4)应用模流分析软件对步骤3)得到的混合铸型进行模流分析,优化混合铸型;
5)模具加工制造并得到模具实物;
6)根据常规铸造工艺对步骤5)所得到的模具实物进行浇铸得到铸件成品。
上述步骤2)中砂型铸型的具体实现方式是:
a1)铸型对无密封性要求壳体采用砂型铸造工艺成型砂型铸型;所述砂型包括相互独立的砂型以及砂芯;所述砂芯安装于砂型上并与砂型之间形成空腔;
a2)在砂型铸型的底部设置用于与金属型铸型连接的定位凹槽和/或定位凸块;
所述步骤2)中金属型铸型的具体实现方式是:
b1)对有致密性要求壳体采用金属型铸造工艺成型金属型铸型;所述金属型铸型包括相互独立的金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块;所述金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块在使用时拼接成整体的金属型铸型;
b2)在步骤b1)所形成的金属型铸型金属型后模块的上端部、金属型右模块的上端部、金属型前模块的上端部和/或金属型左模块的上端部设置用于与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;
所述待铸造的复杂铝合金壳体内部设置有置于无密封性要求壳体内部的无密封性要求壳体内部的油路砂芯以及置于金属型底模块上的有致密性要求壳体内部的油路砂芯;
所述无密封性要求壳体内部的油路砂芯与无密封性要求壳体之间形成第一空腔;所述有致密性要求壳体内部的油路砂芯与有致密性要求壳体之间形成第二空腔;所述第一空腔与第二空腔相贯通。
上述步骤3)的具体实现方式是:
3.1)将有致密性要求壳体内部的油路砂芯安装于金属型底模块;
3.2)将金属型后模块、金属型右模块、金属型前模块以及金属型左模块合模并置于金属型底模块上;所述金属型后模块、金属型右模块、金属型前模块以及金属型左模块合模后与有致密性要求壳体内部的油路砂芯之间形成第二空腔;
3.3)将对无密封性要求壳体的砂型铸型整体安装在由金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块拼接成的整体金属型铸型上表面并通过定位凸块以及定位凹槽连接;
3.4)在对无密封性要求壳体的砂型铸型外部进行砂芯包裹。
一种航空发动机复杂铝合金壳体铸型,其特征在于:所述航空发动机复杂铝合金壳体铸型包括砂型铸型、内部油路铸型以及金属型铸型;所述砂型铸型置于金属型铸型上部并与金属型铸型相连;所述砂型铸型以及金属型铸型形成整体壳体外形铸型;所述内部油路铸型是砂型铸型;所述内部油路铸型置于由砂型铸型和金属型铸型形成的整体壳体外形铸型内部;所述内部油路铸型与砂型铸型之间形成第一空腔;所述内部油路铸型与金属型铸型之间形成第二空腔,所述第一空腔与第二空腔相贯通。
上述金属型铸型包括相互独立的金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块;所述金属型后模块、金属型右模块、金属型前模块以及金属型左模块分别设置在金属型底模块的外边缘;所述金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块共同拼接成整体的金属型铸型。
上述砂型铸型底部设置有与金属型铸型连接的定位凹槽和/或定位凸块;所述金属型铸型上设置有与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;所述砂型铸型通过定位凹槽和/或定位凸块与金属型铸型相连。
上述砂型铸型是由一个或多个砂芯组成的砂芯组。
上述内部油路铸型是由一个或多个砂芯组成的砂芯组。
本发明的优点是:
本发明提供了一种航空发动机复杂铝合金壳体铸造工艺及模具,该工艺包括对待铸造的复杂铝合金壳体的结构进行分析,判断待铸造的复杂铝合金壳体是否存在混合壳体,混合壳体是无密封性要求壳体以及有致密性要求壳体自上而下的叠加;当存在混合壳体时,对于无密封性要求壳体,采用砂型铸造工艺成型砂型铸型;对于有致密性要求壳体,采用金属型铸造工艺成型金属型铸型;将砂型铸型以及金属型铸型结合,形成混合铸型;应用模流分析软件对混合铸型进行模流分析,优化混合铸型;模具加工制造并得到模具实物;根据常规铸造工艺对所得到的模具实物进行浇铸得到成品。本发明针对不同结构对产品性能需求的不同,分区域设计铸造工艺。上部电磁阀壳体部分采用砂型铸造工艺成型,下部高压腔体部分采用金属型铸造工艺成型。将冶金质量要求较低而又壁厚仅为5mm的电磁阀部分采用砂型成型工艺,具体为此电磁阀壳体结构部位,外形及内腔形状全部采用砂型铸造成型方法,浇注完成后壳体外部由砂芯包裹,内部油路也由砂芯成形。其整体成型砂芯组型后配装于下方金属模块,用于安装砂芯组的金属模块上设置有砂芯定位凹槽和定位凸块,以保证此部位成形件与下部高压腔体成形件交接处的尺寸精度。下部分高压腔体结构部位采用金属型铸造工艺,浇注完成后壳体外部由金属型材料包裹,内部复杂油路由砂芯成形。保证了此部位结构快速凝固,所得到的铸件组织更加致密,机械性能优异。电磁阀壳体部分铸件是形成复杂油路的砂芯与***砂型、砂芯与砂芯之间的空腔在金属液填充凝固后形成,高压腔体部分铸件是形成复杂油路的砂芯与***金属型、砂芯与砂芯之间的空腔在金属液填充凝固后形成。形成电磁阀壳体部分铸件的空腔与形成高压腔体部分铸件的空腔是上、下贯通的。电磁阀壳体砂型的上方为冒口砂套结构,其与电磁阀壳体砂型为一个整体制造成型。电磁阀壳体上方部位正对冒口可直接补缩,保证高压腔体无冶金缺陷。
附图说明
图1是航空某铝合金壳体的结构示意图;
图2是本发明所提供的模具***分解图;
图3是本发明所采用的不同砂型/砂芯组安装顺序示意图;
其中:
1-砂型铸型;2-金属型后模块;3-金属型右模块;4-金属型底模块;5-金属型前模块;6-金属型左模块;7-砂型;8-砂芯。
具体实施方式
本发明提供了一种航空发动机复杂铝合金壳体铸造工艺,该航空发动机复杂铝合金壳体铸造工艺包括以下步骤:
1)对待铸造的复杂铝合金壳体的结构进行分析,判断待铸造的复杂铝合金壳体是否存在混合壳体,若是则进行步骤2);若否,则直接退出;混合壳体是无密封性要求壳体以及有致密性要求壳体自上而下的叠加;
2)对于无密封性要求壳体,采用砂型铸造工艺成型砂型铸型;对于有致密性要求壳体,采用金属型铸造工艺成型金属型铸型;其中,砂型铸型的具体实现方式是:
a1)铸型对无密封性要求壳体采用砂型铸造工艺成型砂型铸型;砂型包括相互独立的砂型以及砂芯;砂芯安装于砂型上并与砂型之间形成空腔;
a2)在砂型铸型的底部设置用于与金属型铸型连接的定位凹槽和/或定位凸块;
金属型铸型的具体实现方式是:
b1)对有致密性要求壳体采用金属型铸造工艺成型金属型铸型;金属型铸型包括相互独立的金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块;金属型后模块、金属型右模块、金属型底模块、金属型前模块以及金属型左模块在使用时拼接成整体的金属型铸型;
b2)在步骤b1)所形成的金属型铸型金属型后模块的上端部、金属型右模块的上端部、金属型前模块的上端部和/或金属型左模块的上端部设置用于与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;
待铸造的复杂铝合金壳体内部设置有置于无密封性要求壳体内部的无密封性要求壳体内部的油路砂芯以及置于金属型底模块上的有致密性要求壳体内部的油路砂芯;
无密封性要求壳体内部的油路砂芯与无密封性要求壳体之间形成第一空腔;有致密性要求壳体内部的油路砂芯与有致密性要求壳体之间形成第二空腔;第一空腔与第二空腔相贯通。
3)将砂型铸型以及金属型铸型合模,形成混合铸型,具体合模的实现方式是:
3.1)将有致密性要求壳体内部的油路砂芯安装于金属型底模块4;
3.2)将金属型后模块2、金属型右模块3、金属型前模块5以及金属型左模块6合模并置于金属型底模块4上;金属型后模块2、金属型右模块3、金属型前模块5以及金属型左模块6合模后与有致密性要求壳体内部的油路砂芯之间形成第二空腔;
3.3)将对无密封性要求壳体的砂型铸型整体安装在由金属型后模块2、金属型右模块3、金属型底模块4、金属型前模块5以及金属型左模块6拼接成的整体金属型铸型上表面并通过定位凸块以及定位凹槽连接;
3.4)在对无密封性要求壳体的砂型铸型外部进行砂芯包裹。
4)应用模流分析软件对步骤3)得到的混合铸型进行模流分析,优化混合铸型;
5)模具加工制造并得到模具实物;
6)根据常规铸造工艺对步骤5)所得到的模具实物进行浇铸得到成品。
参见图2,本发明还提供了一种航空发动机复杂铝合金壳体铸型,该航空发动机复杂铝合金壳体铸型包括砂型铸型、内部油路铸型以及金属型铸型;砂型铸型置于金属型铸型上部并与金属型铸型相连;砂型铸型以及金属型铸型形成整体壳体外形铸型;内部油路铸型是砂型铸型;内部油路铸型置于由砂型铸型和金属型铸型形成的整体壳体外形铸型内部;内部油路铸型与砂型铸型之间形成第一空腔;内部油路铸型与金属型铸型之间形成第二空腔,第一空腔与第二空腔相贯通。
其中:金属型铸型包括相互独立的金属型后模块2、金属型右模块3、金属型底模块4、金属型前模块5以及金属型左模块6;金属型后模块2、金属型右模块3、金属型前模块5以及金属型左模块6分别设置在金属型底模块4的外边缘;金属型后模块2、金属型右模块3、金属型底模块4、金属型前模块5以及金属型左模块6共同拼接成整体的金属型铸型。
砂型铸型底部设置有与金属型铸型连接的定位凹槽和/或定位凸块;金属型铸型上设置有与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;砂型铸型通过定位凹槽和/或定位凸块与金属型铸型相连。
砂型铸型是由一个或多个砂芯组成的砂芯组。
内部油路铸型是由一个或多个砂芯组成的砂芯组。
本发明是针对此类功能集合型复杂铝合金壳体铸件,提供一种铸造方法,用于航空发动机复杂铝合金壳体铸件的生产,可用于生产出组织致密性好,机械性能优良,尺寸精度高,表面及内部质量优异的铸件。
如图1所示,某航空发动机含有复杂的铝合金壳体结构,其上部电磁阀壳体部分壁厚薄且无密封性要求,下部是高压腔体油路要求有19.5~20MPa的抗压能力且组织致密性要求高。本发明针对不同结构对产品性能需求的不同,分区域设计铸造工艺。上部电磁阀壳体部分采用砂型铸造工艺成型,下部高压腔体部分采用金属型铸造工艺成型。将冶金质量要求较低而又壁厚仅为5mm的电磁阀部分采用砂型成型工艺,具体为此电磁阀壳体结构部位,外形及内腔形状全部采用砂型铸造成型方法,浇注完成后壳体外部由砂芯包裹,内部油路也由砂芯成形。其整体成型砂芯组型后配装于下方金属模块,用于安装砂芯组的金属模块上设置有砂芯定位凹槽和定位凸块,以保证此部位成形件与下部高压腔体成形件交接处的尺寸精度。下部分高压腔体结构部位采用金属型铸造工艺,浇注完成后壳体外部由金属型材料包裹,内部复杂油路由砂芯成形。保证了此部位结构快速凝固,所得到的铸件组织更加致密,机械性能优异。电磁阀壳体部分铸件是形成复杂油路的砂芯与***砂型、砂芯与砂芯之间的间隙在金属液填充凝固后形成,高压腔体部分铸件是形成复杂油路的砂芯与***金属型、砂芯与砂芯之间的间隙在金属液填充凝固后形成。电磁阀壳体砂型的上方为冒口砂套结构,其与电磁阀壳体砂型为一个整体制造成型。电磁阀壳体上方部位正对冒口可直接补缩,保证高压腔体无冶金缺陷。
为进一步保证电磁阀腔体与高压腔体的使用性能,将两种结构分界点选在电磁阀腔体底部向下2-3mm处,以保证此部位砂型铸造与下方高压腔体的金属型铸造部位过渡段不会影响电磁阀腔体下方的高压腔油路的使用性能。
铸造工艺方案及模具设计:根据集合型复杂铝合金壳体结构及对产品的使用技术要求,结合各铸造工艺成型特点设计铸件成型工艺方案,并结合设备参数最终完成铸型设计;
模流分析及工艺优化:应用模流分析软件对设计完成的铸件及模具三维模型,结合铸造生产工艺参数进行模流分析,优化改进铸造工艺方案及三维模型;
模具加工制造:采用优化后的铸型及芯盒模具三维模型,加工制造完成模具实物;
配料:按照此产品所使用材料的合金熔炼配料成分比例配制铝合金材料;
制芯及清理、涂补:采用热芯盒模具吹制形成壳体铸造内腔的砂芯,砂芯应无掉砂、缺块、破损。采用油石轻微打磨分型面处的披缝、毛刺,打磨后的表面采用修补涂料进行涂补;
砂芯组装:将需要整体组装后再使用的砂芯进行粘接装配,要求组装部位表面光滑、平整,不允许有缝隙或凹坑;
熔化精炼:将配制好的铝合金材料进行熔化、精炼处理;
下芯、浇注:将准备好的砂芯装配到金属型倾转铸型中,并采用预设及倾转浇注参数进行浇注,获得金属型重力倾转铸造铸件;
除芯:去除铸件中的砂芯,形成铸件内腔;
切割、清理:切除铸件浇、冒***,并对铸件表面毛刺、披缝进行打磨清理。
固溶处理、时效处理:将清理后的铸件进行固溶及时效热处理;
无损检测:采用X射线或实时成像对热处理后的铸件内部质量进行检查。
终检、入库。
如图2所示,在模具设计阶段,砂型铸型1用于铸造形成电磁阀壳体部分,金属型后模块2、金属型右模块3、金属型底模块4、金属型前模块5以及金属型左模块6整体形成金属型铸型。电磁阀壳体部分由砂型铸型1及安装于其上的砂芯共同成形,砂型铸型1是在金属型后模块2、金属型右模块3、金属型前模块5以及金属型左模块6合模后,整体安装于模具之上。
如图3所示,在下芯、浇注过程中,形成壳体内部油路的砂芯8由4个独立小砂芯构成,生产中首先将砂芯8安装于金属型底模块4上,再将金属型后模块2、金属型右模块3、金属型前模块5以及金属型左模块6合模后,将砂型7安装于外模之上,砂型7由3个独立的小砂芯组装而成。
通过本发明所提供的航空发动机复杂铝合金壳体铸造工艺方法铸造的壳体铸件,由于压力腔部分采用金属型铸造工艺方法,所得到的铸造壳体尺寸精度高,表面质量好,而且由于铸件冷却速度快所得到的组织致密,力学性能好。电磁阀壳体部分采用砂型铸造工艺方法,有效的实现了复杂结构及薄壁部位的成型。两种工艺方法的结合实现了航空发动机壳体镂空结构成形及减重制造的目的。

Claims (8)

1.一种航空发动机复杂铝合金壳体铸造工艺,其特征在于:所述航空发动机复杂铝合金壳体铸造工艺包括以下步骤:
1)对待铸造的复杂铝合金壳体的结构进行分析,判断待铸造的复杂铝合金壳体是否存在混合壳体,若是则进行步骤2);若否,则直接退出;所述混合壳体是无密封性要求壳体以及有致密性要求壳体自上而下的叠加;
2)对于无密封性要求壳体,采用砂型铸造工艺成型砂型铸型;对于有致密性要求壳体,采用金属型铸造工艺成型金属型铸型;
3)将砂型铸型以及金属型铸型合模,形成混合铸型;
4)应用模流分析软件对步骤3)得到的混合铸型进行模流分析,优化混合铸型;
5)模具加工制造并得到模具实物;
6)根据常规铸造工艺对步骤5)所得到的模具实物进行浇铸得到铸件成品。
2.根据权利要求1所述的航空发动机复杂铝合金壳体铸造工艺,其特征在于:所述步骤2)中砂型铸型的具体实现方式是:
a1)铸型对无密封性要求壳体采用砂型铸造工艺成型砂型铸型;所述砂型包括相互独立的砂型(7)以及砂芯(8);所述砂芯(8)安装于砂型(7)上并与砂型(7)之间形成空腔;
a2)在砂型铸型的底部设置用于与金属型铸型连接的定位凹槽和/或定位凸块;
所述步骤2)中金属型铸型的具体实现方式是:
b1)对有致密性要求壳体采用金属型铸造工艺成型金属型铸型;所述金属型铸型包括相互独立的金属型后模块(2)、金属型右模块(3)、金属型底模块(4)、金属型前模块(5)以及金属型左模块(6);所述金属型后模块(2)、金属型右模块(3)、金属型底模块(4)、金属型前模块(5)以及金属型左模块(6)在使用时拼接成整体的金属型铸型;
b2)在步骤b1)所形成的金属型铸型金属型后模块(2)的上端部、金属型右模块(3)的上端部、金属型前模块(5)的上端部和/或金属型左模块(6)的上端部设置用于与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;
所述待铸造的复杂铝合金壳体内部设置有置于无密封性要求壳体内部的无密封性要求壳体内部的油路砂芯以及置于金属型底模块(4)上的有致密性要求壳体内部的油路砂芯;
所述无密封性要求壳体内部的油路砂芯与无密封性要求壳体之间形成第一空腔;所述有致密性要求壳体内部的油路砂芯与有致密性要求壳体之间形成第二空腔;所述第一空腔与第二空腔相贯通。
3.根据权利要求2所述的航空发动机复杂铝合金壳体铸造工艺,其特征在于:所述步骤3)的具体实现方式是:
3.1)将有致密性要求壳体内部的油路砂芯安装于金属型底模块(4);
3.2)将金属型后模块(2)、金属型右模块(3)、金属型前模块(5)以及金属型左模块(6)合模并置于金属型底模块(4)上;所述金属型后模块(2)、金属型右模块(3)、金属型前模块(5)以及金属型左模块(6)合模后与有致密性要求壳体内部的油路砂芯之间形成第二空腔;
3.3)将对无密封性要求壳体的砂型铸型整体安装在由金属型后模块(2)、金属型右模块(3)、金属型底模块(4)、金属型前模块(5)以及金属型左模块(6)拼接成的整体金属型铸型上表面并通过定位凸块以及定位凹槽连接;
3.4)在对无密封性要求壳体的砂型铸型外部进行砂芯包裹。
4.一种航空发动机复杂铝合金壳体铸型,其特征在于:所述航空发动机复杂铝合金壳体铸型包括砂型铸型、内部油路铸型以及金属型铸型;所述砂型铸型置于金属型铸型上部并与金属型铸型相连;所述砂型铸型以及金属型铸型形成整体壳体外形铸型;所述内部油路铸型是砂型铸型;所述内部油路铸型置于由砂型铸型和金属型铸型形成的整体壳体外形铸型内部;所述内部油路铸型与砂型铸型之间形成第一空腔;所述内部油路铸型与金属型铸型之间形成第二空腔,所述第一空腔与第二空腔相贯通。
5.根据权利要求4所述的航空发动机复杂铝合金壳体铸型,其特征在于:所述金属型铸型包括相互独立的金属型后模块(2)、金属型右模块(3)、金属型底模块(4)、金属型前模块(5)以及金属型左模块(6);所述金属型后模块(2)、金属型右模块(3)、金属型前模块(5)以及金属型左模块(6)分别设置在金属型底模块(4)的外边缘;所述金属型后模块(2)、金属型右模块(3)、金属型底模块(4)、金属型前模块(5)以及金属型左模块(6)共同拼接成整体的金属型铸型。
6.根据权利要求4或5所述的航空发动机复杂铝合金壳体铸型,其特征在于:所述砂型铸型底部设置有与金属型铸型连接的定位凹槽和/或定位凸块;所述金属型铸型上设置有与砂型铸型连接的且与定位凹槽和/或定位凸块相匹配的定位凸块和/或定位凹槽;所述砂型铸型通过定位凹槽和/或定位凸块与金属型铸型相连。
7.根据权利要求6所述的航空发动机复杂铝合金壳体铸型,其特征在于:所述砂型铸型是由一个或多个砂芯组成的砂芯组。
8.根据权利要求7所述的航空发动机复杂铝合金壳体铸型,其特征在于:所述内部油路铸型是由一个或多个砂芯组成的砂芯组。
CN201811369395.7A 2018-11-16 2018-11-16 航空发动机复杂铝合金壳体铸造工艺及模具 Pending CN109465404A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811369395.7A CN109465404A (zh) 2018-11-16 2018-11-16 航空发动机复杂铝合金壳体铸造工艺及模具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811369395.7A CN109465404A (zh) 2018-11-16 2018-11-16 航空发动机复杂铝合金壳体铸造工艺及模具

Publications (1)

Publication Number Publication Date
CN109465404A true CN109465404A (zh) 2019-03-15

Family

ID=65673616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811369395.7A Pending CN109465404A (zh) 2018-11-16 2018-11-16 航空发动机复杂铝合金壳体铸造工艺及模具

Country Status (1)

Country Link
CN (1) CN109465404A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531128A (zh) * 2020-06-03 2020-08-14 成都中电锦江信息产业有限公司 用于中型薄壁箱型铝铸件的全金属型重力铸造工艺及模具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2077849A1 (en) * 1970-02-13 1971-11-05 Laborde Jean Steel shell mould - for casting of manholes on a continuous basis
JPS5550951A (en) * 1978-10-07 1980-04-14 Daiwa Seisakusho:Kk Mold and molding method thereof
CN1143548A (zh) * 1995-08-19 1997-02-26 孙海林 铸钢、球墨铸铁柱齿钻头的制造方法
CN1199659A (zh) * 1997-04-15 1998-11-25 瓦特西拉Nsd施韦兹公司 铸造金属空心铸件用的铸模和方法以及空心铸件
CN200998763Y (zh) * 2007-01-22 2008-01-02 中国重型汽车集团有限公司 一种铸造轮边减速器壳的复合铸型
CN106077507A (zh) * 2016-08-31 2016-11-09 山东泰开精密铸造有限公司 一种汽车水冷电机壳铸件的铸造模及铸造工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2077849A1 (en) * 1970-02-13 1971-11-05 Laborde Jean Steel shell mould - for casting of manholes on a continuous basis
JPS5550951A (en) * 1978-10-07 1980-04-14 Daiwa Seisakusho:Kk Mold and molding method thereof
CN1143548A (zh) * 1995-08-19 1997-02-26 孙海林 铸钢、球墨铸铁柱齿钻头的制造方法
CN1199659A (zh) * 1997-04-15 1998-11-25 瓦特西拉Nsd施韦兹公司 铸造金属空心铸件用的铸模和方法以及空心铸件
CN200998763Y (zh) * 2007-01-22 2008-01-02 中国重型汽车集团有限公司 一种铸造轮边减速器壳的复合铸型
CN106077507A (zh) * 2016-08-31 2016-11-09 山东泰开精密铸造有限公司 一种汽车水冷电机壳铸件的铸造模及铸造工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531128A (zh) * 2020-06-03 2020-08-14 成都中电锦江信息产业有限公司 用于中型薄壁箱型铝铸件的全金属型重力铸造工艺及模具

Similar Documents

Publication Publication Date Title
CN109175307B (zh) 一种3d打印砂型反重力铸造成型方法
CN104550710B (zh) 一种镶缸套铝合金缸体铸件的快速制造方法
CN104707939B (zh) 柴油机缸盖的铸造砂芯
CN105382206B (zh) 一种齿轮箱箱体铸型及其成型方法
CN111014617B (zh) 基于反重力铸造的带有螺旋形结构薄壁蜗壳壳体成形方法
US11858031B2 (en) Method and system of casting integral multi-way valve based on 3D printing
CN106694804A (zh) 一种基于光固化3d打印技术的快速压蜡模具制造工艺
CN101817061B (zh) 用于预铸发动机缸盖高压油道的砂芯结构及预铸方法
CN101823126A (zh) 一种多缸柴油机缸体的铸造方法
CN204486722U (zh) 柴油机缸盖的铸造砂芯
CN110434282B (zh) 一种闭式叶轮水玻璃砂制芯造型用模具、工装及方法
CN108057873A (zh) 低压铸造薄壁铝合金铸件的工艺方法
CN111558689A (zh) 一种叶轮新型制造工艺
CN107838373A (zh) 超薄壁复杂密闭铝合金箱体壳体铸件精密铸造成型方法
CN108326242A (zh) 双层叶片叶轮的铸造铸型及铸造方法
CN109465404A (zh) 航空发动机复杂铝合金壳体铸造工艺及模具
CN105397035A (zh) 一种铸造缸盖的装置
CN108453220B (zh) 一种汽轮机用超超临界中压外缸铸件的铸造方法
CN108213342A (zh) 批量生产复杂小件的铸造工艺方法
CN108580809A (zh) 一种整体式三联阀体及其铸造工艺
CN205085354U (zh) 一种铸造缸盖的装置
CN210789129U (zh) 一种采油机电机壳模具
CN107838391A (zh) 冷铁及冷铁的制备方法
CN208245749U (zh) 一种机壳铸件模具
CN208976754U (zh) 用于飞轮砂型铸造垂直浇铸的模板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190315