CN109444218A - 一种氧化动力学反应中改进的环境状态模拟装置及使用方法 - Google Patents

一种氧化动力学反应中改进的环境状态模拟装置及使用方法 Download PDF

Info

Publication number
CN109444218A
CN109444218A CN201811539702.1A CN201811539702A CN109444218A CN 109444218 A CN109444218 A CN 109444218A CN 201811539702 A CN201811539702 A CN 201811539702A CN 109444218 A CN109444218 A CN 109444218A
Authority
CN
China
Prior art keywords
nitrogen
oxygen
pressure
container
container assemblies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811539702.1A
Other languages
English (en)
Other versions
CN109444218B (zh
Inventor
朱宝龙
李琪
李静
李涛
巫锡勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN201811539702.1A priority Critical patent/CN109444218B/zh
Publication of CN109444218A publication Critical patent/CN109444218A/zh
Application granted granted Critical
Publication of CN109444218B publication Critical patent/CN109444218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种氧化动力学反应中改进的环境状态模拟装置及使用方法,其包括***压力控制组件、氮气和氧气含量控制组件、容器组件和连接组件的管件,***压力控制组件包括调节压力的安全阀、压力显示器、充气阀和气囊,氮气和氧气含量控制组件包括散气盘、氮气节流阀、氧气节流阀、测氮电极和测氧电极;安全阀通过管件连通至容器组件,气囊通过管件连通至压力显示器和充气阀,散气盘设置于容器组件内且通过管件连通至容器组件外的氮气节流阀和氧气节流阀,测氮电极和测氧电极分别通过管件连通至容器组件;该装置能够混入不同含量氮气和氧气,实现一定条件下不同氮氧含量的环境状态模拟,实现***压力精确控制和***溶解氧、溶解氮含量实时定量控制。

Description

一种氧化动力学反应中改进的环境状态模拟装置及使用方法
技术领域
本发明涉及实验装置技术领域,具体而言,涉及用于矿石化学风化、矿物氧化等实验研究的一种氧化动力学反应中改进的环境状态模拟装置及使用方法。
背景技术
水是连接岩石圈、大气圈和生物圈的重要介质,是各圈层物质和能量交换的载体,作为强大的地质营力,水参与了各种地质作用和生态-环境过程。水岩相互作用是近地表环境演化的驱动力,在化学与力学的耦合作用下,水岩***发生的地下水溶质迁移和地层地质结构变化等极大地影响了地层结构的稳定性和地下水环境的演化。水岩相互作用以流体、地下水和岩石之间存在的化学或同位素的不平衡为前提,是一个非平衡地球化学过程,这种过程导致的地球化学效应与同一体系中矿物或元素间的差异行为有关,受化学反应速度和时间尺度控制。
现有实验装置公开了纯氧、纯氮或各50%的氧氮混合含量的三种实验条件的装置,更真实的水岩相互作用环境,包括不同比例和含量的氧氮含量的控制条件,而现有装置在氧氮含量上具有很大的局限性,也不能将实验***的压力调节在精确的压力范围。
发明内容
本发明的目的在于提供一种氧化动力学反应中改进的环境状态模拟装置及使用方法,其能够混入不同比例的氮气和氧气,调节***压力,实现一定条件下不同氮氧含量的环境状态模拟,实现***压力精确控制和***溶解氧、溶解氮含量实时定量控制。
本发明的实施例是这样实现的:
一种环境状态模拟装置,其包括***压力控制组件、氮气和氧气含量控制组件、容器组件和连接组件的管件,***压力控制组件包括调节压力的安全阀、压力显示器、充气阀和气囊,氮气和氧气含量控制组件包括散气盘、氮气节流阀、氧气节流阀、测氮电极和测氧电极;安全阀通过管件连通至容器组件,气囊设置于容器组件内,气囊通过管件连通至容器组件外的压力显示器和充气阀,散气盘设置于容器组件内且通过管件连通至容器组件外的氮气节流阀和氧气节流阀,散气盘可使用用于分散气体的部件代替,测氮电极和测氧电极分别通过管件连通至容器组件底部。
在本发明较佳的实施例中,上述容器组件内的氧气和氮气含量通过测氧电极和测氮电极进行测定,并通过氧气节流阀和氮气节流阀进行调节。
在本发明较佳的实施例中,上述环境状态模拟装置还包括控制模块,控制模块将测氧电极和测氮电极测得数据采集并通过PID算法控制氧气节流阀和氮气节流阀。
在本发明较佳的实施例中,上述容器组件为封闭式容器,容器组件内部的压力通过安全阀和充气阀进行调节。
在本发明较佳的实施例中,上述容器组件内的气体通过安全阀排出,充气阀通过向气囊充气调节气囊内压力。
在本发明较佳的实施例中,上述散气盘通过管件将氮气和氧气从容器组件外输送至内部。
在本发明较佳的实施例中,上述容器组件为拆卸式结构,容器组件包括可拆卸和连接的容器壳体和容器对接部。
一种环境状态模拟装置的使用方法,其包括以下步骤:
S1、将装置各组件和管件进行组装和连接,将氮气通过氮气节流阀通入容器组件内,通过压力显示器读出当前的***压力;
S2、当***压力值小于实验条件的压力值时,打开充气阀对气囊充气,直到***压力值达到所需值,当***压力值高于实验条件的压力值时,关闭充气阀,打开安全阀排出氮气,直到***压力稳定在所需值;
S3、通过测氮电极测得氮含量数据,传输至控制模块,通过控制模块计算溶解氮量,再通过氮气节流阀调节氮气的输入量,从而控制***的含氮量;
S4、将氧气通过氧气节流阀通入容器组件内,重复S1~S3,直到将容器组件内的含氮和含氧平衡在实验所需值。
在本发明较佳的实施例中,上述压力显示器和充气阀采用压力开关代替,通过压力开关设定压力阀值调节气囊内压力。
在本发明较佳的实施例中,上述氮气和氧气的通入先后顺序可互换;压力显示器为数显式压力表,充气阀为充气阀,容器组件为蒸馏水瓶。
本发明的有益效果是:
本发明通过压力控制组件将***内压力维持在实验条件,并通过压力控制组件对***内压力进行精确调节,通过安全阀调节容器内气体的排出,通过压力显示器和充气阀调节气囊以维持***内的压力,通过氮气和氧气含量控制组件,测氮气和氧气含量,通过测氮电极和测氧电极测得氮和氧的含量,以根据实时数据调节氮气和氧气的通入流量,通过氮气节流阀和氧气节流阀将氮和氧含量控制在一定比例;能够混入不同比例的氮气和氧气,调节***压力,实现一定条件下不同氮氧含量的环境状态模拟;本发明的优点是,本装置可以实现***压力精确控制和***溶解氧、溶解氮含量实时定量控制。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定。
图1为本发明环境状态模拟装置的第一实施例示意图;
图2为本发明环境状态模拟装置的第二实施例示意图;
图3为本发明环境状态模拟装置的第三实施例示意图;
图标:100-环境状态模拟装置;1-***压力控制组件;101-安全阀;102-压力显示器;103-充气阀;104-气囊;2-氮气和氧气含量控制组件;201-氮节流阀;202-氧气节流阀;203-测氮电极;204-测氧电极;205-散气盘;3-容器组件;301-容器壳体;302-容器对接部。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例
请参照图1,本实施例提供一种氧化动力学反应中改进的环境状态模拟装置100及使用方法,其包括环境状态模拟装置100,该装置分为三大部分和连接各部分的管件:***压力控制组件1、氮气和氧气含量控制组件2、容器组件3和管件,其中管件为连接管。***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力显示器102、充气阀103和内接于容器组件3顶部的气囊104;氮气和氧气含量控制组件2包括装在容器组件3中下部的散气盘205、通过进氮气管路和进氧气管路分别连接在散气盘205尾部的两个可调节流量阀(氮气节流阀和氧气节流阀202)、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204;容器组件3包括容器壳体301和容器对接部302。
***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力显示器102、充气阀103和内接于容器组件3顶部的气囊104,安全阀101、压力显示器102和充气阀103通过一根连接管连接至气囊104,气囊104内的压力与容器组件3内的压力相同,读取压力显示器102的数据即为容器组件103内的压力,其中,该压力显示器102为数显式压力表,气囊104呈球形,安全阀101与容器组件3连通,安全阀101将容器内部的气体排出至容器组件3外,以降低容器组件3内部的压力大小,用于调节容器组件3内与气囊104的压力平衡,将容器内压力维持在实验范围;压力显示器102和充气阀103通过连接管与气囊104的内部连通,连接管的一端连接气囊104,其另一端连接压力显示器102和充气阀103,气囊104设置于容器壳体301内,气囊104的一端通过连接管连接至位于容器壳体301的外部的压力显示器102和充气阀103。
氮气和氧气含量控制组件2包括装在容器组件3中下部的散气盘205、通过进氮气管路和进氧气管路分别连接在散气盘205尾部的氮气节流阀和氧气节流阀202、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204,散气盘205设置于容器组件3内部,氮气节流阀和氧气节流阀202分别设置于容器组件3外部,氮气节流阀和氧气节流阀202分别通过连接管连接至散气盘205,氮气节流阀和氧气节流阀202分别设置于连接管线上,氮气节流阀的一端连接至氮气的供气端,氧气节流阀202的一端连接至氧气的供气端,氮气节流阀和氧气节流阀202分别调节通入容器组件3内的氮气量和氧气量,测氮电极203和测氧电极204分别测试容器组件3内的氮的含量和氧的含量,测氮电极203和测氧电极204分别通过连接管与容器组件3内部连通。
容器组件3为拆卸式结构,包括容器壳体301和容器对接部302,该设置使得容器组件3可拆开进行定期地清理容器内部,便于更换散气盘205和气囊104,清洗和更换完毕后,将容器壳体301和容器对接部302相互固定紧扣,形成封闭空间;该实施例中,容器壳体301为容器组件3的上部分,容器对接部302位容器组件3的下部分,容器壳体301和容器对接部302的开口端为圆形,容器壳体301的该开口端设置有外凸的螺纹,容器对接部302的该开口端内侧设置有螺纹,容器壳体301和容器对接部302通过螺纹相互匹配,容器对接部302相对于容器壳体301转动后与容器壳体301相互固定。
环境状态模拟装置100的使用方法,其包括以下步骤:
S1、将装置各组件和管件进行组装和连接,首先将氮气从进氮气连接管通入容器内,将氮气通过氮气节流阀通入并调节气体流量大小,通过数显压力表显示出当前的***压力值;
S2、当***压力值小于实验条件的压力值时,打开充气阀103对气囊104充气,容器内压力增加,直到***压力值达到所需值,当***压力值高于实验条件的压力值时,关闭充气阀103,打开安全阀101排出少量氮气,容器内压力降低,直到***压力稳定在所需值;
S3、通过安装在容器组件3底部的测量氮含量电极将测得的氮含量数据传输控制模块,通过控制模块计算容器中溶解氮量,采用PID算法计算***控制氮气的通入量,再通过氮气节流阀调节氮气的通入,溶解氮含量的精确控制通过进氮气连接管与散气盘205连接的可调节流量的氮气节流阀来调节氮气的输入量,从而控制***的含氮量;
S4、将氧气通过氧气节流阀202通入容器组件3内,重复S1~S3,调节***含氧量,直到将容器组件3内的含氮和含氧平衡在实验所需值。
本发明实例的工作原理为:
压力控制组件主要控制***压力,通过数显压力表控制***压力,当压力低于0.203MPa时,打开充气阀103,给气囊104充气,增加压力,当压力高于0.203MPa时,关闭充气阀103,打开可调节压力安全阀101,直到***压力稳定在0.203MPa。氮气和氧气含量控制组件2主要根据实验条件需要实时控制***溶解氧、溶解氮的含量。通过测量溶解氮含量电极和溶解氧含量电极,分别将数据传送到控制模块,再分别对溶解氮和溶解氧采用PID算法,精确控制各自可调节流量阀,包括氮气节流阀和氧气节流阀202,通过氮气节流阀和氧气节流阀202调节通入氮气和氧气的气体流量的大小,从而控制***内的氮和氧的含量。
第二实施例
请参照图2,本实施例提供一种氧化动力学反应中改进的环境状态模拟装置100及使用方法,其包括环境状态模拟装置100,该装置分为三大部分和连接各部分的管件:***压力控制组件1、氮气和氧气含量控制组件2、容器组件3和管件,其中管件为连接管。***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力显示器102、充气阀103和内接于容器组件3顶部的气囊104;氮气和氧气含量控制组件2包括通过进氮气管路和进氧气管路分别连接在散气盘205尾部的两个可调节流量阀(氮气节流阀和氧气节流阀202)、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204;容器组件3包括容器壳体301和容器对接部302。
第二实施例和第一实施例部分相同,不同之处在于容器壳体301和容器对接部302的拆卸结构、安全阀101的连接位置和散气盘205的省略。
***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力显示器102、充气阀103和内接于容器组件3顶部的气囊104,安全阀101通过连接管连接至容器组件3,压力显示器102和充气阀103通过同一根连接管连接至容器组件3,气囊104内的压力与容器组件3内的压力相同,读取压力显示器102的数据即为容器组件103内的压力,其中,该压力显示器102为数显式压力表,气囊104呈球形,安全阀101与容器组件3连通,安全阀101将容器内部的气体排出至容器组件3外,以降低容器组件3内部的压力大小,用于调节容器组件3内与气囊104的压力平衡,将容器内压力维持在实验范围;压力显示器102和充气阀103通过连接管与气囊104的内部连通,连接管的一端连接气囊104,其另一端连接压力显示器102和充气阀103,气囊104设置于容器壳体301内,气囊104的一端通过连接管连接至位于容器壳体301的外部的压力显示器102和充气阀103。
氮气和氧气含量控制组件2包括通过进氮气管路和进氧气管路分别连接在散气盘205尾部的氮气节流阀和氧气节流阀202、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204,连接管的一端与氮气节流阀和氧气节流阀202连通,其另一端与容器内部连通,氮气节流阀和氧气节流阀202分别设置于容器组件3外部,氮气节流阀和氧气节流阀202分别通过连接管连通至容器内,氮气节流阀和氧气节流阀202分别设置于连接管线上,氮气节流阀的一端连接至氮气的供气端,氧气节流阀202的一端连接至氧气的供气端,氮气节流阀和氧气节流阀202分别调节通入容器组件3内的氮气量和氧气量,测氮电极203和测氧电极204分别测试容器组件3内的氮的含量和氧的含量,测氮电极203和测氧电极204分别通过连接管与容器组件3内部连通。
容器组件3为拆卸式结构,包括容器壳体301和容器对接部302,该设置使得容器组件3可拆开进行定期地清理容器内部,便于更换气囊104,清洗和更换完毕后,将容器壳体301和容器对接部302相互固定紧扣,形成封闭空间;该实施例中,容器壳体301为容器组件3的上部分,容器对接部302位容器组件3的下部分,容器壳体301外部和容器对接部302的外部分别设置有位置相对的固定块,容器壳体301的该固定块设置有连通其两面的通孔,容器对接部302的该固定块设置有连通其两面的通孔,容器壳体301和容器对接部302通过螺栓相互固定,容器对接部302与容器壳体301对接后,固定块相互靠近并通过螺栓固定住。
环境状态模拟装置100的使用方法,其包括以下步骤:
S1、将装置各组件和管件进行组装和连接,首先将氮气从进氮气连接管通入容器内,将氮气通过氮气节流阀通入并调节气体流量大小,通过数显压力表显示出当前的***压力值;
S2、当***压力值小于实验条件的压力值时,打开充气阀103对气囊104充气,容器内压力增加,直到***压力值达到所需值,当***压力值高于实验条件的压力值时,关闭充气阀103,打开安全阀101排出少量氮气,容器内压力降低,直到***压力稳定在所需值;
S3、通过安装在容器组件3底部的测量氮含量电极将测得的氮含量数据传输控制模块,通过控制模块计算容器中溶解氮量,采用PID算法计算***控制氮气的通入量,再通过氮气节流阀调节氮气的通入,溶解氮含量的精确控制通过进氮气连接管连接的可调节流量的氮气节流阀来调节氮气的输入量,从而控制***的含氮量;
S4、将氧气通过氧气节流阀202通入容器组件3内,重复S1~S3,调节***含氧量,直到将容器组件3内的含氮和含氧平衡在实验所需值。
本发明实例的工作原理为:
压力控制组件主要控制***压力,通过数显压力表控制***压力,当压力低于0.310MPa时,打开充气阀103,给气囊104充气,增加压力,当压力高于0.310MPa时,关闭充气阀103,打开可调节压力安全阀101,直到***压力稳定在0.310MPa。氮气和氧气含量控制组件2主要根据实验条件需要实时控制***溶解氧、溶解氮的含量。通过测量溶解氮含量电极和溶解氧含量电极,分别将数据传送到控制模块,再分别对溶解氮和溶解氧采用PID算法,精确控制各自可调节流量阀,包括氮气节流阀和氧气节流阀202,通过氮气节流阀和氧气节流阀202调节通入氮气和氧气的气体流量的大小,从而控制***内的氮和氧的含量。
第三实施例
请参照图3,本实施例提供一种氧化动力学反应中改进的环境状态模拟装置100及使用方法,其包括环境状态模拟装置100,该装置分为三大部分和连接各部分的管件:***压力控制组件1、氮气和氧气含量控制组件2、容器组件3和管件,其中管件为连接管。***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力开关和内接于容器组件3顶部的气囊104;氮气和氧气含量控制组件2包括装在容器组件3中下部的散气盘205、通过进氮气管路和进氧气管路分别连接在散气盘205尾部的两个可调节流量阀(氮气节流阀和氧气节流阀202)、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204;容器组件3包括容器壳体301和容器对接部302。
第三实施例和第一实施例部分相同,不同之处在于容器壳体301和容器对接部302的拆卸结构、安全阀101的连接位置和***压力控制组件1的设置。
***压力控制组件1包括外接于容器组件3顶部的可调节压力的安全阀101、压力开关和内接于容器组件3顶部的气囊104,安全阀101通过连接管连接至容器组件3,压力显示器102和充气阀103通过同一根连接管连接至容器组件3,气囊104内的压力与容器组件3内的压力相同,读取压力显示器102的数据即为容器组件103内的压力,其中,该压力开关为具有压力阀值的开关,气囊104呈方形立体状,其通过设定压力阀值进行开关状态的切换,安全阀101与容器组件3连通,安全阀101将容器内部的气体排出至容器组件3外,以降低容器组件3内部的压力大小,用于调节容器组件3内与气囊104的压力平衡,将容器内压力维持在实验范围;压力开关通过连接管与气囊104的内部连通,连接管的一端连接气囊104,其另一端连接压力开关,气囊104设置于容器壳体301内,气囊104的一端通过连接管连接至位于容器壳体301的外部的压力开关;压力开关设置好之后,气囊104内的压力维持在一定范围,当容器内压力小于阀值时,压力开关自动开启并将外部的气体注入至气囊104内部,增加气囊104的内部压力。
氮气和氧气含量控制组件2包括装在容器组件3中下部的散气盘205、通过进氮气管路和进氧气管路分别连接在散气盘205尾部的氮气节流阀和氧气节流阀202、装在容器组件3底部的测量氮含量的测氮电极203和测量氧含量的测氧电极204,散气盘205设置于容器组件3内部,氮气节流阀和氧气节流阀202分别设置于容器组件3外部,氮气节流阀和氧气节流阀202分别通过连接管连接至散气盘205,氮气节流阀和氧气节流阀202分别设置于连接管线上,氮气节流阀的一端连接至氮气的供气端,氧气节流阀202的一端连接至氧气的供气端,氮气节流阀和氧气节流阀202分别调节通入容器组件3内的氮气量和氧气量,测氮电极203和测氧电极204分别测试容器组件3内的氮的含量和氧的含量,测氮电极203和测氧电极204分别通过连接管与容器组件3内部连通。
容器组件3为拆卸式结构,包括容器壳体301和容器对接部302,该设置使得容器组件3可拆开进行定期地清理容器内部,便于更换散气盘205和气囊104,清洗和更换完毕后,将容器壳体301和容器对接部302相互固定紧扣,形成封闭空间;该实施例中,容器壳体301为容器组件3的上部分,容器对接部302位容器组件3的下部分,容器壳体301和容器对接部302的开口端为圆形,容器壳体301的该开口端外壁设置有外凸的连接块,容器对接部302的该开口端外壁设置有卡扣,卡扣通过旋转的方式与连接块相互卡住,容器壳体301和容器对接部302通过卡扣与连接块相互扣紧,卡扣与连接块相互匹配,使用时,将容器对接部302对接于容器壳体301底部,容器壳体301与容器对接部302形成整体,再通过按压卡扣转动将容器壳体301与容器对接部302固定。
环境状态模拟装置100的使用方法,其包括以下步骤:
S1、将装置各组件和管件进行组装和连接,首先将氮气从进氮气连接管通入容器内,将氮气通过氮气节流阀通入并调节气体流量大小,通过压力开关显示出当前的***压力值;
S2、当***压力值小于实验条件的压力值时,压力开关自动开启并对气囊104充气,容器内压力增加,直到***压力值达到所需值,当***压力值高于实验条件的压力值时,压力开关自动关闭,打开安全阀101排出少量氮气,容器内压力降低,直到***压力稳定在所需值;
S3、通过安装在容器组件3底部的测量氮含量电极将测得的氮含量数据传输控制模块,通过控制模块计算容器中溶解氮量,采用PID算法计算***控制氮气的通入量,再通过氮气节流阀调节氮气的通入,溶解氮含量的精确控制通过进氮气连接管与散气盘205连接的可调节流量的氮气节流阀来调节氮气的输入量,从而控制***的含氮量;
S4、将氧气通过氧气节流阀202通入容器组件3内,重复S1~S3,调节***含氧量,直到将容器组件3内的含氮和含氧平衡在实验所需值。
本发明实例的工作原理为:
压力控制组件主要控制***压力,通过数显压力表控制***压力,当压力低于0.255MPa时,压力开关自动开启,给气囊104充气,增加压力,当压力高于0.255MPa时,压力开关自动关闭,打开可调节压力安全阀101,直到***压力稳定在0.255MPa。氮气和氧气含量控制组件2主要根据实验条件需要实时控制***溶解氧、溶解氮的含量。通过测量溶解氮含量电极和溶解氧含量电极,分别将数据传送到控制模块,再分别对溶解氮和溶解氧采用PID算法,精确控制各自可调节流量阀,包括氮气节流阀和氧气节流阀202,通过氮气节流阀和氧气节流阀202调节通入氮气和氧气的气体流量的大小,从而控制***内的氮和氧的含量。
综上所述,本发明通过压力控制组件将***内压力维持在实验条件,并通过压力控制组件对***内压力进行精确调节,通过氮气和氧气含量控制组件,测氮气和氧气含量,并将调节氮气和氧气的通入流量;能够混入不同比例的氮气和氧气,调节***压力,实现一定条件下不同氮氧含量的环境状态模拟。
本说明书描述了本发明的实施例的示例,并不意味着这些实施例说明并描述了本发明的所有可能形式。本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

1.一种环境状态模拟装置,其特征在于,包括***压力控制组件、氮气和氧气含量控制组件、容器组件和连接组件的管件,所述***压力控制组件包括调节压力的安全阀、压力显示器、充气阀和气囊,所述氮气和氧气含量控制组件包括散气盘、氮气节流阀、氧气节流阀、测氮电极和测氧电极;所述安全阀通过管件连通至所述容器组件,所述气囊设置于所述容器组件内,所述气囊通过管件连通至容器组件外的所述压力显示器和所述充气阀,所述散气盘设置于所述容器组件内且通过管件连通至容器组件外的所述氮气节流阀和所述氧气节流阀,所述散气盘可使用用于分散气体的部件代替,所述测氮电极和测氧电极分别通过管件连通至所述容器组件底部。
2.根据权利要求1所述的一种环境状态模拟装置,其特征在于,所述容器组件内的氧气和氮气含量通过所述测氧电极和测氮电极进行测定,并通过所述氧气节流阀和所述氮气节流阀进行调节。
3.根据权利要求2所述的一种环境状态模拟装置,其特征在于,所述环境状态模拟装置还包括控制模块,所述控制模块将所述测氧电极和所述测氮电极测得数据采集并通过PID算法控制所述氧气节流阀和所述氮气节流阀。
4.根据权利要求1所述的一种环境状态模拟装置,其特征在于,所述容器组件为封闭式容器,所述容器组件内部的压力通过所述安全阀和所述充气阀进行调节。
5.根据权利要求4所述的一种环境状态模拟装置,其特征在于,所述容器组件内的气体通过所述安全阀排出,所述充气阀通过向所述气囊充气调节所述气囊内压力。
6.根据权利要求6所述的一种环境状态模拟装置,其特征在于,所述散气盘通过管件将氮气和氧气从所述容器组件外输送至内部。
7.根据权利要求1所述的一种环境状态模拟装置,其特征在于,所述容器组件为拆卸式结构,所述容器组件包括可拆卸和连接的容器壳体和容器对接部。
8.根据权利要求1所述的一种环境状态模拟装置的使用方法,其包括以下步骤:
S1、将装置各组件和管件进行组装和连接,将氮气通过氮气节流阀通入容器组件内,通过压力显示器读出当前的***压力;
S2、当***压力值小于实验条件的压力值时,打开充气阀对气囊充气,直到***压力值达到所需值,当***压力值高于实验条件的压力值时,关闭充气阀,打开安全阀排出氮气,直到***压力稳定在所需值;
S3、通过测氮电极测得氮含量数据,传输至控制模块,通过控制模块计算溶解氮量,再通过氮气节流阀调节氮气的输入量,从而控制***的含氮量;
S4、将氧气通过氧气节流阀通入容器组件内,重复S1~S3,直到将容器组件内的含氮和含氧平衡在实验所需值。
9.根据权利要求8所述的一种环境状态模拟装置的使用方法,其特征在于,所述压力显示器和所述充气阀采用压力开关代替,通过所述压力开关设定压力阀值调节所述气囊内压力。
10.根据权利要求8所述的一种环境状态模拟装置的使用方法,其特征在于,氮气和氧气的通入先后顺序可互换;所述压力显示器为数显式压力表,所述充气阀为电子阀,所述容器组件为蒸馏水瓶。
CN201811539702.1A 2018-12-17 2018-12-17 一种氧化动力学反应中改进的环境状态模拟装置及使用方法 Active CN109444218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811539702.1A CN109444218B (zh) 2018-12-17 2018-12-17 一种氧化动力学反应中改进的环境状态模拟装置及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811539702.1A CN109444218B (zh) 2018-12-17 2018-12-17 一种氧化动力学反应中改进的环境状态模拟装置及使用方法

Publications (2)

Publication Number Publication Date
CN109444218A true CN109444218A (zh) 2019-03-08
CN109444218B CN109444218B (zh) 2024-02-20

Family

ID=65559878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811539702.1A Active CN109444218B (zh) 2018-12-17 2018-12-17 一种氧化动力学反应中改进的环境状态模拟装置及使用方法

Country Status (1)

Country Link
CN (1) CN109444218B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410216A (zh) * 2020-10-21 2021-02-26 英诺维尔智能科技(苏州)有限公司 一种氮气和氧气动态调节反应器内溶氧量的方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB684865A (en) * 1950-05-25 1952-12-24 British Aluminium Co Ltd Improvements in the determination of the gas content of liquid metals
GB798561A (en) * 1955-01-27 1958-07-23 Arnold St Jacques Lee Improvements in or relating to apparatus for the administration of substances to living subjects
DE29504086U1 (de) * 1995-03-10 1995-07-06 Palocz-Andresen, Michael, Dr.-Ing.habil., 20459 Hamburg Mikro-Kalibriervorrichtung für Gasanalysatoren
DE10010562A1 (de) * 2000-03-03 2001-09-06 Rainer Gorris Sauerstoffmessungen mit einer potentiometrischen Zirkondioxid-Messzelle bei Druckdifferenzen zwischen dem Messgas und dem Atmosphärendruck
CN1403803A (zh) * 2001-09-06 2003-03-19 中国科学院地理科学与资源研究所 一种测量疏松固体介质中氧气含量的装置
CN1854596A (zh) * 2005-04-25 2006-11-01 梅塞尔集团有限公司 用于以填充气体或填充气体混合物填充容器的方法和装置
CN201199326Y (zh) * 2008-04-29 2009-02-25 华东理工大学 气体分离实验设备的自动化测控***
CN101974659A (zh) * 2010-11-15 2011-02-16 中冶南方工程技术有限公司 用于高压冶炼炉加料的气囊型压力调节装置
CN102826667A (zh) * 2012-08-28 2012-12-19 王曙光 应急式气能多功能净化水***
CN102921338A (zh) * 2012-10-26 2013-02-13 上海天科化工检测有限公司 一种常压平衡逐级定容式气体中痕量组分的配制装置
CN202994715U (zh) * 2012-12-14 2013-06-12 中国石油大学(华东) 金属氢渗透双电池实验装置
CN103542915A (zh) * 2013-10-31 2014-01-29 湖南省计量检测研究院 一种气体小流量标准装置
CN103969315A (zh) * 2014-05-09 2014-08-06 南通亚泰船舶工程有限公司 脱硝催化剂检测装置及其方法
US20140261868A1 (en) * 2013-03-14 2014-09-18 Bio-Rad Laboratories, Inc. Bottle pressurization delivery system
CN105584983A (zh) * 2014-10-21 2016-05-18 中国石油化工股份有限公司 一种易挥发介质的密闭进出料装置及使用方法
CN106137453A (zh) * 2016-08-29 2016-11-23 叶贤伟 一种实时反馈多模式氧控制***
CN106970659A (zh) * 2017-03-28 2017-07-21 中国科学院南京地质古生物研究所 恒压反应容器的稳压调压设计
CN108119749A (zh) * 2017-12-20 2018-06-05 国网河北省电力有限公司电力科学研究院 一种sf6和n2混合气体充气装置及精确充气方法
CN207717720U (zh) * 2018-01-23 2018-08-10 河南中分仪器股份有限公司 气囊式储油装置
CN207918668U (zh) * 2018-01-24 2018-09-28 河北视窗玻璃有限公司 玻璃全氧窑气氛控制***及玻璃全氧窑
CN108827679A (zh) * 2018-06-15 2018-11-16 中国航天员科研训练中心 一种模拟空间环境的充气加压结构热试验装置及方法
CN209673699U (zh) * 2018-12-17 2019-11-22 西南科技大学 一种氧化动力学反应中改进的环境状态模拟装置

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB684865A (en) * 1950-05-25 1952-12-24 British Aluminium Co Ltd Improvements in the determination of the gas content of liquid metals
GB798561A (en) * 1955-01-27 1958-07-23 Arnold St Jacques Lee Improvements in or relating to apparatus for the administration of substances to living subjects
DE29504086U1 (de) * 1995-03-10 1995-07-06 Palocz-Andresen, Michael, Dr.-Ing.habil., 20459 Hamburg Mikro-Kalibriervorrichtung für Gasanalysatoren
DE10010562A1 (de) * 2000-03-03 2001-09-06 Rainer Gorris Sauerstoffmessungen mit einer potentiometrischen Zirkondioxid-Messzelle bei Druckdifferenzen zwischen dem Messgas und dem Atmosphärendruck
CN1403803A (zh) * 2001-09-06 2003-03-19 中国科学院地理科学与资源研究所 一种测量疏松固体介质中氧气含量的装置
CN1854596A (zh) * 2005-04-25 2006-11-01 梅塞尔集团有限公司 用于以填充气体或填充气体混合物填充容器的方法和装置
CN201199326Y (zh) * 2008-04-29 2009-02-25 华东理工大学 气体分离实验设备的自动化测控***
CN101974659A (zh) * 2010-11-15 2011-02-16 中冶南方工程技术有限公司 用于高压冶炼炉加料的气囊型压力调节装置
CN102826667A (zh) * 2012-08-28 2012-12-19 王曙光 应急式气能多功能净化水***
CN102921338A (zh) * 2012-10-26 2013-02-13 上海天科化工检测有限公司 一种常压平衡逐级定容式气体中痕量组分的配制装置
CN202994715U (zh) * 2012-12-14 2013-06-12 中国石油大学(华东) 金属氢渗透双电池实验装置
US20140261868A1 (en) * 2013-03-14 2014-09-18 Bio-Rad Laboratories, Inc. Bottle pressurization delivery system
CN103542915A (zh) * 2013-10-31 2014-01-29 湖南省计量检测研究院 一种气体小流量标准装置
CN103969315A (zh) * 2014-05-09 2014-08-06 南通亚泰船舶工程有限公司 脱硝催化剂检测装置及其方法
CN105584983A (zh) * 2014-10-21 2016-05-18 中国石油化工股份有限公司 一种易挥发介质的密闭进出料装置及使用方法
CN106137453A (zh) * 2016-08-29 2016-11-23 叶贤伟 一种实时反馈多模式氧控制***
CN106970659A (zh) * 2017-03-28 2017-07-21 中国科学院南京地质古生物研究所 恒压反应容器的稳压调压设计
CN108119749A (zh) * 2017-12-20 2018-06-05 国网河北省电力有限公司电力科学研究院 一种sf6和n2混合气体充气装置及精确充气方法
CN207717720U (zh) * 2018-01-23 2018-08-10 河南中分仪器股份有限公司 气囊式储油装置
CN207918668U (zh) * 2018-01-24 2018-09-28 河北视窗玻璃有限公司 玻璃全氧窑气氛控制***及玻璃全氧窑
CN108827679A (zh) * 2018-06-15 2018-11-16 中国航天员科研训练中心 一种模拟空间环境的充气加压结构热试验装置及方法
CN209673699U (zh) * 2018-12-17 2019-11-22 西南科技大学 一种氧化动力学反应中改进的环境状态模拟装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊瑞平, 殷国富, 张成孝: "一种基于虚拟仪器的气动力伺服控制***", 机床与液压, no. 06, 30 June 2004 (2004-06-30), pages 41 - 43 *
王帅: "充气欠平衡钻井技术在煤层气井的应用", 《内蒙古石油化工》, 28 February 2014 (2014-02-28), pages 93 - 96 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112410216A (zh) * 2020-10-21 2021-02-26 英诺维尔智能科技(苏州)有限公司 一种氮气和氧气动态调节反应器内溶氧量的方法

Also Published As

Publication number Publication date
CN109444218B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN209673699U (zh) 一种氧化动力学反应中改进的环境状态模拟装置
CN206329293U (zh) 一种模拟天然气水合物钻水平井全井眼携岩实验装置
CN103711483B (zh) 页岩生烃、吸附及解吸模拟***和模拟方法
CN201697857U (zh) 用于压裂支撑剂的检测装置
CN105715233B (zh) 碳酸岩缝洞单元体注采模拟实验评价装置
CN206134040U (zh) 一种重力加速度测试物理实验装置
CN206788122U (zh) 一种多通道气相色谱电子气路压力流量控制装置
CN102329729B (zh) 一种用于悬浮细胞微重力效应模拟的培养***
CN206823229U (zh) 用于纺织品检验的加液‑振荡一体化装置
CN103279158A (zh) 温控-压控地下水越流污染模拟***
CN109444218A (zh) 一种氧化动力学反应中改进的环境状态模拟装置及使用方法
CN109655863B (zh) 闭环式静电收集两周期测量水中镭浓度的方法
CN106769742B (zh) 一种抑尘剂、防尘剂除尘效果测试装置及测试方法
CN109187926B (zh) 破碎煤岩体三轴渗流试验装置及解吸-扩散-渗流试验***
CN104535455A (zh) 动态监测孔隙压力分布及变化的瓦斯渗流实验装置及方法
CN109599021A (zh) 一种地质储层径向流模拟装置
CN109211643B (zh) 基于反复沉淀制备胶结钙质砂土的试验***及其方法
CN105466806A (zh) 一种动态钻屑变压解吸实验***
CN207623199U (zh) 一种可均匀布水模拟水岩相互作用的实验装置
CN103424358B (zh) 多参数可控温模拟垂直大气环境吸收池装置
CN206400902U (zh) 一种用于物理实验的沸点与压力关系演示装置
CN107976335A (zh) 一种开放体系化学动力学高温高压实验装置
CN115219687A (zh) 一种考虑多因素影响的煤与瓦斯突出模拟实验方法
CN104166414B (zh) 一种小型水温控制***
CN206096977U (zh) 一种高原弥散制氧机的控制***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant