CN109420757A - 一种金属3d打印修复的耐高温材料及制备方法 - Google Patents

一种金属3d打印修复的耐高温材料及制备方法 Download PDF

Info

Publication number
CN109420757A
CN109420757A CN201710730965.XA CN201710730965A CN109420757A CN 109420757 A CN109420757 A CN 109420757A CN 201710730965 A CN201710730965 A CN 201710730965A CN 109420757 A CN109420757 A CN 109420757A
Authority
CN
China
Prior art keywords
powder
parts
metal
heat
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710730965.XA
Other languages
English (en)
Inventor
黄佐泽
潘绍臣
伍大文
陈建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R & D Center Of Robotics And Laser Technology Demonstration Co Ltd
Original Assignee
R & D Center Of Robotics And Laser Technology Demonstration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R & D Center Of Robotics And Laser Technology Demonstration Co Ltd filed Critical R & D Center Of Robotics And Laser Technology Demonstration Co Ltd
Priority to CN201710730965.XA priority Critical patent/CN109420757A/zh
Publication of CN109420757A publication Critical patent/CN109420757A/zh
Pending legal-status Critical Current

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及金属器件修复领域,公开了一种金属3D打印修复的耐高温材料及制备方法,打印修复的耐高温材料按重量份计算,包括钴基高温合金Stellite X‑40粉末80‑100份、碳化钨粉末1‑20份及氧化钇0‑1份。利用该粉末修复发动机叶片,加工过程开裂倾向较低。粉末与基材达到良好的冶金结合,在高温状态下工作仍然保持良好的力学性能,达到使用要求,达到修复发动机叶片的要求,工艺简单、节约资源、大大降低了修复成本。

Description

一种金属3D打印修复的耐高温材料及制备方法
技术领域
本发明涉及金属器件修复领域,尤其涉及一种金属3D打印修复的耐高温材料及制备方法。
背景技术
金属激光3D打印是在电脑上通过CDA建立三维模型,利用切片软件将其切片,即将零件的三维数据信息转换成一系列的二维轮廓信息,再采用激光熔覆的方法按照轮廓轨迹逐层堆积材料,最终形成三维实体零件或需进行少量加工的毛坯。利用激光束与材料相互作用时的快速熔化和凝固过程,可以获得细小、均匀、致密的组织,消除成分偏析的不利影响,从而提高材料的力学和耐腐蚀性能。此外还有制造速度快、节约材料和在修复部位与基材达到良好的冶金结合。
发动机高温部件低压涡轮导向叶片在高温气流的热负荷以及气动力的环境下,容易出现烧蚀和裂纹这一严重问题。目前采用的修复技术为堆焊进行修复,其存在热输入过大,基材与堆焊材料结合处存在很大的热影响区,降低了基材的力学性能。金属3D打印技术可以完成修复的同时降低热输入量,降低热影响区的范围。通过专业粉体材料的研发,采用激光金属3D打印技术以及梯度功能材料成分设计,修复并改善发动机低压涡轮导向叶片的耐高温性能,达到延长叶片使用寿命、对失效件进行修复及降低修理成本的目的。
发明内容
本发明提供一种金属3D打印修复的耐高温材料及制备方法,解决现有技术中金属裂纹修复存在很大的热影响区、修复材料性能差的技术问题。
本发明的目的是通过以下技术方案实现的:
一种金属3D打印修复的耐高温材料,按重量份计算,包括钴基高温合金StelliteX-40粉末80-100份、碳化钨粉末1-20份及氧化钇0-1份。
一种金属3D打印修复的耐高温材料的制备方法,包括:
向钴基高温合金Stellite X-40粉末中加入碳化钨和三氧化二钇,以制成混合粉末;
将所述混合粉末在行星球磨机中进行干磨,球料比为4-10:1-1.2,球磨4-8h,转速为120-150r/min,得混合均匀的粉末;
将混合均匀的粉末经120℃干燥处理2h,制得粉末。
本发明提供一种金属3D打印修复的耐高温材料及制备方法,根据。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可根据这些附图获得其他的附图。
图1为本发明实施例的两种材料的摩擦系数随时间变化关系曲线;
图2为本发明实施例的第9涂层基材磨痕显微形貌放大图;
图3为本发明实施例的K403基材磨痕显微形貌放大图;
图4
图5为本发明实施例的一种金属3D打印修复的耐高温材料的制备方法流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明实施例提供了一种金属3D打印修复的耐高温材料,按重量份计算,包括钴基高温合金Stellite X-40粉末80-100份、碳化钨粉末1-20份及氧化钇0-1份。
其中,较优的配比为按重量份计算,包括钴基高温合金Stellite X-40粉末99-95份、碳化钨0.5-5份及氧化钇0-1份制成。
另一较优的配比为按重量份计算,包括钴基高温合金Stellite X-40粉末98份、碳化钨1.5份及氧化钇0.5份制成。
以上所述每100份钴基高温合金Stellite X-40粉末按重量份计算,包括碳0.5-1份、硅0-1份、铬22-27份、镍8-12份、钨5-10份及钴50-60份。
钴基高温合金粉末,是以钴作为主要成分,含有相当数量的镍、铬、钨等粉末元素。根据粉末中成分不同,它们可以制成焊丝,粉末用于硬面堆焊,热喷涂、喷焊等工艺,也可以制成铸锻件和粉末冶金件。一般钴基在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。钴基粉末中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基粉末中的γ相长大速度要慢﹐重新回溶于基体的温度也较高(最高可达1100℃)﹐因此在温度上升时﹐钴基粉末的强度下降一般比较缓慢。钴基粉末有很好的抗热腐蚀性能,一般认为,钴基粉末在这方面优于镍基粉末的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数钴基粉末含铬量比镍基粉末高,所以在粉末表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。工件的磨损在很大程度上受其表面的接触应力或冲击应力的影响。在应力作用下表面磨损随位错流动和接触表面的互相作用特征而定。对于钴基粉末来说,这种特征与基体具有较低的层错能及基体组织在应力作用或温度影响下由面心立方转变为六方密排晶体结构有关,具有六方密排晶体结构的金属材料,耐磨性是较优的。此外,粉末的第二相,如碳化物的含量、形态和分布对耐磨性也有影响。由于铬和钨的粉末碳化物分布于富钴的基体中以及部分铬和钨原子固溶于基体,使粉末得到强化,从而改善耐磨性。加入碳化钨可以有固溶强化和弥散强化作用,提高了打印材料的强度和硬度。三氧化二钇是一种稀土元素,可以净化晶界,提高材料塑性韧性,改善高温性能。
本发明一种金属3D打印修复的耐高温材料,通过在钴基高温合金StelliteX-40粉末中加入碳化钨硬质颗粒和三氧化二钇稀土,利用该粉末修复发动机叶片,加工过程开裂倾向较低。粉末经过3D打印后硬度达到叶片的使用要求范围,与基材达到良好的冶金结合,在高温状态下工作仍然保持良好的力学性能,达到使用要求,达到修复发动机叶片的要求,工艺简单、节约资源、大大降低了修复成本,达到了发明的目的。
为证明本发明的技术效果,以3D打印修复发动机叶片为例说明本发明实施例的技术效果如下:
试验材料:粉末配方如表1所示,设计6组粉末配方制成的激光熔覆耐磨耐腐蚀涂层材料,粉末中钴基粉末的化学成分如表2所示,基材化学成分如表3所示,试验用基材采用与发动机叶片同质的K403合金。
表1激光金属3D打印修复的粉末配方
表2基材和stelliteX-40粉末化学成分
表3五种涂层的显微硬度(HRC)
试验方法
基材采用K403高温合金,其化学成分如表2所示。基材标准为50mm×30mm×30mm试样块,打印前先用角磨机除锈,并用酒精清洗试样块表面。
采用本公司RC-LDM8060激光金属3D打印设备进行打印,采用上述9组粉末进行同轴送粉,在工艺参数:功率P=1000W;扫描速度v=0.6m/min;喷高h=10mm;送粉量=33x%;送粉气体流量5L/min;保护气流量10L/min;离焦量为9mm;焦点光斑直径d=2mm;多道偏移b=1mm;激光光斑=2mm;搭接率为50%下进行试验。
3、显微硬度分析
试验表明:将9组试样沿截面切开,制备尺寸为10mm×10mm×10mm规格的试样,采用显微维氏硬度计从打印表面到基材每隔100μm打一个点,得到如下结果:
从表3可以看出,加入WC和稀土均提高了熔覆层的硬度值,其中第三组和第八组硬度达到基材的水平,分别为35.6HRC和36.0HRC;第九组的硬度值相对于基材得到一定的提高,达到37.8HRC。
4、耐磨性分析
利用摩擦磨损试验仪对第9组涂层和K403基材的耐磨性进行测试,采用动态采集其摩擦系数。图1为两种材料的摩擦系数随时间变化关系曲线。
由图1可知,两种材料的摩擦系数在开始磨损时均存在急剧上升区域,这是由于对磨材料均有一定的粗糙度,摩擦副之间会发生粘着,随着摩擦过程的进行,实际接触面积不断增加,导致摩擦系数急剧上升;随后进入稳定磨损区,在此区域内,K403定摩擦系数约为0.7,而涂层的稳定摩擦系数为0.55,且涂层的摩擦系数表现更加稳定。对于金属材料而言,摩擦系数越小、越稳定,其耐磨性越好。因此,从摩擦系数的角度而言,涂层的耐磨性较基材而言更为优异。
利用扫描电镜对涂层及基材磨痕形貌进行观测,图2和图3分别为第9涂层和K403基材磨痕显微形貌放大图。由图2可知,第9涂层磨损较窄、表面呈浅平犁沟,其磨损机制为磨粒的显微切屑,呈现磨粒磨损的特征。由图3可知,基材磨痕较宽、表面磨损较严重,磨损表面由于热焊和剪切造成了材料的塑变、剥落、转移和撕裂,是典型的粘着磨损。因此,从磨痕形貌角度而言,第9涂层耐磨性优于K403基材。
利用精度为0.1mg的分析天平对第9组涂层和K403基材磨损前后的试样重量进行测试,用磨损前的重量减去磨损后的重量可得到失重量。如图4所示,涂层失重量(5.9mg)远低于基材失重量(18.4mg)。
综上所述,利用第9组粉末所制备的涂层耐磨性相对于基材有较为明显的提高。
可见,当粉末配比stelliteX-40基粉末:WC:Y2O3=96.9:2.5:0.6(wt.%)时,采用激光金属3D打印得到涂层的洛氏硬度为37.8HRC的涂层,涂层的耐磨性相对于K403有了明显提高。本发明所述激光金属3D打印修复K403合金叶片,其修复层硬度值及耐磨性相对于基材得到一定的提高。
本发明实施例还提供了一种金属3D打印修复的耐高温材料的制备方法,如图5所示,包括:
步骤501、向钴基高温合金Stellite X-40粉末中加入碳化钨和三氧化二钇,以制成混合粉末;
步骤502、将所述混合粉末在行星球磨机中进行干磨,球料比为4-10:1-1.2,球磨4-8h,转速为120-150r/min,得混合均匀的粉末;
步骤503、将混合均匀的粉末经120℃干燥处理2h,制得粉末。
本发明实施例中利用上述的金属3D打印修复的耐高温材料,基于激光金属3D打印设备对金属器件,例如对发动机高温部件低压涡轮导向叶片进行修复,具体流程为:
在三维切片软件对叶片进行建模;编写和打印设备匹配的软件;添加金属3D打印修复的耐高温材料;通过3D打印设备实现叶片的修复。其中,3D打印工艺参数为:功率P=1000W;扫描速度v=0.6m/min;喷高h=10mm;送粉量=33x%;送粉气体流量5L/min;保护气流量10L/min;离焦量为9mm;焦点光斑直径d=2mm;多道偏移b=1mm;激光熔覆光斑=2mm;搭接率为50%。
以上对本发明进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种金属3D打印修复的耐高温材料,其特征在于,按重量份计算,包括钴基高温合金Stellite X-40粉末80-100份、碳化钨粉末1-20份及氧化钇0-1份。
2.根据权利要求1所述的金属3D打印修复的耐高温材料,其特征在于,按重量份计算,包括钴基高温合金Stellite X-40粉末99-95份、碳化钨0.5-5份及氧化钇0-1份制成。
3.根据权利要求1所述的金属3D打印修复的耐高温材料,其特征在于,按重量份计算,包括钴基高温合金Stellite X-40粉末98份、碳化钨1.5份及氧化钇0.5份制成。
4.根据权利要求1至3中任意一项所述的金属3D打印修复的耐高温材料,其特征在于,所述每100份钴基高温合金Stellite X-40粉末按重量份计算,包括碳0.5-1份、硅0-1份、铬22-27份、镍8-12份、钨5-10份及钴50-60份。
5.一种金属3D打印修复的耐高温材料的制备方法,其特征在于,包括:
向钴基高温合金Stellite X-40粉末中加入碳化钨和三氧化二钇,以制成混合粉末;
将所述混合粉末在行星球磨机中进行干磨,球料比为4-10:1-1.2,球磨4-8h,转速为120-150r/min,得混合均匀的粉末;
将混合均匀的粉末经120℃干燥处理2h,制得粉末。
CN201710730965.XA 2017-08-23 2017-08-23 一种金属3d打印修复的耐高温材料及制备方法 Pending CN109420757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710730965.XA CN109420757A (zh) 2017-08-23 2017-08-23 一种金属3d打印修复的耐高温材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710730965.XA CN109420757A (zh) 2017-08-23 2017-08-23 一种金属3d打印修复的耐高温材料及制备方法

Publications (1)

Publication Number Publication Date
CN109420757A true CN109420757A (zh) 2019-03-05

Family

ID=65499199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710730965.XA Pending CN109420757A (zh) 2017-08-23 2017-08-23 一种金属3d打印修复的耐高温材料及制备方法

Country Status (1)

Country Link
CN (1) CN109420757A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385430A (zh) * 2019-08-21 2019-10-29 西迪技术股份有限公司 一种3d打印的粉体材料
WO2024120547A1 (zh) * 2023-07-26 2024-06-13 内蒙古工业大学 基于CrCoVWYC粉末的激光增材合金、复合涂层及复合涂层的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385430A (zh) * 2019-08-21 2019-10-29 西迪技术股份有限公司 一种3d打印的粉体材料
CN110385430B (zh) * 2019-08-21 2022-02-08 西迪技术股份有限公司 一种3d打印的粉体材料
WO2024120547A1 (zh) * 2023-07-26 2024-06-13 内蒙古工业大学 基于CrCoVWYC粉末的激光增材合金、复合涂层及复合涂层的制备方法

Similar Documents

Publication Publication Date Title
Peat et al. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing
Bartkowski et al. Wear resistance in the soil of Stellite-6/WC coatings produced using laser cladding method
Vasudev et al. Mechanical and microstructural characterization of microwave post processed Alloy-718 coating
Vasudev et al. Erosion behaviour of HVOF sprayed Alloy718-nano Al2O3 composite coatings on grey cast iron at elevated temperature conditions
Song et al. Rebuilding of metal components with laser cladding forming
Peat et al. Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing
Reddy et al. High temperature erosion performance of NiCrAlY/Cr2O3/YSZ plasma spray coatings
Zhao et al. Non-transferred arc plasma cladding of Stellite Ni60 alloy on steel
EP0961017B1 (en) High temperature resistant coating
CN105506616B (zh) 修复受损鼓风机叶片的激光熔覆镍基合金粉末及修复方法
Ren et al. Effect of WC particles preparation method on microstructure and properties of laser cladded Ni60-WC coatings
Chen et al. Sliding wear behaviour of laser clad coatings based upon a nickel-based self-fluxing alloy co-deposited with conventional and nanostructured tungsten carbide–cobalt hardmetals
CN104195550A (zh) 一种WC-NiSiB激光熔覆材料的制备方法
CN109420757A (zh) 一种金属3d打印修复的耐高温材料及制备方法
Xiao et al. Investigation on microstructure and mechanical properties of Fe-based amorphous coatings prepared via laser cladding assisted with ultrasonic vibration
Shivamurthy et al. Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying
CN106226307A (zh) 一种测量617镍基合金热影响区长度的方法
CN106591829A (zh) 耐磨涂层及其制造方法、用途、齿轮铣刀
CN202510273U (zh) 耐汽蚀水轮机叶片
CN102506002B (zh) 耐汽蚀水轮机叶片及热喷涂方法
CN108642326A (zh) 一种560hv钴基耐高温激光熔覆粉末及激光熔覆的方法
Sethi Studies on hard surfacing of structural steel by gas thermal spraying process
JP7105535B2 (ja) 蒸気タービン翼の製造方法
Singh et al. Erosion wear performance of HVOF and cold spray coatings deposited on T-91 boiler steel
Gong et al. The water droplet erosion resistance of Ni-based composite coating through laser cladding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190305

WD01 Invention patent application deemed withdrawn after publication