CN109395761A - 一种氮掺杂BiOIO3光催化剂的制备方法及其应用 - Google Patents

一种氮掺杂BiOIO3光催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN109395761A
CN109395761A CN201811399169.3A CN201811399169A CN109395761A CN 109395761 A CN109395761 A CN 109395761A CN 201811399169 A CN201811399169 A CN 201811399169A CN 109395761 A CN109395761 A CN 109395761A
Authority
CN
China
Prior art keywords
bioio
doping
photochemical catalyst
preparation
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811399169.3A
Other languages
English (en)
Other versions
CN109395761B (zh
Inventor
黄立英
王雅芹
李夜平
张艺瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811399169.3A priority Critical patent/CN109395761B/zh
Publication of CN109395761A publication Critical patent/CN109395761A/zh
Application granted granted Critical
Publication of CN109395761B publication Critical patent/CN109395761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/23
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明属于纳米材料制备和应用技术领域,涉及光催化剂,具体涉及一种氮掺杂BiOIO3光催化剂的制备方法,包括:配制等摩尔的五水合硝酸铋和碘酸钾混合溶液,转入水热反应釜中120~160℃反应4~16h,自然冷却后过滤、水洗、烘干,研磨得BiOIO3纳米粒;将BiOIO3纳米粒与尿素混合研磨,置于马弗炉中180~260℃煅烧2~6h,自然冷却后,研磨得氮掺杂BiOIO3光催化剂。本发明还公开了将其应用于光催化降解废水中的有机污染物。本发明制备方法简单易行,安全环保,产物成本低,易于工业化生产,有很高的应用前景和实用价值。制得的氮掺杂BiOIO3光催化剂,有效提高了材料可见光吸收性能,提高材料的光电流强度,增强材料光生电子、空穴的反应活性,具有显著的光催化降解有机污染物效果。

Description

一种氮掺杂BiOIO3光催化剂的制备方法及其应用
技术领域
本发明属于纳米材料制备和应用技术领域,涉及光催化剂,具体涉及一种氮掺杂BiOIO3光催化剂的制备方法及其应用。
背景技术
随着化学合成工业的迅速发展,大量有机化工物质,如染料、农药、日常护理品、抗生素等被大量使用和排放,造成严重的水污染,对人类的健康构成了巨大威胁。水体中有机污染物的治理技术通常包括生物净化法、化学氧化法、物理吸附法等,这些技术在当今水环境修复中起到了重要作用。不过生物净化法应用范围有限,对于一些低含量、难降解的有机污染物效果较差;化学氧化法容易产生二次污染;物理吸附法会形成大量固体废弃物,且成本高。环境光催化技术依据半导体材料在光激发下能活化分子氧和水分子产生强氧化能力的自由基,进而可把有机分子矿化的原理,被认为是一种低成本、环境友好的高级氧化技术和高效消除各种低含量有机污染物的绿色途径。其中BiOIO3是一种铋基层状化合物,具有内建电场,可以促进光生电子和空穴的分离,具有良好的化学稳定性和热稳定性而成为一种新型的光催化剂。不过BiOIO3的禁带宽度较大,对可见光响应性差,不能很好利用太阳光,其可见光催化活性较低。
通过掺杂改性是增强半导体材料可见光催化活性的有效途径,因为掺杂可在半导体带隙中产生新的能级,一方面可提高可见光响应性能,另一方面可提高光生电子和空穴的分离效率。如何通过简单易行的方法制备可见光响应性强、稳定性好的掺杂BiOIO3光催化材料,是将BiOIO3应用于环境光催化领域亟待解决的问题。
发明内容
针对上述现有技术中存在的不足,本发明的目的是在于提供一种氮掺杂BiOIO3光催化剂的制备方法。
为实现上述目的,本发明通过以下技术方案实现:
一种氮掺杂BiOIO3光催化剂的制备方法,包括如下步骤:
A、 将等摩尔的五水合硝酸铋和碘酸钾溶于蒸馏水中,得混合溶液;
B、 将混合溶液转入水热反应釜中120~160℃反应4~16h,优选130~140℃反应8~10h,自然冷却后过滤,水洗,60~90℃烘干,研磨得BiOIO3纳米粒;
C、将BiOIO3纳米粒与尿素混合研磨,置于马弗炉中180~260℃煅烧2~6h,优选200~240℃反应3~4h,自然冷却后,研磨得氮掺杂BiOIO3光催化剂。
本发明较优公开例中,步骤C所述尿素与BiOIO3的质量比为1:2~1:10,优选质量比为1:4~1:6。
根据本发明所述方法制得的氮掺杂BiOIO3光催化剂,由氮元素掺杂BiOIO3构成,形貌呈不规则颗粒状。
本发明还有一个目的,将所制得的氮掺杂BiOIO3光催化剂应用于光催化降解废水中的有机污染物。
进一步的,所述有机污染物为苯酚、罗丹明B或环丙沙星中的一种或多种。
氮掺杂BiOIO3光催化剂降解苯酚的性能评价:
配制浓度为10mg/L的苯酚溶液100mL,加入0.100g实施例1所制备的氮掺杂BiOIO3,避光磁力搅拌60min至体系吸附平衡,以30W的LED灯为光源,用紫外-可见分光光度计在270nm波长处测定苯酚溶液的吸光度,进行光降解实验,以C/C0~时间作图,表征材料的光催化活性,其中C0、C分别为光催化降解前后苯酚的浓度。同样条件下进行BiOIO3的光降解实验,结果如图4所示,可见氮掺杂BiOIO3具有比BiOIO3更好的光催化降解苯酚的活性。
氮掺杂BiOIO3光催化剂降解罗丹明B的性能评价:
配制浓度为10mg/L的罗丹明B溶液100mL,加入0.100g实施例2所制备的氮掺杂BiOIO3,避光磁力搅拌60min至体系吸附平衡,以30W的LED灯为光源,用紫外-可见分光光度计在553nm波长处测定罗丹明B溶液的吸光度,进行光降解实验,以C/C0~时间作图,表征材料的光催化活性,其中C0、C分别为光催化降解前后罗丹明B的浓度。同样条件下进行BiOIO3的光降解实验,结果如图5所示,可见氮掺杂BiOIO3具有比BiOIO3更好的光催化降解罗丹明B的活性。
氮掺杂BiOIO3光催化剂降解环丙沙星的性能评价:
配制浓度为10mg/L的环丙沙星溶液100mL,加入0.100g实施例3所制备的氮掺杂的BiOIO3,避光磁力搅拌60min至体系吸附平衡,以30W的LED灯为光源,用紫外-可见分光光度计在276nm波长处测定环丙沙星溶液的吸光度,进行光降解实验,以C/C0~时间作图,表征材料的光催化活性,其中C0、C分别为光催化降解前后环丙沙星的浓度。同样条件下进行BiOIO3的光降解实验,结果如图6所示,可见氮掺杂BiOIO3具有比BiOIO3更好的光催化降解环丙沙星的活性。
氮掺杂BiOIO3光催化剂的光电流响应性能评价:
采用CHI760D型电化学工作站测定样品光电流,采用三电极体系,以氧化铟锡(ITO)玻碳电极修饰样品后作为工作电极,甘汞电极为参比电极,铂丝为辅助电极,电解液Na2SO4溶液浓度为0.1mol/L。可见光光源为30W LED灯。同样条件下进行BiOIO3的光电流响应性能测试。实施例4中的BiOIO3和氮掺杂BiOIO3的光电流响应性能如图7所示,可见氮掺杂BiOIO3在光照时具有比BiOIO3更强的光电流。
氮掺杂BiOIO3光催化剂在50min降解罗丹明B达98%,120min降解环丙沙星达90%,100min可降解苯酚达91%,明显高于BiOIO3的光催化性能,可用于光催化降解有机污染物领域。
有益效果
本发明所公开的氮掺杂BiOIO3光催化剂的制备方法简单易行,安全环保,产物成本低,易于工业化生产,具有很高的应用前景和实用价值。所制得的氮掺杂BiOIO3光催化剂,有效提高了材料可见光吸收性能,提高材料的光电流强度,增强材料光生电子、空穴的反应活性。与现有的光催化材料相比,具有显著的光催化降解有机污染物效果。
附图说明
图1. 对照品BiOIO3和本发明的氮掺杂BiOIO3的X射线衍射图;
图2. 本发明的氮掺杂BiOIO3的扫描电镜图;
图3. 对照品BiOIO3和本发明的氮掺杂BiOIO3的紫外-可见吸收光谱图;
图4. 对照品BiOIO3和本发明的氮掺杂BiOIO3在可见光下催化降解苯酚的性能图;
图5. 对照品BiOIO3和本发明的氮掺杂BiOIO3在可见光下催化降解罗丹明B的性能图;
图6. 对照品BiOIO3和本发明的氮掺杂BiOIO3在可见光下催化降解环丙沙星的性能图;
图7. 对照品BiOIO3和本发明的氮掺杂BiOIO3在可见光下光电流响应性能图。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种氮掺杂BiOIO3光催化剂的制备方法,包括如下步骤:
BiOIO3的制备:称取0.485g五水合硝酸铋和0.214g碘酸钾溶于70 mL蒸馏水中,得溶液A;将溶液A转移至100 mL水热反应釜中,于120℃反应16h,自然冷却至室温后过滤,所得固体粉末用蒸馏水洗涤,60℃烘干,研磨得BiOIO3光催化剂粉末。
氮掺杂BiOIO3的制备:称取0.1g尿素和0.2g BiOIO3,置于研钵中研磨混合均匀,转移至坩埚中,然后置于马弗炉中于180℃煅烧6h,产物自然冷却至室温,研磨得氮掺杂BiOIO3
所得BiOIO3和氮掺杂BiOIO3的X射线衍射图见图1所示。可见氮掺杂BiOIO3与BiOIO3的衍射峰一致,说明氮掺杂没有改变BiOIO3的晶相。
实施例 2
一种氮掺杂BiOIO3光催化剂的制备方法,包括如下步骤:
BiOIO3的制备:称取0.485g五水合硝酸铋和0.214g碘酸钾溶于70 mL蒸馏水中,得溶液A;将溶液A转移至100 mL水热反应釜中,于160℃反应4h,自然冷却至室温后过滤,所得固体粉末用蒸馏水洗涤,90℃烘干,研磨得BiOIO3光催化剂粉末。
氮掺杂BiOIO3的制备:称取0.02g尿素和0.2g BiOIO3,置于研钵中研磨混合均匀,转移至坩埚中,然后置于马弗炉中于260℃煅烧2h,产物自然冷却至室温,研磨得氮掺杂BiOIO3
所得氮掺杂BiOIO3的扫描电镜图见图2所示,可见氮掺杂BiOIO3的形貌呈不规则颗粒状。
实施例 3
一种氮掺杂BiOIO3光催化剂的制备方法,包括如下步骤:
BiOIO3的制备:称取0.485g五水合硝酸铋和0.214g碘酸钾溶于70 mL蒸馏水中,得溶液A;将溶液A转移至100 mL水热反应釜中,于140℃反应10h,自然冷却至室温后过滤,所得固体粉末用蒸馏水洗涤,80℃烘干,研磨得BiOIO3光催化剂粉末。
氮掺杂BiOIO3的制备:称取0.05g尿素和0.2g BiOIO3,置于研钵中研磨混合均匀,转移至坩埚中,然后置于马弗炉中于230℃煅烧3h,产物自然冷却至室温,研磨得氮掺杂BiOIO3
本实施例所得BiOIO3和氮掺杂BiOIO3的紫外-可见吸收光谱如图3所示。可见,BiOIO3的吸光波长<400nm,对可见光的利用率低,而氮掺杂BiOIO3的吸光波长拓宽到650nm左右,具有显著的可见光吸收性能。
实施例 4
一种氮掺杂BiOIO3光催化剂的制备方法,包括如下步骤:
BiOIO3的制备:称取0.485g五水合硝酸铋和0.214g碘酸钾溶于70 mL蒸馏水中,得溶液A;将溶液A转移至100 mL水热反应釜中,于150℃反应6h,自然冷却至室温后过滤,所得固体粉末用蒸馏水洗涤,70℃烘干,研磨得BiOIO3光催化剂粉末。
氮掺杂BiOIO3的制备:称取0.08g尿素和0.2g BiOIO3,置于研钵中研磨混合均匀,转移至坩埚中,然后置于马弗炉中于200℃煅烧4h,产物自然冷却至室温,研磨得氮掺杂BiOIO3
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种氮掺杂BiOIO3光催化剂的制备方法,其特征在于,包括如下步骤:
A. 将等摩尔的五水合硝酸铋和碘酸钾溶于蒸馏水中,得混合溶液;
B. 将混合溶液转入水热反应釜中120~160℃反应4~16h,自然冷却后过滤,水洗,60~90℃烘干,研磨得BiOIO3纳米粒;
C. 将BiOIO3纳米粒与尿素混合研磨,置于马弗炉中180~260℃煅烧2~6h,自然冷却后,研磨得氮掺杂BiOIO3光催化剂。
2.根据权利要求1所述氮掺杂BiOIO3光催化剂的制备方法,其特征在于:步骤B所述将混合溶液转入水热反应釜中130~140℃反应8~10h。
3.根据权利要求1所述氮掺杂BiOIO3光催化剂的制备方法,其特征在于:步骤C所述将BiOIO3纳米粒与尿素混合研磨,置于马弗炉中200~240℃反应3~4h。
4.根据权利要求1所述氮掺杂BiOIO3光催化剂的制备方法,其特征在于:步骤C所述尿素与BiOIO3的质量比为1:2~1:10。
5.根据权利要求4所述氮掺杂BiOIO3光催化剂的制备方法,其特征在于:步骤C所述尿素与BiOIO3的质量比为1:4~1:6。
6.根据权利要求1-5任一所述方法制备的氮掺杂BiOIO3光催化剂。
7.根据权利要求6所述氮掺杂BiOIO3光催化剂,由氮元素掺杂BiOIO3构成,其特征在于:形貌呈不规则颗粒状。
8.一种如权利要求6或7所述氮掺杂BiOIO3光催化剂的应用,其特征在于:将氮掺杂BiOIO3光催化剂应用于光催化降解废水中的有机污染物。
9.根据权利要求8所述氮掺杂BiOIO3光催化剂的应用,其特征在于:所述有机污染物为苯酚、罗丹明B或环丙沙星中的一种或多种。
CN201811399169.3A 2018-11-22 2018-11-22 一种氮掺杂BiOIO3光催化剂的制备方法及其应用 Active CN109395761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811399169.3A CN109395761B (zh) 2018-11-22 2018-11-22 一种氮掺杂BiOIO3光催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811399169.3A CN109395761B (zh) 2018-11-22 2018-11-22 一种氮掺杂BiOIO3光催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109395761A true CN109395761A (zh) 2019-03-01
CN109395761B CN109395761B (zh) 2021-05-25

Family

ID=65474715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811399169.3A Active CN109395761B (zh) 2018-11-22 2018-11-22 一种氮掺杂BiOIO3光催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109395761B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586139A (zh) * 2019-09-24 2019-12-20 湖南大学 Fe(Ⅲ)团簇/碘酸氧铋复合光催化材料及其制备方法和应用
CN110694662A (zh) * 2019-10-18 2020-01-17 苏州大学 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN113694956A (zh) * 2021-09-23 2021-11-26 辽宁大学 氮掺杂钽酸钾光催化剂及其制备方法与应用
CN114849744A (zh) * 2022-05-20 2022-08-05 陕西科技大学 一种BaTiO3/BiOIO3复合材料及其制备方法和应用
CN114984990A (zh) * 2022-05-16 2022-09-02 湖南大学 管状氮化碳基肖特基异质结光催化剂及其制备方法和应用
CN116212900A (zh) * 2023-03-14 2023-06-06 厦门理工学院 一种I掺杂BiOIO3的光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098428A1 (es) * 2011-12-30 2013-07-04 Inael Electrical Systems, S.A. Método mecanoquímico de síntesis de partículas de dióxido de titanio en fase anatasa dopadas
CN103435010A (zh) * 2013-08-23 2013-12-11 山东大学 一种高光催化活性碘酸氧铋晶体的制备方法
CN104607225A (zh) * 2015-01-01 2015-05-13 宁波帝杨电子科技有限公司 氮掺杂负载型Bi203/Si02光催化剂的制备方法
CN105268462A (zh) * 2015-07-03 2016-01-27 西南石油大学 一种低温下n掺杂铋系氧化物的制备方法
CN108786859A (zh) * 2018-06-11 2018-11-13 上海电力学院 一种碳掺杂碘氧铋碘酸氧铋异质结构的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098428A1 (es) * 2011-12-30 2013-07-04 Inael Electrical Systems, S.A. Método mecanoquímico de síntesis de partículas de dióxido de titanio en fase anatasa dopadas
CN103435010A (zh) * 2013-08-23 2013-12-11 山东大学 一种高光催化活性碘酸氧铋晶体的制备方法
CN104607225A (zh) * 2015-01-01 2015-05-13 宁波帝杨电子科技有限公司 氮掺杂负载型Bi203/Si02光催化剂的制备方法
CN105268462A (zh) * 2015-07-03 2016-01-27 西南石油大学 一种低温下n掺杂铋系氧化物的制备方法
CN108786859A (zh) * 2018-06-11 2018-11-13 上海电力学院 一种碳掺杂碘氧铋碘酸氧铋异质结构的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FAN DONG ET AL.: ""Novel in Situ N-Doped (BiO)2CO3 Hierarchical Microspheres Self- Assembled by Nanosheets as Efficient and Durable Visible Light Driven Photocatalyst"", 《LANGMUIR》 *
YU SHIXIN ET AL.: "Synchronously Achieving Plasmonic Bi Metal Deposition and I- Doping by Utilizing BiOIO3 as the Self-Sacrificing Template for High-Performance Multifunctional Applications", 《ACS APPLIED MATERIALS & INTERFACES》 *
占俐琳等: ""尿素为氮源制备氮掺杂二氧化钛光催化剂"", 《陶瓷学报》 *
李欣蔚、董帆: ""环境光催化剂改性及应用研究进展"", 《重庆工商大学学报(自然科学版)》 *
王文君: ""系列铋基化合物结构与光催化性能的关系研究"", 《中国博士学位论文全文数据库》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586139A (zh) * 2019-09-24 2019-12-20 湖南大学 Fe(Ⅲ)团簇/碘酸氧铋复合光催化材料及其制备方法和应用
CN110694662A (zh) * 2019-10-18 2020-01-17 苏州大学 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN110694662B (zh) * 2019-10-18 2022-10-14 苏州大学 一种二维I掺杂BiOIO3/g-C3N4复合催化剂及其制备方法与应用
CN113694956A (zh) * 2021-09-23 2021-11-26 辽宁大学 氮掺杂钽酸钾光催化剂及其制备方法与应用
CN113694956B (zh) * 2021-09-23 2023-02-28 辽宁大学 氮掺杂钽酸钾光催化剂及其制备方法与应用
CN114984990A (zh) * 2022-05-16 2022-09-02 湖南大学 管状氮化碳基肖特基异质结光催化剂及其制备方法和应用
CN114849744A (zh) * 2022-05-20 2022-08-05 陕西科技大学 一种BaTiO3/BiOIO3复合材料及其制备方法和应用
CN116212900A (zh) * 2023-03-14 2023-06-06 厦门理工学院 一种I掺杂BiOIO3的光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN109395761B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
Wang et al. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity
CN109395761A (zh) 一种氮掺杂BiOIO3光催化剂的制备方法及其应用
Zhang et al. Enhanced photocatalytic degradation of ciprofloxacin using novel C-dot@ Nitrogen deficient g-C3N4: synergistic effect of nitrogen defects and C-dots
Zhao et al. Study on the photocatalysis mechanism of the Z-scheme cobalt oxide nanocubes/carbon nitride nanosheets heterojunction photocatalyst with high photocatalytic performances
Wang et al. Hollow spherical WO3/TiO2 heterojunction for enhancing photocatalytic performance in visible-light
Qi et al. Preparation and photocatalytic activity of Ag-modified GO-TiO2 mesocrystals under visible light irradiation
Wu et al. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption
Bano et al. Sunlight driven photocatalytic degradation of organic pollutants using a MnV 2 O 6/BiVO 4 heterojunction: Mechanistic perception and degradation pathways
Lu et al. Construction of novel BiOIO3/MoS2 2D/2D heterostructures with enhanced photocatalytic activity
Latha et al. Enhanced visible light photocatalytic activity of CeO2/alumina nanocomposite: Synthesized via facile mixing-calcination method for dye degradation
Alshaikh et al. Templated synthesis of CuCo2O4-modified g-C3N4 heterojunctions for enhanced photoreduction of Hg2+ under visible light
Kumari et al. Hydrothermally synthesized nano-carrots ZnO with CeO 2 heterojunctions and their photocatalytic activity towards different organic pollutants
Xu et al. Simultaneous removal of ceftriaxone sodium and Cr (VI) by a novel multi-junction (pn junction combined with homojunction) composite photocatalyst: BiOI nanosheets modified cake-like anatase-rutile TiO2
Gao et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis
Sun et al. The effect of pH on the photocatalytic performance of BiVO4 for phenol mine sewage degradation under visible light
Dos Santos et al. Investigation of the photocatalytic and optical properties of the SrMoO4/g-C3N4 heterostructure obtained via sonochemical synthesis with temperature control
Dhatshanamurthi et al. Synthesis and characterization of ZnS–TiO2 photocatalyst and its excellent sun light driven catalytic activity
Khalil et al. Formation and textural characterization of size-controlled LaFeO3 perovskite nanoparticles for efficient photocatalytic degradation of organic pollutants
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Alsalme et al. S-scheme AgIO4/CeO2 heterojunction nanocomposite photocatalyst for degradation of rhodamine B dye
Wang et al. Upconversion Tm3+: CeO2/palygorskite as direct Z-scheme heterostructure for photocatalytic degradation of bisphenol A
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
Asenath-Smith et al. CuO enhances the photocatalytic activity of Fe2O3 through synergistic reactive oxygen species interactions
CN105749942B (zh) 一种苦瓜状BiVO4/BiPO4异质结光催化材料及其制备方法和应用
Warshagha et al. Facile synthesis of CdO-ZnO heterojunction photocatalyst for rapid removal of organic contaminants from water using visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant