CN109391017B - 用于在非平衡电网电压的情况下使用的双有源桥式控制电路 - Google Patents

用于在非平衡电网电压的情况下使用的双有源桥式控制电路 Download PDF

Info

Publication number
CN109391017B
CN109391017B CN201810907953.4A CN201810907953A CN109391017B CN 109391017 B CN109391017 B CN 109391017B CN 201810907953 A CN201810907953 A CN 201810907953A CN 109391017 B CN109391017 B CN 109391017B
Authority
CN
China
Prior art keywords
phase
voltage
power
active bridge
dual active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810907953.4A
Other languages
English (en)
Other versions
CN109391017A (zh
Inventor
P.M.强生
A.W.布朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella GmbH and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella GmbH and Co KGaA filed Critical Hella GmbH and Co KGaA
Publication of CN109391017A publication Critical patent/CN109391017A/zh
Application granted granted Critical
Publication of CN109391017B publication Critical patent/CN109391017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J7/045
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

公开了用于在非平衡电网电压的情况下使用的双有源桥式控制电路。提供了用于将非平衡电网电压转换为DC电压的单级DAB控制电路。控制电路包括控制器,控制器具有电压检测模块,第一变换模块,电平偏移模块和第二变换模块。电压检测模块提供指示三相AC电源的每一相中的电压的电压分量值。第一变换模块使用克拉克—帕克变换将来自静止参考系的电压分量值转换为旋转参考系中的参考电压信号。电平偏移模块补偿参考电压信号以模拟理想的或平衡的三相AC电压。第二变换模块使用逆克拉克—帕克变换把经补偿的参考电压信号从旋转参考系转换到静止参考系。然后,控制器可操作以控制单级DAB转换器的操作,以用于将实质上没有波动或纹波的DC充电电压提供给电池。

Description

用于在非平衡电网电压的情况下使用的双有源桥式控制电路
相关申请的交叉引用。
本申请要求于2017年8月11日提交的美国临时申请 62/544,358的权益,该美国临时申请的公开内容被通过引用在其整体上合并于此。
技术领域
本发明涉及一种用于当对车辆电池再充电时在非平衡电网电压的情况下使用的控制电路。
背景技术
电动车辆包括用于对电驱动***供电的电池。电池可以包括通过DC电压可再充电的多个电池单元。对于***式电动车辆而言,当车辆未被驱动时,本地电气电网被用于对电池进行再充电。然而,由于大多数电气电网提供三相AC电压,因此来自本地电气电网的电力必须首先被转换为合适的DC电压。
存在用于将三相AC电压转换为DC电压的各种电路。一种已知的电路在图1中图示,并且包括第一级转换器和第二级转换器。第一级转换器从前端整流器(未示出)接收DC电压并且输出到DC链路电容器,而第二级转换器为电路提供电流隔离。该电路中的第一级转换器是双有源桥式(DAB)转换器。在操作中,其DC输入被初级侧桥逆变并且被次级侧桥整流。DAB转换器典型地由控制器操作,以根据电池充电要求调节DC输出的幅度。
在一些应用中,想要的是实现单级设计。然而,在实践中,本地电气电网可能提供非平衡的三相AC电压。如果不被校正,则非平衡的电压可能引起DC输出中的电压失真或电流纹波,这在再充电期间可能对电池有害。然而,现有的单级设计较差地适合于其中本地电气电网非平衡的应用。因此,仍然存在对于用于对车辆电池再充电的改进的单级控制电路、并且特别是包括DAB转换器的单级控制电路的需要。
发明内容
根据一个实施例,提供了一种用于将非平衡的电网电压转换为DC电压的单级DAB控制电路。控制电路包括控制器,控制器具有电压检测模块、第一变换模块、电平偏移模块和第二变换模块。电压检测模块提供指示三相AC电源的每一相中的电压的电压分量值。第一变换模块使用克拉克—帕克(Clark-Park)变换把来自静止参考系的电压分量值转换为旋转参考系中的参考电压信号。电平偏移模块补偿参考电压信号以模拟理想的(例如,平衡的)AC电压。第二变换模块使用逆克拉克—帕克变换把经补偿的参考电压信号从旋转参考系转换至静止参考系。然后,控制器可操作以基于重建的电压值来控制单级DAB转换器的操作,以用于提供实质上没有波动或纹波的DC充电电压。
根据另一个实施例,提供了一种用于操作DAB电路的方法。该方法包括确定指示三相AC电源的每个相中的电压值的电压分量值,并且使用克拉克—帕克变换把来自静止参考系的电压分量值转换为旋转参考系中的第一参考电压信号和第二参考电压信号。该方法于是包括补偿第一参考电压信号和第二参考电压信号以模拟平衡的三相AC电源,并且使用逆克拉克—帕克变换把经补偿的第一参考电压信号和第二参考电压信号从旋转参考系转换至静止参考系,以提供第一功率参考、第二功率参考和第三功率参考。该方法进一步包括分别基于第一功率参考、第二功率参考和第三功率参考来控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器的操作,以用于向电池提供DC充电电压。
如在下面更详细讨论的那样,控制电路和操作方法提供可选地用于车载的车辆充电***的单级设计,该单级设计补偿了电网扰动而仅具有功率因数的边际下降。尽管电气电网中存在非平衡电压的情况,但是可以提供DC输出,并且与现有的双级控制电路相比,本发明可以在事实上没有附加硬件的情况下用数字逻辑实现。
当根据随附附图和所附权利要求来看时,本发明的这些和其它特征和优点将从本发明的以下描述中变得显而易见。
附图说明
图1是现有技术的控制电路,包括用于对车辆电池充电的第一级转换器和第二级转换器。
图2是根据本发明的实施例的用于对车辆电池充电的单级控制电路的示意图。
图3是单级AC/DC配置中的隔离DAB的示意图。
图4是根据本发明的实施例的电池充电应用中的三相DAB AC/DC***的示意图。
图5是在图2中图示的单级控制电路中使用的控制方案的流程图。
图6描绘了根据本发明的实施例的DAB控制算法。
图7描绘了根据本发明的实施例的功率平衡算法。
图8是模拟结果,其描绘了在按每一DAB参考7kW下三相隔离的DAB的从非平衡的480V电网输入到300V(DC)输出的输出。
具体实施方式
在此公开的实施例包括DAB控制电路和相关的操作方法。DAB控制电路非常适合用于单级DAB转换器,并且补偿AC电网电压中的电网扰动。如以下阐述那样,DAB 控制电路可操作,以使用克拉克—帕克变换和逆克拉克—帕克变换基于重建的电压值来控制单级DAB转换器的操作。虽然在此与用于车辆电池的单一设计有关地进行了描述,但是DAB控制电路和相关方法可以如想要的那样使用于其它应用中。
参考图2,图示并一般地指明了根据一个实施例的单级DAB控制电路10。控制电路10包括转换器单元12,其被电耦合到三相电源14。控制电路10还包括控制器16,以用于取决于对三相电源14的电压测量来将控制信号提供给转换器单元12。在当前实施例中,转换器单元12包括三个DAB转换器(如图4中所示),每个转换器具有八个可控制的开关,而在其它实施例中,转换器单元12包括两个DAB转换器。如以下阐述那样,尽管三相电源14中存在有非平衡电压,DAB转换器的可控制的开关也由控制器16操作以向电池18提供DC电压。在当前实施例中,控制器16提供脉冲宽度调制的控制信号(在图2中被描绘为CNTL)以用于驱动DAB转换器的各个开关(例如,Si MOSFET或HEMT开关)。
在图3中示出了来自转换器单元12的单个DAB转换器。特别是,图3图示了单级AC/DC配置中的隔离DAB拓扑。如在本领域中已知的那样,隔离DAB拓扑从电压源接收随时间变化的DC源电压,例如整流的AC电网电压。DC源电压被提供给包括四个初级侧开关的输入桥。输入桥的输出被提供给隔离变压器的初级线圈。隔离变压器的次级将AC输出电压递送到输出桥,该输出桥包括四个次级侧开关。来自于输出桥的所得到的DC输出电压被提供给负载。在使用矩阵初级配置或前端120Hz整流器的情况下,DAB既被用作为功率因数校正(PFC)级,又被用作为DC输出调节级。该源将在其输入处汲取功率并且以某一效率η在其输出处源发功率,使得有并且受“功率参考”命令控制。
图4中示出了来自转换器单元12的三个DAB级。每个DAB级包括三相AC/DC***以使得一个DAB负责单个AC相的PFC,并且通过所有三个DAB输出的组合来实现DC输出。为了说明的目的,在从三相电网对高电压(HV)电池充电的应用中应该考虑该***。然而,应当注意的是,这仅仅是一种可能的应用,并且本发明可以应用于其中潜在地存在非平衡三相源和针对DC输出的必要性的任何三相AC/DC***。
为了纠正由于非平衡的电网所致的三相单级DAB AC/DC对输出纹波的易受影响性,控制器16动态地适配DAB的功率参考,以使得它们的输出功率总是平衡的。这将必然地以略微降低电网侧功率因数为代价,但是所提出的算法假设当电网已经失真时DC功率输出为更高优先级。
参照图5,图示了对控制器16的操作进行图示的流程图。流程图表示由控制器16执行的许多个方法步骤。也就是,控制器16包括如下指令:当其被执行时引起控制器16执行数字逻辑中的某些方法步骤。下面与电压检测模块20、第一变换模块22、电平偏移模块24和第二变换模块26有关地描述这些方法步骤,每个模块驻留在控制器16上。依次讨论每个模块。
电压检测模块20被适配为提供指示三相AC电源14的每相中的电压的值的电压分量值。特别是,电压检测模块20基于同时发生的对三相AC电源14的电压测量来确定第一相输入电压分量(Va)、第二相输入电压分量(Vb)以及第三相输入电压分量(Vc)。电压值被输出为三相电压矢量(Va,Vb,Vc)。
第一变换模块22被适配为观察来自每一相的锁相环(PLL)输出,并且通过寻找异常值来确定哪一电网角度最接近地描述三个相。使用所选择的电网角度,第一变换模块22进行三相电网电压的从静止的三相(a-b-c)系到旋转直接—正交(d-q)系的克拉克—帕克变换。
特别是,第一变换模块22把来自静止参考系的三相电压矢量转换为旋转参考系中的第一和第二参考电压信号(Vd,Vq)。第一变换模块22包括三相PLL算法,其中三相电压矢量(Va,Vb,Vc)是使用克拉克—帕克变换而被转变到旋转参考系的。克拉克变换将三相电压矢量转换为在静止αβ坐标系中的两个相量(Vα,Vβ)。克拉克变换的输出由帕克变换转换为在由电网角度Θ限定的旋转参考系中的d分量值和q分量值,其中电网角度Θ由锁相环控制。在平衡电压的情况下,d分量值为零(Vd),并且q分量值(Vq)描绘电压矢量幅度。然而,在非平衡电压的情况下,d分量值不为零。
电平偏移模块24于是被适配为补偿d分量值和q分量值(Vd-comp,Vq-comp)以使得d分量值为零,以模拟具有在功率因数上的边际下降的完美平衡的AC电压。在d-q系中,正交轴电压Vq表示起作用的电网电压的等效幅度,而直轴电压Vd表示无功分量的等效幅度。因此,所要求的功率参考仅取决于Vq,并且像这样,Vd应当被丢弃并且设置为零。在电网上有相位或幅度失真的情况下,Vq上将出现严重的120Hz纹波,并且可能由于谐波失真而引发更高的谐波。因此,应用重低通滤波器(LPF)以求出Vq的平均值。相应地,通过监控第一变换模块22的输出,可以检测非平衡状态。
第二变换模块26被适配为重建静止参考系中的电压值。特别是,第二变换模块26被适配为根据用于克拉克—帕克变换的相同的电网角度Θ使用逆克拉克—帕克变换把经补偿的d分量值和补偿q分量值(Vd-comp,Vq-comp)从旋转参考系转换到静止参考系。
更特别地,第二变换模块26使用虚拟电网值来计算来自每个DAB的想要的输入功率,以实现平衡输出并将DC功率输出为,其中是在时间t处的虚拟相电压,是一个周期上的虚拟电网相位RMS电压,并且是按每相所要求的平均输出功率以使得。然后,第二变换模块26使用虚拟电网电压值来计算想要的电流,将从将该想要的电流汲取为。接下来是两项附加的计算。第二变换模块26使用真实的相电压将用于DAB的相位功率参考计算为并且计算想要的功率和功率参考之间的差并乘以0.5的增益以将功率误差求出为。然后将功率误差相加到其它DAB的功率参考。如果不准许反向功率流动,则第二变换模块26可以将零瓦特的最小饱和度应用到功率参考。否则,预期有负功率要求。
如上面描述那样,控制器16被适配为控制转换器单元12的操作,以用于向电池提供实质上没有波动或波纹的DC充电电压。为此目的,控制器16可以包括转换器控制模块,其被适配为基于第二变换模块26的输出来控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器的操作。尽管在电气电网中存在非平衡电压的情况,也能够在只有在功率因数上的略微降低的情况下提供实质上没有波纹的DC输出,并且当前实施例可以是在实际上没有附加硬件的情况下利用数字逻辑实现的。
在图6和图7中描绘了前述控制算法的模型,其中在图8中示出了模拟结果。如在图6中示出那样,三相电压矢量[Vabc]被提供给第一集成电路30 (或模块)以用于执行锁相环和电网角度选择,并且被提供给第二集成电路32(或模块)以用于执行功率平衡算法。第二集成电路32还接收第一集成电路30的输出和功率参考[Pout_ref]作为输入。功率参考[Pout_ref]是由控制器16从外部控制架构得出的,该外部控制架构取得外部命令,利用操作约束和***状态覆盖它们,应用反馈控制器,并且从每一相计算所要求的输出。第二集成电路32使用虚拟电网值[Vabc]、[wt]和功率参考[Pout_ref]来从每个DAB [Pref_a]、[Pref_b]、[Pref_c]计算想要的输入功率,以按照上面阐述的方式实现平衡输出。利用该信息,由转换器控制模块将适当的脉冲宽度调制的门信号发送到(多个)DAB转换器的各个可控制的开关。在图7中描绘了由第二集成电路32执行的功率平衡算法的逻辑图。如在图8中示出那样,输入电压包括针对480VRMS电网的2%的相移失真,其中按每相的功率参考为7kW并且为300VDC负载供源(sourcing)。在没有功率平衡的情况下,相移失真引起8A的峰值到峰值纹波。在进行功率平衡的情况下,峰值到峰值纹波被降低到小于200mA。
以上描述是对本发明的当前实施例的描述。在不脱离本发明的精神和更宽泛的方面的情况下,可以作出各种更改和改变。本公开是为了说明性的目的给出的,并且不应当被解释为是对本发明的所有实施例的穷举描述或者被解释为将权利要求的范围限制为关于这些实施例而图示或描述的特定要素。对采用单数的要素的任何引用——例如,使用量词“一”,“一个”或代词“该”、“所述”——不应被解释为将要素限制成单数。

Claims (20)

1.一种用于为了对电池充电而将来自三相AC电源的功率转换为DC功率的控制***,所述控制***包括:
电压检测模块,被适配为提供指示三相AC电源的每一相中的电压的值的电压分量值;
第一变换模块,被适配为使用克拉克变换和帕克变换把来自静止参考系的电压分量值转换为旋转参考系中的第一参考电压信号和第二参考电压信号;
电平偏移模块,被适配为补偿第一参考电压信号和第二参考电压信号,以模拟平衡的三相AC电源;
第二变换模块,被适配为使用逆帕克变换和逆克拉克变换把经补偿的第一参考电压信号和第二参考电压信号从旋转参考系转换到静止参考系,第二变换模块提供第一功率参考、第二功率参考和第三功率参考作为输出;和
转换器控制模块,被适配为基于第二变换模块的输出来控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器的操作,以用于向电池提供DC充电电压。
2.根据权利要求1所述的控制***,其中,电压分量值被作为三相电压矢量输出到集成电路以用于执行功率平衡算法。
3.根据权利要求2所述的控制***,其中,集成电路包括第一变换模块、电平偏移模块和第二变换模块。
4.根据权利要求1所述的控制***,其中,转换器控制模块被适配为控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器中的每一个的多个开关。
5.根据权利要求1所述的控制***,其中,第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器构成用于输出到电池的单级转换器。
6.根据权利要求1所述的控制***,其中,第一变换模块包括三相锁相环(PLL)算法以用于将电压分量值从静止参考系转换到旋转参考系。
7.根据权利要求1所述的控制***,其中,电平偏移模块被适配为基于第一变换模块的输出来检测在三相AC电源中的非平衡负载的情况。
8.根据权利要求1所述的控制***,其中,第二变换模块被适配为计算来自第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器中的每一个的想要的功率输出。
9.根据权利要求1所述的控制***,其中,电池是车辆电池,并且其中所述控制***构成车载车辆充电***的部分。
10.根据权利要求1所述的控制***,其中,第一功率参考、第二功率参考和第三功率参考对应于第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器的针对平衡负载条件的功率输出。
11.一种用于为了对电池充电而将来自三相AC电源的功率转换为DC功率的方法,所述方法包括:
确定指示三相AC电源的每一相中的电压的值的电压分量值;
使用克拉克变换和帕克变换将来自静止参考系的电压分量值转换成旋转参考系中的第一参考电压信号和第二参考电压信号;
补偿第一参考电压信号和第二参考电压信号以模拟平衡的三相AC电源;
使用逆帕克变换和逆克拉克变换把经补偿的第一参考电压信号和第二参考电压信号从旋转参考系转换到静止参考系,以提供第一功率参考、第二功率参考和第三功率参考;和
基于第一功率参考、第二功率参考和第三功率参考来控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器的操作,以用于在实质上没有纹波的情况下将DC充电电压提供给电池。
12.根据权利要求11所述的方法,其中,控制步骤包括控制第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器中的每一个的多个开关。
13.根据权利要求11所述的方法,其中,第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器构成用于输出到电池的单级转换器。
14.根据权利要求11所述的方法,其中,把来自静止参考系的电压分量值转换到旋转参考系中包括执行三相锁相环(PLL)算法。
15.根据权利要求11所述的方法,其中,对经补偿的第一参考电压信号和第二参考电压信号进行转换包括对在三相AC电源中的非平衡负载条件进行检测。
16.根据权利要求11所述的方法,进一步包括计算来自第一相双有源桥式转换器、第二相双有源桥式转换器和第三相双有源桥式转换器中的每一个的想要的功率输出。
17.一种用于控制用于对车辆电池充电的单级转换器的控制器,单级转换器包括第一相双有源桥式转换器(第一相DAB)、第二相双有源桥式转换器(第二相DAB)和第三相双有源桥式转换器(第三相DAB),控制器包括:
电压检测模块,被适配为提供指示三相AC电源的每一相中的电压的值的电压分量值;
第一变换模块,被适配为将电压分量值转换为旋转参考系中的第一参考电压信号和第二参考电压信号;
电平偏移模块,被适配为补偿第一参考电压信号和第二参考电压信号,以模拟平衡的三相AC电源;
第二变换模块,被适配为把经补偿的第一参考电压信号和第二参考电压信号从旋转参考系转换到静止参考系,第二变换模块提供第一功率参考、第二功率参考和第三功率参考作为输出;和
转换器控制模块,被适配为基于第二变换模块的输出来控制第一相DAB、第二相DAB和第三相DAB的操作,以用于向车辆电池提供DC充电电压。
18.根据权利要求17所述的控制器,其中,第一功率参考、第二功率参考和第三功率参考分别对应于第一相DAB、第二相DAB和第三相DAB的针对平衡负载条件的想要的功率输出。
19.根据权利要求17所述的控制器,其中,电压分量值被输出为三相电压矢量。
20.根据权利要求17所述的控制器,其中控制器被适配为控制第一相DAB,第二相DAB和第三相DAB中的每一个的多个开关。
CN201810907953.4A 2017-08-11 2018-08-10 用于在非平衡电网电压的情况下使用的双有源桥式控制电路 Active CN109391017B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762544358P 2017-08-11 2017-08-11
US62/544358 2017-08-11

Publications (2)

Publication Number Publication Date
CN109391017A CN109391017A (zh) 2019-02-26
CN109391017B true CN109391017B (zh) 2023-04-28

Family

ID=63113363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810907953.4A Active CN109391017B (zh) 2017-08-11 2018-08-10 用于在非平衡电网电压的情况下使用的双有源桥式控制电路

Country Status (3)

Country Link
US (1) US10491132B2 (zh)
EP (1) EP3442089B1 (zh)
CN (1) CN109391017B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2552777B (en) * 2016-07-21 2022-06-08 Petalite Ltd A battery charging system and method
CN112098766B (zh) * 2020-11-09 2021-02-19 西南交通大学 基于差分拟合的多模级联dab功率波动在线评定方法
CN113972673B (zh) * 2021-09-29 2023-09-22 国网山东省电力公司营销服务中心(计量中心) 一种台区线损智能化感知稽查***
WO2023225473A2 (en) * 2022-05-19 2023-11-23 The Texas A&M University System Technologies for dual-stage charge collection and energy storage for alternative energy sources
CN114884385B (zh) * 2022-05-26 2024-06-25 上海交通大学 双有源桥型微逆变器及峰值电流控制方法、***
CN115800766B (zh) * 2023-01-30 2023-05-05 广东电网有限责任公司肇庆供电局 基于双有源桥变换器的模型参考自适应控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283727A (en) * 1992-09-16 1994-02-01 General Electric Company Independent control of the AC line current and output DC voltage of a high power factor AC-to-DC converter
CN102035215A (zh) * 2009-09-29 2011-04-27 通用电气公司 功率转换控制***
CN102088249A (zh) * 2009-12-07 2011-06-08 株式会社京三制作所 不平衡电压补偿方法及装置、三相变换器控制方法及装置
CN103731062A (zh) * 2013-12-23 2014-04-16 华中科技大学 交直流混合微电网用ac/dc双向功率变流器控制方法
CN104541428A (zh) * 2012-06-07 2015-04-22 伽柏·法卡斯 控制方法、控制设备和移动电力存储装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015851A2 (en) * 2002-07-31 2004-02-19 Smc Electrical Products, Inc. Low voltage, two-level, six-pulse induction motor controller driving a medium-to-high voltage, three-or-more-level ac drive inverter bridge
GB0625121D0 (en) * 2006-12-18 2007-01-24 Gendrive Ltd Electrical energy converter
JP2008312360A (ja) * 2007-06-15 2008-12-25 Hitachi Appliances Inc 電力変換装置及びモジュール
US7710082B2 (en) * 2007-10-18 2010-05-04 Instituto Potosino De Investigacion Cientifica Y Technologica (Ipicyt) Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
US20090244937A1 (en) * 2008-03-28 2009-10-01 American Superconductor Corporation Dc bus voltage harmonics reduction
US8183820B2 (en) * 2008-07-21 2012-05-22 GM Global Technology Operations LLC Power processing systems and methods for use in plug-in electric vehicles
US9043038B2 (en) * 2010-02-18 2015-05-26 University Of Delaware Aggregation server for grid-integrated vehicles
GB201114868D0 (en) * 2011-08-30 2011-10-12 Rolls Royce Plc Method of controlling an inverter and a controller for controlling an inverter
TWI535168B (zh) * 2012-05-17 2016-05-21 台達電子工業股份有限公司 充電系統
CN105684282B (zh) * 2013-11-12 2019-05-31 坎里格钻探技术有限公司 磁电机驱动装置的弱磁控制
US9614461B2 (en) * 2014-12-02 2017-04-04 Princeton Power Systems, Inc. Bidirectional high frequency variable speed drive for CHP (combined heating and power) and flywheel applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283727A (en) * 1992-09-16 1994-02-01 General Electric Company Independent control of the AC line current and output DC voltage of a high power factor AC-to-DC converter
CN102035215A (zh) * 2009-09-29 2011-04-27 通用电气公司 功率转换控制***
CN102088249A (zh) * 2009-12-07 2011-06-08 株式会社京三制作所 不平衡电压补偿方法及装置、三相变换器控制方法及装置
CN104541428A (zh) * 2012-06-07 2015-04-22 伽柏·法卡斯 控制方法、控制设备和移动电力存储装置
CN103731062A (zh) * 2013-12-23 2014-04-16 华中科技大学 交直流混合微电网用ac/dc双向功率变流器控制方法

Also Published As

Publication number Publication date
CN109391017A (zh) 2019-02-26
US10491132B2 (en) 2019-11-26
EP3442089A1 (en) 2019-02-13
EP3442089B1 (en) 2020-06-17
US20190052182A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
CN109391017B (zh) 用于在非平衡电网电压的情况下使用的双有源桥式控制电路
US9882466B2 (en) Power conversion device including an AC/DC converter and a DC/DC converter
EP3522355B1 (en) Control device for direct power converter
KR101995864B1 (ko) 인버터 제어장치 및 그 제어방법
US7746024B2 (en) Electric engine start system with active rectifier
US9641121B2 (en) Power conversion device and motor drive device including power conversion device
US8670257B2 (en) Power conversion apparatus
EP3734828B1 (en) Power conversion device
US20130181654A1 (en) Motor drive system employing an active rectifier
US8395918B2 (en) Method of and apparatus for controlling three-level converter using command values
US20050275976A1 (en) Power conversion apparatus and methods using an adaptive waveform reference
US20170310235A1 (en) Direct-power-converter control device
WO2007116873A1 (ja) インバータ装置および空気調和機
US20080088291A1 (en) Electric power converter apparatus
US20160118904A1 (en) Power conversion apparatus
EP2728723A1 (en) Operation of multichannel active rectifier
JP2012044830A (ja) 電力変換装置
US10581338B2 (en) Power supply system
KR20220093758A (ko) 역률 보상 회로 제어 장치
KR102627065B1 (ko) 전해 캐패시터를 직접 대체하는 모듈형 플러그인 전력디커플링 회로
JP7161110B2 (ja) 直接形電力変換器用の制御装置
JP2011135707A (ja) 電源システム
KR100978587B1 (ko) 입력 역률 개선을 위한 매트릭스 컨버터의 출력 제어 방법및 출력 제어 장치
CN110692192A (zh) 交流电动机的控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant