CN109386425A - 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机 - Google Patents

一种叶片前缘呈线性微孔状结构的风力机叶片及风力机 Download PDF

Info

Publication number
CN109386425A
CN109386425A CN201710709546.8A CN201710709546A CN109386425A CN 109386425 A CN109386425 A CN 109386425A CN 201710709546 A CN201710709546 A CN 201710709546A CN 109386425 A CN109386425 A CN 109386425A
Authority
CN
China
Prior art keywords
blade
energy conversion
conversion system
linear
wind energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710709546.8A
Other languages
English (en)
Inventor
代元军
李保华
任常在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuan Jun Of Dynasty
Original Assignee
Xinjiang Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Institute of Engineering filed Critical Xinjiang Institute of Engineering
Priority to CN201710709546.8A priority Critical patent/CN109386425A/zh
Publication of CN109386425A publication Critical patent/CN109386425A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及风能发电领域,尤其是涉及一种叶片前缘呈线性微孔状结构的风力机叶片,包括叶片本体,叶片本体的前缘呈线性微孔状,还提供一种风力机,包括叶片前缘呈线性微孔状的叶片、导流罩、发电机、控制器、蓄电池、逆变器和电流负载。本发明提供了一种叶片前缘呈线性微孔状结构的风力机叶片,在水平轴风力机叶片前缘水平开孔,使叶片前缘成线性微孔状,在不增加成本的前提下对叶片前缘结构进行细微改造,工艺简单,费用低,便于一体化设计,可规模生产,同时在保证输出功率基本不变的情况下,降低风力机叶尖噪声,减少叶片的疲劳程度,延长风力机使用寿命。

Description

一种叶片前缘呈线性微孔状结构的风力机叶片及风力机
技术领域
本发明涉及风力发电领域,尤其涉及一种叶片前缘呈线性微孔状结构的风力机叶片及风力机。
背景技术
为了提高风力机的风能利用系数和降低风力机噪声,世界各国的研究者提出了各种各样的方法,如采用气动性能优化的叶片、设计降噪高效的翼型,在风轮***增加扩散器(Diffuser)在后翼添加襟翼,在叶尖添加小翼(Tip Vane)等。以上方法都是通过在叶片上添加气动元件和设计新叶片来改变风力机气动特性,用以降低风力机气动噪声,但是添加气动元件和设计新叶片都会改变风力机结构动力力学特性、使问题变得复杂,使影响因素增加,加大了研究困难。
根据风力机空气动力学理论,水平轴风力机风能利用系数是贝兹极限约为0.593,可目前风力机的风能利用系数远未达到这一极限。因为风力机的型式、结构、叶片的翼型、多因素,都直接影响风能利用系数和风力机噪声的产生。为了提高风力机的风能利用系数和降低风力机噪声,世界各国的研究者提出了各种各样的研究方法,如采用气动性能优化的叶片、设计降噪高效的翼型,在风轮***增加扩散器(Diffuser)在后翼添加襟翼,在叶尖添加小翼(Tip Vane)等。
在水平轴风力机叶尖添加结构合适的小翼,可以有效改善风轮表面的压力分布,增加风力机的风能利用系数,提高风力机的功率输出,增强其结构动态特性,降低风力机噪声。
在水平轴风力机叶尖添加小翼用以降噪的方法的缺点是:制造小翼成本高,工艺较复杂,小翼安装困难,增加安装费用,小翼和叶片不能一体化设计,不便于规模化生产。
本发明在水平轴风力机叶片前缘开孔,使前缘结构变化,呈线性孔状,在不增加叶片成本的前提下对叶片前缘进行设计,降低风力机噪声,减少叶片的疲劳程度,延长风力机使用寿命,为风轮降噪途径的探索积累实验和设计经验。
发明内容
本发明在水平轴风力机叶片前缘开孔,使前缘结构变化,呈线性微孔状,在不增加成本的前提下,对叶片前缘结构进行改进设计,降低风力机叶尖噪声,减少叶片的疲劳程度,延长风力机的使用寿命。
本发明提供的一种叶片前缘呈线性微孔型结构的风力机叶片,包括叶片本体,叶片本体的前缘部位具有线性微孔状。
本发明还提供了一种风力机,包括叶片前缘呈线性微孔型的叶片、导流罩、发电机、控制器、蓄电池、逆变器和电流负载;导流罩位于叶片的前端,发电机位于叶片的后部,发电机、蓄电池均与控制器电连接,蓄电池、电流负载均与逆变器连接。
本发明提供的一种叶片前缘呈线性微孔型结构的风力机叶片,在水平轴风力机叶片前缘开孔,使前缘结构变化,呈现线性孔型结构,在不增加成本的前提下对叶尖结构进行改进设计,工艺简单,费用低,便于一体化设汁,可规模化生产。同时,在保证输出功率基本不变的情况下,降低风力机叶尖噪声,减少叶片的疲劳程度,延长风力机使用寿命。
附图说明
为了更清楚的说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的前缘呈线性微孔型结构的风力机叶片前缘部位的示意图;
图2为本发明实施例提供的风力机近尾迹区域旋转角度为90°时测试界面测点布置示意图;
图3为本发明叶片前缘改型前后风力机的风速和功率的关系变化曲线图:
图4为本发明叶片前缘改型前后风力机的风速和风能利用系数变化曲线图:
图5为本发明叶片前缘改型前后风力机在尖速比入=7.0,x=30cm,测试旋转角为90°的7个测点旋转基频噪声变化图:
图6为本发明叶片前缘改型前后风力机在尖速比入=7.0,X=30cm,测试旋转角为90°的7个测点的叶尖涡脱落频率噪声变化图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以足可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接:可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明提供的一种叶片前缘呈线性微孔型结构的风力机叶片,包括叶片本体,叶片本体的前缘部位具有线性微孔,前缘呈线性微孔型机构的几何参数包括微孔直径D、微孔长度L、孔与孔之间距离S。
本发明还提供了一种风力机,包括前缘呈线性微孔型的叶片、导流罩、发电机、控制器、蓄电池、逆变器和电流负载;导流罩位于叶片的前端,发电机位于叶片的后部,发电机、蓄电池均与控制器电连接,蓄电池、电流负载均.均与逆变器相连接。
为了准确全面测试叶片前缘不带线性微孔和叶片前缘带线性微孔型的风力机的噪音特性,利用声阵列法对距离风轮旋转平面30cm截面旋转角度为90°时的测试线上7个测点进行测试。其测试区域三维坐标轴定义为,与风轮旋转轴垂直且通过风力机叶片叶建翼型前缘点的平面定义为风轮旋转平面,风轮旋转轴与该平面的交点为风轮旋转巾心,沿风轮旋转中心向凤轮旋转平面径向方向向外水平移动30cm设置为坐标原点0。测试线上的每个测点间隔10cm,具体测试布置示意图2所示。
在本实施例中,共设计出两种前缘线性微孔结构分别是前缘线性微孔结构参数为孔的直径D=0.25cm,前缘线性微孔整体长度为L=30cm,孔与孔之间水平距离S=1cm的风力机,前缘线性微孔结构参数为孔的直径D=0.50cm,前缘线性微孔整体长度为L=30cm,孔与孔之间水平距离S=1cm的风力机,与未改型风力机进行对比。通过测试发现前缘线性微孔结构参数为孔的直径D=0.25cm比前缘线性微孔结构参数为孔的直径D=0.50cm气动性能要好,所以前缘线性微孔结构参数为孔的直径D=0.25cm作为测试实例进行说明,具体测试方法为利用负载不变,改变来流风速的试验法测量风力机的输出功率和风能利用系数Cp的变化,其结果可见图3和图4。由图3和可以看出在所测量的风速范围内3-11m/s之间,前缘线性微孔型风力机的输出功率和未改型风力机的输出功率相差不大;同样由图4可以看出,在3-7m/s低风速范围,前缘线性微孔型风力机风能利用系数低于末改型风力机,在7-11m/s中高风速范围内,前缘线性微孔型风力机风能利用系数与末改型风力机风能利用系数相差不大。前缘线性微孔结构的风力机风能利用系数最大值0.404出现在来流风速为4m/s,未改型结构的风力机风能利用系数最大值0.461出现在来流风速为4m/s,由此可见,前缘线性微孔型结构对风力机的气动性能在低风速段影响较大,在中高速段影响较小。额定风速12m/s所对应功率分别为未改型风力机274W,前缘线性微孔风力机279W。通过计算,前缘线性微孔风力机改型后使得风力机功率提高了1.8%。由此可知,改型后的前缘线性微孔型结构风力机对风力机风能利用率影响较小且对风力机功率在高风速段有所提升。
在本实施例中,通过对额定尖速比λ=7下前缘改型前后水平轴风力机风轮叶尖下游三维区域噪声频谱图的分析,风力机叶尖区域噪声的频谱图主要是由风轮叶片的旋转基频及谐波、叶片旋转产生的叶尖涡脱落频率、风洞动力风扇旋转产生的频率构成。我们采用前缘线性微孔型结构参数为孔直径D=0.25,前缘线性微孔整体长度为L=30cm,孔与孔之间距离S=1cm。然后测试未改型和改型后结构风力机在来流风速8m/s时,尖速比λ=7,x=30cm测试旋转角为90°的7个测点的旋转基频41.135Hz所对应的旋转噪声变化见图5,叶尖涡脱落频率320Hz所对应的叶尖噪声变化见图6。
由图5可见,前缘线性微孔型结构对风轮的旋转噪声产生的影响,使旋转基频及其谐波关系的频率所对应的频谱图峰值(也就是旋转噪声)在测试区域内有了明显下降的趋势,其旋转基频噪声变化值波动范围在-2.32%至0.35%。平均降低了1.59%。从图6可见,叶片未改型风力机在测点6有叶尖涡通过,使得测点6叶尖涡噪声的声压值升高;前缘线性微孔型风力机在测量6有叶尖涡通过,使得测点6叶尖涡噪声的声压值升高,改型后与改性前的叶尖涡噪声变化范围在-3.18%至1.4%,平均降低了0.9%。由此可知,叶片前缘改型后降低了叶尖涡噪声和旋转噪声的产生。
通过前缘结构的改型,本发明提供的一种前缘线性微孔型结构的风力机叶片和风力机,在保证输出功率基本不变的情况下,降低风力机的噪声,减少叶片的疲劳程度,延长风力机使用寿命。
最后应说明的是:以上各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述符实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

1.一种叶片前缘呈线性微孔状结构的风力机叶片,其特征在于,包括叶片本体,所述叶片本体的叶片前缘呈线性微孔状;
所述前缘线性微孔结构参数为孔的直径D=0.25cm,前缘线性微孔整体长度为L=30cm,为所述叶片长度的50%,孔与孔之间水平距离S=1cm;
所述风力机比未改型叶片风力机额定功率上升了1.8%;
所述风力机比未改型叶片风力机旋转基频噪声平均降低了1.59%。
2.一种风力机其特征在于,包括如权利要求1所述的叶片前缘呈线性微孔状的叶片、导流罩、发电机、控制器、蓄电池、逆变器和电流负载;
所述的导流罩位于所属叶片的前端,所属发电机位于所属叶片的后部,所述发电机、所述蓄电池与所述控制器电连接,所述蓄电池、所述电流负载均与所述逆变器电连接。
CN201710709546.8A 2017-08-09 2017-08-09 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机 Pending CN109386425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710709546.8A CN109386425A (zh) 2017-08-09 2017-08-09 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710709546.8A CN109386425A (zh) 2017-08-09 2017-08-09 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机

Publications (1)

Publication Number Publication Date
CN109386425A true CN109386425A (zh) 2019-02-26

Family

ID=65416397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710709546.8A Pending CN109386425A (zh) 2017-08-09 2017-08-09 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机

Country Status (1)

Country Link
CN (1) CN109386425A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240197A (ja) * 1995-03-03 1996-09-17 Daikin Ind Ltd 軸流ファン
EP1607624A2 (de) * 2004-06-15 2005-12-21 NORDEX ENERGY GmbH Rotorblatt für eine Windenergieanlage
CN1710290A (zh) * 2005-07-12 2005-12-21 吉林大学 低噪声风机叶片
US20070110585A1 (en) * 2005-11-17 2007-05-17 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
US20080080977A1 (en) * 2006-09-29 2008-04-03 Laurent Bonnet Wind turbine rotor blade with acoustic lining
US20100014970A1 (en) * 2007-01-05 2010-01-21 Lm Glasfiber A/S Wind turbine blade with lift-regulating means in form of slots or holes
US20110142628A1 (en) * 2010-06-11 2011-06-16 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
US20110211952A1 (en) * 2011-02-10 2011-09-01 General Electric Company Rotor blade for wind turbine
WO2012028890A1 (en) * 2010-09-01 2012-03-08 Theodoros Toulas Wind turbine blades with dimples
CN103410657A (zh) * 2013-08-30 2013-11-27 内蒙古工业大学 一种加肋开槽型风力机叶片
CN104948396A (zh) * 2015-07-22 2015-09-30 代元军 叶尖尾缘呈锯齿状结构的风力机叶片及风力机
CN104963808A (zh) * 2015-07-22 2015-10-07 代元军 叶尖呈w型结构的风力机叶片及风力机
CN105756996A (zh) * 2016-04-26 2016-07-13 浙江理工大学 一种叶片吸力面有涡破碎结构和叶顶开槽的轴流风机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240197A (ja) * 1995-03-03 1996-09-17 Daikin Ind Ltd 軸流ファン
EP1607624A2 (de) * 2004-06-15 2005-12-21 NORDEX ENERGY GmbH Rotorblatt für eine Windenergieanlage
CN1710290A (zh) * 2005-07-12 2005-12-21 吉林大学 低噪声风机叶片
US20070110585A1 (en) * 2005-11-17 2007-05-17 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
US20080080977A1 (en) * 2006-09-29 2008-04-03 Laurent Bonnet Wind turbine rotor blade with acoustic lining
US20100014970A1 (en) * 2007-01-05 2010-01-21 Lm Glasfiber A/S Wind turbine blade with lift-regulating means in form of slots or holes
US20110142628A1 (en) * 2010-06-11 2011-06-16 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
WO2012028890A1 (en) * 2010-09-01 2012-03-08 Theodoros Toulas Wind turbine blades with dimples
US20110211952A1 (en) * 2011-02-10 2011-09-01 General Electric Company Rotor blade for wind turbine
CN103410657A (zh) * 2013-08-30 2013-11-27 内蒙古工业大学 一种加肋开槽型风力机叶片
CN104948396A (zh) * 2015-07-22 2015-09-30 代元军 叶尖尾缘呈锯齿状结构的风力机叶片及风力机
CN104963808A (zh) * 2015-07-22 2015-10-07 代元军 叶尖呈w型结构的风力机叶片及风力机
CN105756996A (zh) * 2016-04-26 2016-07-13 浙江理工大学 一种叶片吸力面有涡破碎结构和叶顶开槽的轴流风机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
于静梅: "风力机叶片前缘单排孔射流成膜特性研究", 热能动力工程, vol. 31, no. 2, pages 111 - 117 *
李海涛: "风轮叶片降噪研究", 中小型风能设备与应用, no. 17, pages 35 - 40 *
石亚丽: "风力机专用翼型表面微结构减阻特性的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》, pages 041 - 27 *

Similar Documents

Publication Publication Date Title
Iungo et al. Linear stability analysis of wind turbine wakes performed on wind tunnel measurements
Dou et al. Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel
Qin et al. Unsteady flow simulation and dynamic stall behaviour of vertical axis wind turbine blades
Yuan et al. An experimental study on the effects of relative rotation direction on the wake interferences among tandem wind turbines
Yang et al. Investigation on aerodynamics and active flow control of a vertical axis wind turbine with flapped airfoil
Liang et al. Blade pitch control of straight-bladed vertical axis wind turbine
CN104963808B (zh) 叶尖呈w型结构的风力机叶片及风力机
CN104948396B (zh) 叶尖尾缘呈锯齿状结构的风力机叶片及风力机
CN109386426A (zh) 一种叶片后缘呈线性微孔状结构的风力机叶片及风力机
Hu et al. An experimental investigation on the effects of turbine rotation directions on the wake interference of wind turbines
CN207920770U (zh) 一种叶片叶尖呈双叉式结构的风力机叶片及风力机
CN207795455U (zh) 一种叶片叶尖呈融合式结构的风力机叶片及风力机
Wang et al. Prediction of the unsteady aerodynamic characteristics of horizontal axis wind turbines including three-dimensional effects
CN103452766B (zh) 一种叶片叶尖带v型开槽结构的风力机
Abdelrahman et al. The CFD performance analysis for horizontal axis wind turbine with different blade shapes and tower effect
CN203515965U (zh) 一种叶片叶尖带v型开槽结构的风力机
CN109386425A (zh) 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机
CN207261166U (zh) 一种叶片前缘呈线性微孔状结构的风力机叶片及风力机
Pan et al. Research on aerodynamic performance of J-Type blade vertical axis wind turbine
Shubham et al. Aerodynamic and aeroacoustic investigation of vertical axis wind turbines with different number of blades using mid-fidelity and high-fidelity methods
CN207261165U (zh) 一种叶片后缘呈线性微孔状结构的风力机叶片及风力机
CN204851544U (zh) 叶尖尾缘呈锯齿状结构的风力机叶片及风力机
CN109899230A (zh) 一种叶片叶尖呈融合式结构的风力机叶片及风力机
Botha et al. Some noise predictions for small wind turbines
Micallef et al. An aerodynamic study on flexed blades for VAWT applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20191125

Address after: 830091 Nanchang road the Xinjiang Uygur Autonomous Region Urumqi shayibake District No. 236 Xinjiang Institute of electric power engineering

Applicant after: Yuan Jun of the Dynasty

Address before: 830091 Nanchang road the Xinjiang Uygur Autonomous Region Urumqi shayibake District No. 236 Xinjiang Institute of electric power engineering

Applicant before: Xinjiang Institute of Engineering

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20190226