CN109364960A - 一种广谱激发的大孔TiO2光催化复合材料及其制备方法 - Google Patents

一种广谱激发的大孔TiO2光催化复合材料及其制备方法 Download PDF

Info

Publication number
CN109364960A
CN109364960A CN201811501235.3A CN201811501235A CN109364960A CN 109364960 A CN109364960 A CN 109364960A CN 201811501235 A CN201811501235 A CN 201811501235A CN 109364960 A CN109364960 A CN 109364960A
Authority
CN
China
Prior art keywords
tio
added
solution
deionized water
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811501235.3A
Other languages
English (en)
Other versions
CN109364960B (zh
Inventor
梁春永
崔泽林
王洪水
邹显睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201811501235.3A priority Critical patent/CN109364960B/zh
Publication of CN109364960A publication Critical patent/CN109364960A/zh
Application granted granted Critical
Publication of CN109364960B publication Critical patent/CN109364960B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及光催化材料及其制备领域,具体涉及一种能被广谱激发的大孔TiO2复合材料及其制备方法。本发明首先通过模板法制备三维有序大孔TiO2,然后通过水热法原位合成复合了稀土元素的TiO2/CaF2材料,该材料不仅可以利用紫外光进行光催化反应,还可以很好地利用红外光,且有很好的光催化效率,这就既拓宽了光谱利用范围,又提高了光催化效率。更重要的是,因为其为原位负载,这就使复合了稀土元素的CaF2纳米晶激发出的紫外光有效地被二氧化钛吸收,大大提高光催化效率。

Description

一种广谱激发的大孔TiO2光催化复合材料及其制备方法
技术领域
本发明涉及光催化材料及其制备领域,具体涉及一种能被广谱激发的大孔TiO2复合材料及其制备方法。
背景技术
目前,TiO2光催化剂以其具有高活性、高稳定性、无毒安全等优势,在现代污染控制领域得到了广泛应用,如用于污水有机物降解、抗菌除臭、重金属离子还原以及废气净化等方面,尤其针对农药、染料、表面活性剂、有机卤化物、氰化物、油脂等优先监控的环境污染物,TiO2光催化氧化还原技术可将其完全矿化为二氧化碳、水或其它无机小分子物质,因而对现代污染控制工程领域有相当的实用价值。
TiO2光催化剂的反应机理是催化剂在受光子能量大于其带隙能的光照射时,吸收光子的能量产生激发态,在材料价带形成光生空穴[Hole+],在导带形成光生电子[e-],从而得到导带电子和价带空穴。导带电子迁移至光催化剂表面与吸附氧反应生成超氧自由基;价带孔穴迁移至光催化剂表面,或者与表面羟基或吸附水反应生成羟基自由基,或者与表面吸附有机物发生电子转移反应;同时,导带电子和价带孔穴之间亦容易发生复合而释放热能或光子,这是需要加以控制的副反应。因为光生电子和光生空穴的能量很强(远远高出一般有机污染物的分子链强度),所以可以轻易将有机污染物分解成最原始的状态。
TiO2光催化剂在现阶段的污染控制产业化应用中还存在一些限制性问题,比如,光生电子与空穴的复合率高,光量子效率低;纳米TiO2粉体的固定、分离和回收工艺困难等,其中纳米TiO2光催化剂的禁带较宽,只能被紫外线激发,对可见光吸收率差是限制TiO2光催化剂广泛推广应用的主要问题之一。
目前针对TiO2光催化剂禁带较宽的改性方法有很多,上转换发光复合材料即为其中一种,稀土发光材料由于其4f电子的偶极跃迁现象,具有独特的光学特性,目前已被应用于荧光粉、光伏电池、激光器、光电器件及生物探针等领域。经过定向改性后,稀土发光材料能够高强度、高转换效率的发射紫外光,因而,将稀土发光材料与TiO2光催化剂复合应用,即可弥补TiO2光催化剂禁带宽、吸收光谱窄的不足。
专利CN201510580331.1采用水热合成得到了结晶度很高的上转换发光材料,但该专利中水热合成得到发光材料为有核壳结构的Ca2YREF7@TiO2纳米复合粉,其中核壳成分为TiO2,而稀土发光材料被包裹在内,由于稀土发光材料被包裹在内,因此能够大大地提高荧光的转换效率,但同时减少了稀土发光材料的吸收来源,因此,需要设计、制备一种既能扩大稀土发光材料的吸收来源,又能保证荧光转换效率的复合材料。
发明内容
本发明所要解决的技术问题是通过改性手段扩展纳米TiO2光催化剂的光响应波长范围,从而提高纳米TiO2光催化剂的催化效率,扩大纳米TiO2光催化剂的应用领域,同时又能保证纳米TiO2光催化剂的荧光转换效率。
为此本发明首先提供了一种三维有序大孔TiO2光催化剂,该TiO2光催化剂具有均匀密排的三维大孔结构,为后续的改性工艺提供了充足的活性位点。
上述三维有序大孔TiO2光催化剂能够通过模板法制备,其方法为以甲基丙烯酸甲脂(MMA)为原料制备聚甲基丙烯酸甲脂(PMMA),并将得到的PMMA亚微米球当作模板,浸泡在由TTIP(钛酸四异丙酯)制备的TiO2前驱液,再将PMMA去除即得三维有序大孔TiO2,然后再将Ca2+和稀土离子吸附在三维有序大孔TiO2表面,最后再通过水热合成法制备得到TiO2/(CaY)F2:Tm-3+,Yb3+复合材料,具体步骤如下:
(1)(1)甲基丙烯酸甲脂(MMA)的清洗
取MMA80~100mL,加入氢氧化钠配制成0.1~0.2mol/L的氢氧化钠悬浊液,离心(8000r/min,10min)取上清液,并重复2~3次,再加入去离子水离心取上清液,并重复2~3次;
(2)(2)甲基丙烯酸甲脂(MMA)的减压蒸馏
将步骤(1)中得到的清洗后的MMA在温度50~70℃、0MPa下减压蒸馏,进一步提纯;
(3)(3)PMMA的合成
取四口烧瓶,加入120~150mL去离子水,加热,待温度达到70~80℃后,通氩气,搅拌桨搅拌,并将步骤(2)得到的提纯后的MMA加入其中,待温度恢复至70~80℃后,滴入提前预热到70~80℃的10~20g/L的偶氮二异丁脒盐酸盐(V-50)溶液,搅拌3~5小时,得到乳白色浑浊液体,即为PMMA悬浊液;
(4)(4)抽滤
待步骤(3)得到的乳白色浑浊液体降到室温后,使用300nm过滤膜对其进行抽滤,以去除杂质和不规则的颗粒,得到粒径小于300nm的PMMA亚微米球;
(5)(5)沉降
将步骤(4)得到的滤液在8000r/min条件下离心沉降10min,为了使得PMMA亚微米球排列规则,离心的同时还可以进行超声振荡,超声频率40kHz,功率120~600W;
(6)(6)烘干
使用吸水纸去除步骤(5)得到的沉降完的PMMA亚微米球的表面液体,而后转入干燥箱中,100~120℃下烘干12~24h,得到PMMA亚微米球堆叠成的块体;
(7)配置前驱体
取钛酸四异丙酯(TTIP)滴入持续搅拌的盐酸中,然后加入乙醇,其中TTIP、盐酸和乙醇的质量比为0.5~1.5:1:1~4,而后持续搅拌1~2小时,最后将步骤(6)得到的PMMA块体浸入其中,密封12~24h后取出PMMA块体,晾干;
(8)三维有序大孔TiO2粉体的制备
将步骤(7)中得到的PMMA块体在空气中,于450~500℃条件下处理4~6h,升降温速率为2℃/min;
(9)阳离子的吸附
将总重量0.3-0.5g的三维有序大孔TiO2放入100mL烧杯中,加入20-30mL去离子水,放入转子,开始搅拌。然后滴加含有无水氯化钙0.1-0.15g、PVP(活性添加剂)0.02-0.03g、10-5mol/mL的TmCl3溶液0.2-0.3mL、10-4mol/mL的YbCl3溶液1-1.5mL、2×10-4mol/mL的YCl3溶液2.5-3mL和去离子水10-20mL的混合溶液。15-30分钟后,待Ca2+、Tm3+、Yb3+和Y3+被TiO2充分吸附后,加入30-40mL乙醇,防止它们从TiO2流出,同时吸出水。这时将上述混合液离心,把乙醇和水去除,留下吸附着Ca2+、Tm3+、Yb3+和Y3+的TiO2,烘干研磨成粉后放入100mL烧杯;
(10)利用水热法制备三维有序大孔TiO2原位负载(CaY)F2:Tm3+,Yb3+复合材料
向步骤(9)得到的粉体中滴加由0.15-0.2g氟化铵和20-30mL去离子水混合的溶液。最后加入30-40mL乙醇,减少Ca2+、Tm3+、Yb3+、Y3+和F-的流失,搅拌1-2小时,使其充分混合。之后将上述均匀混合物装入不锈钢反应釜中进行水热反应,在150-200℃下水热反应10-14h,离心得到原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料。
上述阳离子的加入方式为全部一起混合加入,为了使稀土离子分散的更加均匀可以先加入Tm3+、Yb3+和Y3+,加入乙醇离心后,再加入Ca2+,再经乙醇离心后再加入氟化氨进行后续步骤;在稀土元素中Y3+起的为骨架作用,因此,上述阳离子可以先加入Tm3+和Yb3+,重复乙醇离心,然后加入Y3+,进行乙醇离心,进行后续步骤;上述阳离子的加入还可以先加入Tm3 +和Yb3+,重复乙醇离心,然后同时加入Y3+和Ca2+,在进行后续步骤。
上述三维有序大孔TiO2还可以采用配体辅助模板法制取多孔氧化钛。以十二烷胺为模板剂,具体步骤如下:将20~30g异丙醇钛与6~7g十二烷胺混合,然后加入500~600mL水进行水解,混合液中立刻产生固体沉淀物,接下来加入0.3~0.5mL37%的盐酸到混合液中。混合液在常温下静置一夜,然后转移到烘箱进行陈化,在40~80℃放置2~4天。将混合物过滤,滤出物放入密封管中,继续放在烘箱中陈化,并在100~140℃放置2~4天。将所得到的固体材料用一定量的甲醇充分洗涤5~7次,最后过滤得到产物并放入150~200℃烘箱中烘干1~2天,再经450~500℃煅烧4~6h得多孔TiO2
还可以采用水热晶化法制取多孔氧化钛。具体步骤为:称取30~40g工业偏钛酸(约含10~15gTiO2)置于烧杯中,加入50~60mL去离子水,将烧杯置于超声波清洗器内边超声边搅拌直至混合均匀。混合好的工业偏钛酸溶液倒入100mL水热反应釜,然后在烘箱中进行水热晶化反应,反应温度定为140~160℃,反应时间为7~8h。反应结束后取出反应釜,用自来水冲洗反应釜外表面直至冷却至室温,反应产物经过滤、洗涤得到水合TiO2沉淀,将工业偏钛酸和水热晶化所得水合TiO2在60~80℃烘箱中干燥8~10h,再经450~470℃煅烧2~4h得多孔TiO2
本发明的有益效果是:
(1)本发明中,先加入阳离子,乙醇脱水离心后,再加入氟离子能很好的保证阳离子尤其是活性稀土离子在大孔TiO2表面的均匀吸附,使得所得复合材料的光催化性能更加稳定。
(2)所得TiO2中大孔径(200~330nm)的孔能够保证水溶液和乙醇的充分浸入,配合以合适的搅拌,可以保证水溶液中阳离子在大孔TiO2表面的均匀吸附,同时保证乙醇对水的充分脱除效果,减少吸附的阳离子脱附。
(3)TiO2的三维有序结构和均匀吸附的活性稀土离子能够保证上转换发射的荧光具有稳定的光路通道,减少荧光在无序材料中传播的自损耗,提高转换效率。
(4)通过三维有序大孔TiO2与稀土元素的复合将光催化剂的吸收光谱范围从原来的紫外光扩展到紫外光和红外光。
附图说明
图1为实施例1得到的三维有序大孔TiO2的X射线衍射图。
图2为实施例1得到的三维有序大孔TiO2的扫描电镜图。
图3为实施例1得到的三维有序大孔TiO2的透射电镜图。
图4为实施例11制备TiO2/(CaY)F2:Tm3+,Yb3+复合材料过程中加入阳离子后不同搅拌时间条件下,Ca2+的溶出量变化曲线。
图5为实施例11得到的原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料的稳态荧光光谱图。
图6为实施例11-13得到的原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料的光催化性能图。
具体实施方式
具体实施方式一:
采用PMMA模板制备三维有序大孔TiO2,包括以下步骤:
(1)(1)甲基丙烯酸甲脂(MMA)的清洗
取MMA80~100mL,加入氢氧化钠配制成0.1~0.2mol/L的氢氧化钠悬浊液,离心(8000r/min,10min)取上清液,并重复2~3次,再加入去离子水离心取上清液,并重复2~3次;
(2)(2)甲基丙烯酸甲脂(MMA)的减压蒸馏
将步骤(1)中得到的清洗后的MMA在温度50~70℃、0MPa下减压蒸馏,进一步提纯;
(3)(3)聚甲基丙烯酸甲脂(PMMA)的合成
取四口烧瓶,加入120~150mL去离子水,加热,待温度达到70~80℃后,通氩气,搅拌桨搅拌,并将步骤(2)得到的提纯后的MMA加入其中,待温度恢复至70~80℃后,滴入提前预热到70~80℃的10~20g/L的偶氮二异丁脒盐酸盐(V-50)溶液,搅拌3~5小时,得到乳白色浑浊液体,即为PMMA悬浊液;
(4)(4)抽滤
待步骤(3)得到的乳白色浑浊液体降到室温后,使用300nm过滤膜对其进行抽滤,以去除杂质和不规则的颗粒,得到粒径小于300nm的PMMA亚微米球;
(5)(5)沉降
将步骤(4)得到的滤液在8000r/min条件下离心沉降10min,为了使得PMMA亚微米球排列规则,离心的同时还可以进行超声振荡,超声频率40kHz,功率120~600W;
(6)(6)烘干
使用吸水纸去除步骤(5)得到的沉降完的PMMA亚微米球的表面液体,而后转入干燥箱中,100~120℃下烘干12~24h,得到PMMA亚微米球堆叠成的块体;
(7)配置前驱体
取钛酸四异丙酯(TTIP)滴入持续搅拌的盐酸中,然后加入乙醇,其中TTIP、盐酸和乙醇的质量比为0.5~1.5:1:1~4,而后持续搅拌1~2小时,最后将步骤(6)得到的PMMA块体浸入其中,密封12~24h后取出PMMA块体,晾干;
(8)三维有序大孔TiO2粉体的制备
将步骤(7)中得到的PMMA块体在空气中,于450~500℃条件下处理4~6h,升降温速率为2℃/min。
实施例1~5按照具体实施方式一的方法制备出具有不同孔径的三维有序大孔TiO2,其具体参数区别见表1。
表1实施例1~5制备三维有序大孔TiO2参数对比表。
图1为实施例1得到的三维有序大孔TiO2的X射线衍射图;可以看出TiO2结晶性非常好,晶型为锐钛矿型,而且不含有任何杂质。图2为实施例1得到的三维有序大孔TiO2的场发射电镜扫描图,可以看出所得三维有序大孔TiO2为结构均一的、孔径为300nm的蜂巢状结构,图3为实施例1得到的三维有序大孔TiO2的透射电镜扫描图,可以看出在微观结构孔还可以保持原状,不被破坏,且孔壁还有很多纳米级缺陷。
具体实施方式二:采用配体辅助模板法制备三维有序大孔TiO2,具体步骤如下:
以十二烷胺为模板剂,将20~30g异丙醇钛与6~7g十二烷胺混合,然后加入500~600mL水进行水解,混合液中立刻产生固体沉淀物,接下来加入0.3~0.5mL37%的盐酸到混合液中。混合液在常温下静置一夜,然后转移到烘箱进行陈化,在40~80℃放置2~4天。将混合物过滤,滤出物放入密封管中,继续放在烘箱中陈化,并在100~140℃放置2~4天。将所得到的固体材料用一定量的甲醇充分洗涤5~7次,最后过滤得到产物并放入150~200℃烘箱中烘干1~2天,得到多孔氧化钛材料。
实施例6~10按照具体实施方式二的方法制备出具有不同孔径的三维有序大孔TiO2,其具体参数区别及孔径见表2。
表2实施例6~10制备三维有序大孔TiO2参数对比表。
具体实施方式三:采用水热晶化法制备三维有序大孔TiO2,具体步骤如下:
称取30~40g工业偏钛酸(约含10~15gTiO2)置于烧杯中,加入50~60mL去离子水,将烧杯置于超声波清洗器内边超声边搅拌直至混合均匀。混合好的工业偏钛酸溶液倒入100mL水热反应釜,然后在烘箱中进行水热晶化反应,反应温度定为140~160℃,反应时间为7~8h。反应结束后取出反应釜,用自来水冲洗反应釜外表面直至冷却至室温,反应产物经过滤、洗涤得到水合TiO2沉淀,将工业偏钛酸和水热晶化所得水合TiO2在60~80℃烘箱中干燥8~10h,再经450~470℃煅烧2~4h得多孔TiO2
具体实施方式四:应用实施例1得到的三维有序大孔TiO2来制备TiO2/(CaY)F2:Tm3 +,Yb3+复合材料。
实施例11
将总重量0.4g的实施例1得到的三维有序大孔TiO2放入100mL烧杯中,加入25mL去离子水,放入转子,开始搅拌。然后滴加含有无水氯化钙0.15g、PVP(活性添加剂)0.02g、10- 5mol/mL的TmCl3溶液0.2mL、10-4mol/mL的YbCl3溶液1mL、2×10-4mol/mL的YCl3溶液2mL和去离子水15mL的混合溶液。搅拌20分钟后,待Ca2+、Tm3+、Yb3+和Y3+被TiO2充分吸附,加入35mL乙醇,减少离子从大孔TiO2中流出,同时吸出大孔TiO2中的水。然后将上述混合液离心,把乙醇和水去除,留下吸附着Ca2+、Tm3+、Yb3+和Y3+的大孔TiO2,烘干研磨成粉后放入100mL烧杯,然后滴加由0.15g氟化铵和25mL去离子水混合的溶液。最后加入35mL乙醇,减少Ca2+、Tm3+、Yb3 +、Y3+和F-的流失,搅拌1-2小时,使其充分混合。之后将上述均匀混合物装入不锈钢反应釜中进行水热反应,在180℃下水热反应12h,离心得到原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料。在上述加入阳离子后,每个5min取样进行Ca2+的溶出检测,检测方法为:将总重量0.4g的TiO2/(CaY)F2:Tm3+,Yb3+复合材料放入100mL烧杯中,加入25mL去离子水,放入转子,开始搅拌。搅拌30分钟后,待Ca2+充分溶出,加入30-40mL乙醇,然后离心,用ICP检测离心后上清液中Ca2+含量,而后将不同时间点取样得到的Ca2+含量绘制成曲线图,即图4,可以看出阳离子加入后,搅拌15-20min后Ca2+的溶出效应能够得到有效解决。
图5为实施例11得到的原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料的稳态荧光光谱图,可以看出复合材料可以被激发出360nm的紫外光。
实施例12
先加Tm3+、Yb3+、Y3+再加Ca2+再加氟化氨的方式。
实施例13
先加Tm3+、Yb3+再加Ca2+、Y3+再加氟化氨的方式。
采用模拟红外光照射法对实施例11~13进行光催化性能检测,其检测步骤为:以275W硬质红外线灯作为光源,取40~60mL有机染料甲基橙溶液作为目标污染物。加入130~160mgTiO2/(CaY)F2:Tm3+,Yb3+用磁力搅拌器搅拌。在进行光催化反应之前,在磁力搅拌的条件下暗反应30~50min,以达到吸附平衡。然后开灯进行光催化反应,定时取样。每次的样品均离心15~30min,取上层清液待测。用UV6100型紫外可见分光光度计测定有机染料的吸光度。结果见图6,可以看出实施例12和13效果相当,并都比11好。

Claims (9)

1.一种广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,包括以下步骤:首先通过模板法制备三维有序大孔TiO2,而后将Ca2+和稀土离子有顺序地吸附在三维有序大孔TiO2表面,最后再通过水热法原位合成复合了稀土离子的TiO2/CaF2材料。
2.根据权利要求1所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,所述的稀土离子包括Y3+,还包括其余16种稀土元素三价阳离子中的至少一种。
3.根据权利要求1或2所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,所述的模板法制备过程中以聚甲基丙烯酸甲脂为模板。
4.根据权利要求3所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,该方法包括以下步骤:
(1)甲基丙烯酸甲脂的清洗
取甲基丙烯酸甲脂80~100mL,加入氢氧化钠配制成0.1~0.2mol/L的氢氧化钠悬浊液,离心取上清液,并重复2~3次,再加入去离子水离心取上清液,并重复2~3次;
(2)甲基丙烯酸甲脂的减压蒸馏
将步骤(1)中得到的清洗后的甲基丙烯酸甲脂在温度50~70℃、0MPa下减压蒸馏,进一步提纯;
(3)聚甲基丙烯酸甲脂的合成
取四口烧瓶,加入120~150mL去离子水,加热,待温度达到70~80℃后,通氩气,搅拌桨搅拌,并将步骤(2)得到的提纯后的甲基丙烯酸甲脂加入其中,待温度恢复至70~80℃后,滴入提前预热到70~80℃的10~20g/L的偶氮二异丁脒盐酸盐溶液,搅拌3~5小时,得到乳白色浑浊液体,即为聚甲基丙烯酸甲脂悬浊液;
(4)抽滤
待步骤(3)得到的乳白色浑浊液体降到室温后,使用300nm过滤膜对其进行抽滤,得到粒径小于300nm的聚甲基丙烯酸甲脂亚微米球;
(5)沉降
将步骤(4)得到的滤液在8000r/min条件下离心沉降10min,离心的同时进行超声振荡,超声频率40kHz,功率120~600W;
(6)烘干
使用吸水纸去除步骤(5)得到的沉降完的聚甲基丙烯酸甲脂亚微米球的表面液体,而后转入干燥箱中,100~120℃下烘干12~24h,得到聚甲基丙烯酸甲脂亚微米球堆叠成的块体;
(7)配置前驱体
取钛酸四异丙酯滴入持续搅拌的盐酸中,然后加入乙醇,其中钛酸四异丙酯、盐酸和乙醇的质量比为0.5~1.5:1:1~4,而后持续搅拌1~2小时,最后将步骤(6)得到的聚甲基丙烯酸甲脂块体浸入其中,密封12~24h后取出聚甲基丙烯酸甲脂块体,晾干;
(8)三维有序大孔TiO2粉体的制备
将步骤(7)中得到的聚甲基丙烯酸甲脂块体在空气中,于450~500℃条件下处理4~6h,升降温速率为2℃/min;
(9)阳离子的吸附
将总重量0.3-0.5g的三维有序大孔TiO2放入100mL烧杯中,加入20-30mL去离子水,搅拌,然后滴加含有无水氯化钙0.1-0.15g、PVP0.02-0.03g、1×10-5mol/mL的TmCl3溶液0.2-0.3mL、1×10-4mol/mL的YbCl3溶液1-1.5mL、2×10-4mol/mL的YCl3溶液2.5-3mL和去离子水10-20mL的混合溶液,搅拌15-30分钟后,加入30-40mL乙醇,离心烘干研磨成粉后,放入100mL烧杯;
(10)利用水热法制备三维有序大孔TiO2原位负载(CaY)F2:Tm3+,Yb3+复合材料
向步骤(9)得到的粉体中滴加由0.15-0.2g氟化铵和20-30mL去离子水混合的溶液,再加入30-40mL乙醇,搅拌1-2小时,再将上述均匀混合物装入不锈钢反应釜中进行水热反应,在150-200℃下水热反应10-14h,离心得到原位负载型TiO2/(CaY)F2:Tm3+,Yb3+复合材料。
5.根据权利要求4所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,所述步骤(9)阳离子的吸附步骤为:将总重量0.3-0.5g的三维有序大孔TiO2放入100mL烧杯中,加入20-30mL去离子水,搅拌,然后滴加含有PVP0.02-0.03g、1×10-5mol/mL的TmCl3溶液0.2-0.3mL、1×10-4mol/mL的YbCl3溶液1-1.5mL、2×10-4mol/mL的YCl3溶液2.5-3mL和去离子水10-20mL的混合溶液,搅拌15-30分钟后,加入30-40mL乙醇,离心,再加入含有无水氯化钙0.1-0.15g的去离子水10-20mL,搅拌15-30分钟后,加入30-40mL乙醇,离心烘干研磨成粉后,放入100mL烧杯中。
6.根据权利要求4所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,所述步骤(9)阳离子的吸附步骤为:将总重量0.3-0.5g的三维有序大孔TiO2放入100mL烧杯中,加入20-30mL去离子水,搅拌,然后滴加含有PVP0.02-0.03g、1×10-5mol/mL的TmCl3溶液0.2-0.3mL、1×10-4mol/mL的YbCl3溶液1-1.5mL和去离子水10-20mL的混合溶液,搅拌15-30分钟后,加入30-40mL乙醇,离心,再加入含有无水氯化钙0.1-0.15g、2×10-4mol/mL的YCl3溶液2.5-3mL的去离子水10-20mL,搅拌15-30分钟后,加入30-40mL乙醇,离心烘干研磨成粉后,放入100mL烧杯中。
7.根据权利要求4所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,所述步骤(9)阳离子的吸附步骤为:将总重量0.3-0.5g的三维有序大孔TiO2放入100mL烧杯中,加入20-30mL去离子水,搅拌,然后滴加含有PVP0.02-0.03g、1×10-5mol/mL的TmCl3溶液0.2-0.3mL和去离子水10-20mL的混合溶液,搅拌15-30分钟后,加入30-40mL乙醇,离心,再加入1×10-4mol/mL的YbCl3溶液1-1.5mL和去离子水10-20mL的混合溶液,搅拌15-30分钟后,加入30-40mL乙醇,离心,再加入含有无水氯化钙0.1-0.15g、2×10-4mol/mL的YCl3溶液2.5-3mL的去离子水10-20mL,搅拌15-30分钟后,加入30-40mL乙醇,离心烘干研磨成粉后,放入100mL烧杯中。
8.根据权利要求1所述的广谱激发的大孔TiO2光催化复合材料的制备方法,其特征在于,三维有序的大孔TiO2的制备方法为配体辅助模板法或者水热晶化法。
9.一种根据权利要求4-7任一项制备得到的广谱激发的大孔TiO2光催化复合材料,其特征在于:该复合材料由三维有序的大孔TiO2和(CaY)F2:Tm3+,Yb3+复合而成,其TiO2的孔径为200-330nm,其在275W硬质红外线灯下对甲基橙溶液有降解作用。
CN201811501235.3A 2018-12-10 2018-12-10 一种广谱激发的大孔TiO2光催化复合材料及其制备方法 Active CN109364960B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811501235.3A CN109364960B (zh) 2018-12-10 2018-12-10 一种广谱激发的大孔TiO2光催化复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811501235.3A CN109364960B (zh) 2018-12-10 2018-12-10 一种广谱激发的大孔TiO2光催化复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109364960A true CN109364960A (zh) 2019-02-22
CN109364960B CN109364960B (zh) 2022-01-18

Family

ID=65373810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811501235.3A Active CN109364960B (zh) 2018-12-10 2018-12-10 一种广谱激发的大孔TiO2光催化复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109364960B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495435A (zh) * 2020-04-25 2020-08-07 河北工业大学 一种全光谱响应光催化填料及其应用
CN111548684A (zh) * 2020-04-25 2020-08-18 河北工业大学 一种全光谱响应建筑涂料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416898A (zh) * 2017-08-22 2017-12-01 深圳先进技术研究院 一种二氧化钛空心微纳米球、其制备方法以及应用
CN108815571A (zh) * 2018-07-02 2018-11-16 河北工业大学 一种银修饰晶型二氧化钛纳米管层的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416898A (zh) * 2017-08-22 2017-12-01 深圳先进技术研究院 一种二氧化钛空心微纳米球、其制备方法以及应用
CN108815571A (zh) * 2018-07-02 2018-11-16 河北工业大学 一种银修饰晶型二氧化钛纳米管层的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HU, WENTING ET AL: "Near infrared ray to ultraviolet up-conversion luminescence of Tm3+-Yb3+ co-doped (CaY)F-2 nanocrystals", 《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》 *
冯成伟: "TiO2包覆Tm3+、Yb3+共掺杂氟化物复合纳米光敏材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
徐志兵: "三维大孔TiO2光催化剂的制备及其催化性能", 《催化学报》 *
王婷 等: "三维有序介孔/大孔 TiO2微球的制备、表征及光催化性能", 《分子催化》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495435A (zh) * 2020-04-25 2020-08-07 河北工业大学 一种全光谱响应光催化填料及其应用
CN111548684A (zh) * 2020-04-25 2020-08-18 河北工业大学 一种全光谱响应建筑涂料
CN111548684B (zh) * 2020-04-25 2022-03-25 河北工业大学 一种全光谱响应建筑涂料
CN111495435B (zh) * 2020-04-25 2023-10-03 河北工业大学 一种全光谱响应光催化填料及其应用

Also Published As

Publication number Publication date
CN109364960B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN100411730C (zh) 一种沸石基纳米二氧化钛双功能材料及其制备方法
Mousavi et al. Green synthesis of ZnO hollow sphere nanostructures by a facile route at room temperature with efficient photocatalytic dye degradation properties
Jia et al. SnO2 core–shell microspheres with excellent photocatalytic properties
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN103657619A (zh) 一种尺寸可控的二氧化钛纳米片光催化材料的制备方法
CN103752330B (zh) 一种ZnO/ZnS复合光催化剂薄膜的制备方法
CN108479816A (zh) 一种高效能碘空位铋氧碘光催化材料的制备方法及在毒害有机废水处理中的应用
CN109806776A (zh) 掺铁氧化石墨烯二氧化钛纳米复合材料改性微滤膜的方法
CN102000584A (zh) 一种钴掺杂改性Beta-氧化铋光催化剂的制备方法
CN106732504A (zh) 石墨烯二氧化钛光催化复合材料的制备方法及应用
CN109250755A (zh) 一种含有铋缺陷的不同晶相的氧化铋光催化剂及其制备方法
Song et al. Controlled synthesis of porous flower-like TiO2 nanostructure with enhanced photocatalytic activity
CN108636395A (zh) 一种弱可见光响应的复合光催化剂及其制备和应用
CN111036265A (zh) 一种复合纳米光催化剂CDs-N-BiOCl及其制备方法与应用
CN108620061A (zh) 一种介孔氧化钨(WO3)掺杂钨酸铋(Bi2WO6)复合光催化剂的制备方法
CN109364960A (zh) 一种广谱激发的大孔TiO2光催化复合材料及其制备方法
Deng et al. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants
Yang et al. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide
CN108906089A (zh) 一种BiOI同质结复合光催化剂的制备方法
CN112028119B (zh) 一种{101}、{100}和{111}-晶面共暴露的锐钛矿型TiO2纳米晶
Zhang et al. Synthesis and application of highly ordered arrays of TiO2 rods grown on electrospun PVDF fibers
CN109650439B (zh) 大尺寸自组装二氧化钛微球及其制备方法和应用
CN107159220B (zh) 水热法制备铜镍掺杂纳米氧化锌光催化材料工艺
CN105688874B (zh) 一种具有分级孔状结构的TiO2纳米粉体及其制备方法
CN108671956A (zh) 一种离子填充石墨相氮化碳纳米片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant