CN109361472A - 一种偏振无关的相干光接入方法及*** - Google Patents

一种偏振无关的相干光接入方法及*** Download PDF

Info

Publication number
CN109361472A
CN109361472A CN201811399929.0A CN201811399929A CN109361472A CN 109361472 A CN109361472 A CN 109361472A CN 201811399929 A CN201811399929 A CN 201811399929A CN 109361472 A CN109361472 A CN 109361472A
Authority
CN
China
Prior art keywords
signal
optical signal
polarization
olt
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811399929.0A
Other languages
English (en)
Other versions
CN109361472B (zh
Inventor
王熹
李响
罗鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Research Institute of Posts and Telecommunications Co Ltd
Original Assignee
Wuhan Research Institute of Posts and Telecommunications Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Research Institute of Posts and Telecommunications Co Ltd filed Critical Wuhan Research Institute of Posts and Telecommunications Co Ltd
Priority to CN201811399929.0A priority Critical patent/CN109361472B/zh
Publication of CN109361472A publication Critical patent/CN109361472A/zh
Application granted granted Critical
Publication of CN109361472B publication Critical patent/CN109361472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种偏振无关的相干光接入方法及***,涉及光纤通信***中光接入网领域,方法包括:光线路终端OLT对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,通过两段光纤偏振延迟线将单偏振信号分为互不相关的两路双偏振信号,合束后发出下行光信号;光网络单元ONU将所述下行光信号与光载波混在一起,通过一个光电探测器进行接收;所述对原始信号进行预处理后的时域帧中,信息信号与0信号为间插的结构,所述两段光纤偏振延迟线的长度差对应于间插结构中信息信号或者0信号的长度。本发明实现上下行对称的偏振无关的光接入网架构,且实现简单,成本较低。

Description

一种偏振无关的相干光接入方法及***
技术领域
本发明涉及光纤通信***中光接入网领域,具体来讲涉及一种偏振无关的相干光接入方法及***。
背景技术
随着光纤通信***中传输容量的增加和移动互联网技术的蓬勃发展,对接入网***的传输距离、速率以及分光比都提出了更高的要求。目前接入网***大部分都只支持光的强度调制格式和直接检测技术。然而这种方式因为只在强度这个维度进行了调制,限制了传输的速率。与此同时,直接检测技术也限制了接收灵敏度,使得接入网***中的分光比无法继续提升。因此,相干接收技术越来越多地被应用到接入网中。一般来说,相干技术的成本较贵,这主要是因为在符号速率较低的情况下,对激光器波长和线宽的控制会比较复杂。从目前的发展情况来看,如果直接延用长距离骨干网***中的相干光传输技术,即将相干光接收技术和高级调制格式的产生技术相结合,由于需要较复杂的DSP(Digital SignalProcessing,数字信号处理)技术、高速的DAC(Digital-to-Analogto Converter,数模转换器)和ADC(Analog-to-Digital Converter,模数转换器),显著增加了接入网***中用户的成本。
为了解决上述问题,目前比较普遍的方案是采用双偏振调制的方式,在发射端采用Alamouti码进行编码,这样可以在接收端仅用平衡探测器进行接收,实现偏振无关的相干光接入网架构。但是,这种方案需要使用复杂的双偏振IQ调制器,而且没有对上行信道的传输方案进行设计,无法实现对称型的接入网架构。因此,目前的技术方案在实际应用中有很大的局限性。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种偏振无关的相干光接入方法及***,实现上下行对称的偏振无关的光接入网架构,且实现简单,成本较低。
为达到以上目的,一方面,采取一种偏振无关的相干光接入方法,包括:光线路终端OLT对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,通过两段光纤偏振延迟线将单偏振信号分为互不相关的两路双偏振信号,合束后发出下行光信号;光网络单元ONU将所述下行光信号与光载波混在一起,通过一个光电探测器进行接收;所述对原始信号进行预处理后的时域帧中,信息信号与0信号为间插的结构,所述两段光纤偏振延迟线的长度差对应于间插结构中信息信号或者0信号的长度。
优选的,所述原始信号进行预处理包括:原始比特数据流经过编码和比特映射后实现符号数据流,对符号数据流进行傅里叶数字变换得到符号数据流的频谱,将符号数据流的频谱的一个边带置零,再对单边带的频谱信号作反傅立叶数字变换,得到基带时域数字单边带信号。
优选的,所述OLT中单偏振IQ调制器的偏置点调节到零点或线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
优选的,所述ONU对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,且单偏振IQ调制器的偏置点调节到线性区,调制后直接发出上行光信号;OLT通过一个光电探测器直接接收所述上行光信号。
优选的,所述ONU对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,并将单偏振IQ调制器的偏置点调节到零点或线性区,通过两段光纤偏振延迟线将单偏振信号分为互不相关的两路双偏振信号,合束后发出上行光信号;OLT将所述上行光信号与光载波混在一起,通过一个光电探测器进行接收。
另一方面,提供一种偏振无关的相干光接入***,包括OLT和ONU,所述OLT与ONU结构相同,均包括:
编码与调制模块,其用于对原始信号进行预处理,在时域帧中使信息信号与0信号为间插结构,得到基带时域数字单边带信号;
数模转换器,其用于将编码与调制模块输出的数字单边带信号转换为模拟电信号;
单偏振IQ调制器,其用于将模拟电信号进行IQ调制;
分束合束模块,其用于将IQ调制后的光信号分为互不相关的两路双偏振信号再合束;
激光器,为接收的光信号以及单偏振IQ调制器提供光载波;
光电探测器,其用于接收与光载波混在一起的光信号;
信号处理模块,其用于对光电探测器收到的光信号进行处理。
优选的,所述分束合束模块包括:
偏振分束器,其用于将IQ调制后的光信号分到两个偏振态上;
光纤偏振延迟线,其包括两段,且两段的长度差对应于所述间插结构中信息信号或者0信号的长度;
偏振合束器,其用于将通过所述光纤偏振延迟线的光信号合束后发出。
优选的,所述单偏振IQ调制器的偏置点调节到零点或线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
再一方面,提供另一种偏振无关的相干光接入***,包括OLT和ONU,所述OLT与ONU均包括:
编码与调制模块,其用于对原始信号进行预处理,在时域帧中使信息信号与0信号为间插结构,得到基带时域数字单边带信号;
数模转换器,其用于将编码与调制模块输出的数字单边带信号转换为模拟电信号;
单偏振IQ调制器,其用于将模拟电信号进行IQ调制;
光电探测器,其用于接收光信号;
信号处理模块,其用于对光电探测器收到的光信号进行处理;
所述ONU和OLT均还包括激光器,ONU中的激光器用于为接收的光信号以及单偏振IQ调制器提供光载波;OLT中的激光器仅用于为单偏振IQ调制器提供光载波;
所述OLT还包括分束合束模块,其用于将IQ调制后的光信号分为互不相关的两路双偏振信号再合束。
优选的,所述分束合束模块包括:
偏振分束器,其用于将IQ调制后的光信号分到两个偏振态上;
光纤偏振延迟线,其包括两段,且两段的长度差对应于所述间插结构中信息信号或者0信号的长度;
偏振合束器,其用于将通过所述光纤偏振延迟线的光信号合束后发出;
所述单偏振IQ调制器的偏置点调节到线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
上述技术方案具有如下有益效果:
原始信号经过预处理和单边带预处理,在时域帧中信息信号与0信号为间插的结构,因此在经过光纤延迟线处理发出后,该信号可以和光载波混在一起并用一个光电探测器进行接收。
在光接入网***中,光信号在接收时采用相干接收的方式,被接收端的激光器放大,从而实现高灵敏度的相干接收。
另外,相对于现有采用平衡探测器(包括两个光探测器及逻辑电路),本发明技术方案中采用一个光电探测器进行光信号的接收,简化了结构,实现简单且成本较低。
并且,下行光信号和上行光信号分别位于光载波频段的左右两边,使波段错开,达到上下行光信号互不干扰,抗瑞丽散射的目的。
附图说明
图1为本发明偏振无关的相干光接入方法实施例的流程图;
图2为图1实施例中合束后光信号的时域帧示意图;
图3本发明偏振无关的相干光接入***实施例中OLT的结构示意图;
图4为本发明偏振无关的相干光接入***另一种实施例中OLT的结构示意图;
图5为本发明偏振无关的相干光接入***另一种实施例中ONU的结构示意图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
本实施例偏振无关的相干光接入方法,适用于光接入网***,包括步骤:
S1.在OLT(optical line terminal,光线路终端)中对原始信号进行预处理,使信号所在时域帧中,信息信号与0信号为间插的结构。
S2.将预处理后的信号由数字单边带信号转换为模拟电信号,再利用一个单偏振IQ调制器实现单边带调制。优选的,单偏振IQ调制器的偏置点可以调节到零点或线性区。
S3.将上述单边带调制后的信号分到两个偏振态上,两个偏振态上的光信号再通过两段光纤偏振延迟线后,再进行合束后发出下行光信号。其中,两段光纤偏振延迟线存在一定的长度差,长度差与间插结构中信息信号或者0信号的长度相同。如图2所示,为光信号合束后,x偏振信号和y偏振信号的时域帧结构图,其中,信息信号与0信号均为间插结构。
S4.ONU(Optical Network Unit,光网络单元)将所述下行光信号与光载波混在一起,并通过一个光电探测器进行接收。
S5.对光电探测器接收后的光信号进行模数转换及数字信号处理。
优选的,对原始信号进行预处理具体包括:将原始信号的比特数据流先经过编码和比特映射后实现符号数据流,然后对符号数据流进行傅里叶数字变换得到符号数据流的频谱,再将符号数据流的频谱的一个边带置零,最后对单边带的频谱信号作反傅立叶数字变换,得到基带时域数字单边带信号。
优选的,将符号数据流的频谱的一个边带置零,可以是光载波频段的左边边带,也可以是右边边带。
光接入网***中,ONU向OLT发送上行光信号有两种方法,其中一种方法包括步骤:
在ONU中采用同样的方式对原始信号进行进行预处理,再利用一个单偏振IQ调制器实现单边带调制,单偏振IQ调制器的偏置点调节到零点或线性区,再将单边带调制后的信号分到两个偏振态上,两个偏振态上的光信号通过上述两段光纤偏振延迟线后,合束后发出上行光信号。
OLT将上行光信号与光载波混在一起,通过一个光电探测器进行接收,再对接收后的光信号进行模数转换及数字信号处理。
另外一种ONU向OLT发送上行光信号的方法包括:
在ONU中采用同样的方式对原始信号进行进行预处理,再利用一个单偏振IQ调制器实现单边带调制,单偏振IQ调制器的偏置点调节到线性区,再将单边带调制后的信号作为上行光信号直接发出,OLT通过一个光电探测器直接接收上述上行光信号。
上述OLT或ONU发出的光信号与对端接收的光信号,在信号光谱中分别位于光载波频段的左右两边,因此在双向传输的过程中,OLT端和ONU端的信号互不干扰,光接入网***不受瑞丽散射的影响。
本发明偏振无关的相干光接入***,包括OLT和ONU,本实施例中,OLT与ONU结构相同,如图3所示,以OLT结构为例,其包括编码与调制模块、数模转换器、单偏振IQ调制器、分束合束模块、激光器、光电探测器和信号处理模块。
上述编码与调制模块,用于对原始信号进行预处理,得到基带时域数字单边带信号,预处理后的时域帧中,信息信号与0信号为间插结构。
优选的,预处理的过程包括:将原始信号的比特数据先流经过编码和比特映射后实现符号数据流,然后对符号数据流进行傅里叶数字变换得到符号数据流的频谱,再将符号数据流的频谱的一个边带置零,最后对单边带的频谱信号作反傅立叶数字变换,得到基带时域数字单边带信号。
上述数模转换器用于将编码与调制模块预处理后的数字单边带信号转换为模拟电信号,并加载在上述单偏振IQ调制器上。
上述单偏振IQ调制器用于将模拟电信号进行IQ调制,单偏振IQ调制器的偏置点可以被调节到零点,也可以被调节到线性区,本实施例中调节到零点。
上述分束合束模块,用于将IQ调制后的光信号分为互不相关的两路双偏振信号再合束,作为下行光信号发出。
上述激光器,为接收的光信号以及单偏振IQ调制器提供光载波。
上述光电探测器,用于接收与光载波混在一起的光信号。
上述信号处理模块,用于对光电探测器收到的光信号进行模数转换和数字信号处理。
优选的,分束合束模块包括偏振分束器、两段光纤偏振延迟线以及偏振合束器。偏振分束器用于将IQ调制后的光信号分到两个偏振态上,两个偏振态上的光信号再通过两段光纤偏振延迟线,偏振合束器用于将通过两段光纤偏振延迟线后的两个偏振态上的光信号合在一起,使发送的下行光信号在两个偏振态上都保有原始信号的信息,如图3所示,本实施例中,OLT发送的信号在信号光谱中位于光载波频段的右边,因此ONU发送给OLT的信号,也就是OLT接收的上行信号,需要在信号光谱中位于光载波频段的左边。
另外,两段光纤偏振延迟线的长度差对应于所述间插结构中信息信号或者0信号的长度,因此,在经过光纤偏振延迟线后在同一时刻,光信号的信息只在一个偏振态上传输,经过光纤偏振延迟线再合束后,两个偏振态上的信号如图2所示。
由于本实施例中OLT与ONU采用同样的结构,因此ONU与OLT的发射信号具有波长相近的载波,但是ONU或OLT中,发送和接收的信号的传输频带分别处于光载波频段的左右两边,在双向传输的过程中,OLT与ONU的信号互不干扰,使光接入网***不受瑞丽散射的影响。
本发明偏振无关的相干光接入***还提供另外一个实施例,在本实施例中,OLT与ONU结构互不相同。
如图3所示,本实施例中OLT的结构与上一个实施例中OLT的结构基本相同,编码与单边调制模块进行预处理的方式也与上一个实施例相同,区别在于,本实施例OLT中的激光器仅用于为单偏振IQ调制器提供光载波。
如图4所示,本实施例中ONU包括与上一个实施例中相同的编码与调制模块、数模转换器、激光器和单偏振IQ调制器。但是,本实施例中,ONU不包括分束合束单元,单偏振IQ调制器调制后的光信号直接发送给OLT。
本实施例中,OLT向ONU发送下行光信号的方式与上一个实施例相同,只是在ONU中,将接收到的光信号与激光器的光载波混合后,通过ONU的光电探测器接收。
而ONU向OLT发送上行光信号的时候,ONU中单偏振IQ调制器调制后的光信号直接发送给OLT,OLT中的光电探测器直接进行接收,不需要OLT中的激光器。并且,ONU中单偏振IQ调制器的偏置点调节到线性区,这是因为本实施例中是直接接收的结构,OLT需要接收的光信号有明显的光载波分量,因此必须将偏置点调节到线性区。
本实施例ONU或OLT中,发送和接收的信号的传输频带也是分别处于光载波频段的左右两边,这个可以通过编码与单边带调制模块,以及单偏振IQ调制器得到,在双向传输的过程中,OLT与ONU的信号互不干扰,从而保证在一根光纤中的双向传输不受瑞丽散射的影响。并且,本实施例相对于上一个实施例,减少了ONU包括的模块,进一步降低了ONU的成本和复杂度。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

1.一种偏振无关的相干光接入方法,其特征在于,包括:
光线路终端OLT对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,通过两段光纤偏振延迟线将单偏振信号分为互不相关的两路双偏振信号,合束后发出下行光信号;
光网络单元ONU将所述下行光信号与光载波混在一起,通过一个光电探测器进行接收;
所述对原始信号进行预处理后的时域帧中,信息信号与0信号为间插的结构,所述两段光纤偏振延迟线的长度差对应于间插结构中信息信号或者0信号的长度。
2.如权利要求1所述的偏振无关的相干光接入方法,其特征在于,所述原始信号进行预处理包括:原始比特数据流经过编码和比特映射后实现符号数据流,对符号数据流进行傅里叶数字变换得到符号数据流的频谱,将符号数据流的频谱的一个边带置零,再对单边带的频谱信号作反傅立叶数字变换,得到基带时域数字单边带信号。
3.如权利要求2所述的偏振无关的相干光接入方法,其特征在于:所述OLT中单偏振IQ调制器的偏置点调节到零点或线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
4.如权利要求3所述的偏振无关的相干光接入方法,其特征在于:所述ONU对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,且单偏振IQ调制器的偏置点调节到线性区,调制后直接发出上行光信号;
OLT通过一个光电探测器直接接收所述上行光信号。
5.如权利要求3所述的偏振无关的相干光接入方法,其特征在于:所述ONU对原始信号进行预处理,再利用一个单偏振IQ调制器实现单边带调制,并将单偏振IQ调制器的偏置点调节到零点或线性区,通过两段光纤偏振延迟线将单偏振信号分为互不相关的两路双偏振信号,合束后发出上行光信号;
OLT将所述上行光信号与光载波混在一起,通过一个光电探测器进行接收。
6.一种偏振无关的相干光接入***,包括OLT和ONU,其特征在于,所述OLT与ONU结构相同,均包括:
编码与调制模块,其用于对原始信号进行预处理,在时域帧中使信息信号与0信号为间插结构,得到基带时域数字单边带信号;
数模转换器,其用于将编码与调制模块输出的数字单边带信号转换为模拟电信号;
单偏振IQ调制器,其用于将模拟电信号进行IQ调制;
分束合束模块,其用于将IQ调制后的光信号分为互不相关的两路双偏振信号再合束;
激光器,为接收的光信号以及单偏振IQ调制器提供光载波;
光电探测器,其用于接收与光载波混在一起的光信号;
信号处理模块,其用于对光电探测器收到的光信号进行处理。
7.如权利要求6所述的偏振无关的相干光接入***,其特征在于,所述分束合束模块包括:
偏振分束器,其用于将IQ调制后的光信号分到两个偏振态上;
光纤偏振延迟线,其包括两段,且两段的长度差对应于所述间插结构中信息信号或者0信号的长度;
偏振合束器,其用于将通过所述光纤偏振延迟线的光信号合束后发出。
8.如权利要求6所述的偏振无关的相干光接入***,其特征在于:所述单偏振IQ调制器的偏置点调节到零点或线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
9.一种偏振无关的相干光接入***,包括OLT和ONU,其特征在于,所述OLT与ONU均包括:
编码与调制模块,其用于对原始信号进行预处理,在时域帧中使信息信号与0信号为间插结构,得到基带时域数字单边带信号;
数模转换器,其用于将编码与调制模块输出的数字单边带信号转换为模拟电信号;
单偏振IQ调制器,其用于将模拟电信号进行IQ调制;
光电探测器,其用于接收光信号;
信号处理模块,其用于对光电探测器收到的光信号进行处理;
所述ONU和OLT均还包括激光器,ONU中的激光器用于为接收的光信号以及单偏振IQ调制器提供光载波;OLT中的激光器仅用于为单偏振IQ调制器提供光载波;
所述OLT还包括分束合束模块,其用于将IQ调制后的光信号分为互不相关的两路双偏振信号再合束。
10.如权利要求9所述的偏振无关的相干光接入***,其特征在于:所述分束合束模块包括:
偏振分束器,其用于将IQ调制后的光信号分到两个偏振态上;
光纤偏振延迟线,其包括两段,且两段的长度差对应于所述间插结构中信息信号或者0信号的长度;
偏振合束器,其用于将通过所述光纤偏振延迟线的光信号合束后发出;
所述单偏振IQ调制器的偏置点调节到线性区,所述OLT或ONU发出的光信号与对端接收的光信号分别位于光载波频段的左右两边。
CN201811399929.0A 2018-11-22 2018-11-22 一种偏振无关的相干光接入方法及*** Active CN109361472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811399929.0A CN109361472B (zh) 2018-11-22 2018-11-22 一种偏振无关的相干光接入方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811399929.0A CN109361472B (zh) 2018-11-22 2018-11-22 一种偏振无关的相干光接入方法及***

Publications (2)

Publication Number Publication Date
CN109361472A true CN109361472A (zh) 2019-02-19
CN109361472B CN109361472B (zh) 2020-05-12

Family

ID=65338421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811399929.0A Active CN109361472B (zh) 2018-11-22 2018-11-22 一种偏振无关的相干光接入方法及***

Country Status (1)

Country Link
CN (1) CN109361472B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190907A (zh) * 2019-07-29 2019-08-30 烽火通信科技股份有限公司 一种iq信号相位误差控制方法及***
CN111835431A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种相干光学接收装置及光信号解调装置
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信***
CN115102630A (zh) * 2022-08-29 2022-09-23 北京中科国光量子科技有限公司 一种基于偏振无关延迟干涉仪的自相干接收装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978125A (en) * 1995-11-30 1999-11-02 Yao; X. Steve Compact programmable photonic variable delay devices
US20030011776A1 (en) * 2001-07-12 2003-01-16 Hitachi, Ltd. Instruments of optical pulse characterization
CN101170363A (zh) * 2007-10-26 2008-04-30 中兴通讯股份有限公司 一种光差分偏振位移键控***及其信号发送装置与方法
CN101621350A (zh) * 2009-08-17 2010-01-06 华中科技大学 一种波分复用无源光网络
CN102255664A (zh) * 2011-04-18 2011-11-23 武汉邮电科学研究院 基于时间间插归零码的偏振复用光通信方法及***
CN102334248A (zh) * 2011-07-27 2012-01-25 华为技术有限公司 自种子光纤激光器及其驱动方法、无源光网络***及设备
CN105490769A (zh) * 2015-12-09 2016-04-13 武汉邮电科学研究院 偏振无关自相干正交频分复用光纤传输***以及传输方法
CN107289978A (zh) * 2017-06-09 2017-10-24 南京大学 一种基于potdr的测扰动的***及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978125A (en) * 1995-11-30 1999-11-02 Yao; X. Steve Compact programmable photonic variable delay devices
US20030011776A1 (en) * 2001-07-12 2003-01-16 Hitachi, Ltd. Instruments of optical pulse characterization
CN101170363A (zh) * 2007-10-26 2008-04-30 中兴通讯股份有限公司 一种光差分偏振位移键控***及其信号发送装置与方法
CN101621350A (zh) * 2009-08-17 2010-01-06 华中科技大学 一种波分复用无源光网络
CN102255664A (zh) * 2011-04-18 2011-11-23 武汉邮电科学研究院 基于时间间插归零码的偏振复用光通信方法及***
CN102334248A (zh) * 2011-07-27 2012-01-25 华为技术有限公司 自种子光纤激光器及其驱动方法、无源光网络***及设备
CN105490769A (zh) * 2015-12-09 2016-04-13 武汉邮电科学研究院 偏振无关自相干正交频分复用光纤传输***以及传输方法
CN107289978A (zh) * 2017-06-09 2017-10-24 南京大学 一种基于potdr的测扰动的***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAN CHUEN LIM等: "Polarization-independent optical demultiplexing by conventional nonlinear optical loop mirror in a polarization-diversity loop configuration", 《IEEE PHOTONICS TECHNOLOGY LETTERS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835431A (zh) * 2019-04-16 2020-10-27 华为技术有限公司 一种相干光学接收装置及光信号解调装置
CN111835431B (zh) * 2019-04-16 2021-11-19 华为技术有限公司 一种相干光学接收装置及光信号解调装置
CN110190907A (zh) * 2019-07-29 2019-08-30 烽火通信科技股份有限公司 一种iq信号相位误差控制方法及***
CN110190907B (zh) * 2019-07-29 2019-11-01 烽火通信科技股份有限公司 一种iq信号相位误差控制方法及***
CN113132009A (zh) * 2019-12-31 2021-07-16 烽火通信科技股份有限公司 一种相干光模块及光通信***
CN115102630A (zh) * 2022-08-29 2022-09-23 北京中科国光量子科技有限公司 一种基于偏振无关延迟干涉仪的自相干接收装置
CN115102630B (zh) * 2022-08-29 2022-11-04 北京中科国光量子科技有限公司 一种基于偏振无关延迟干涉仪的自相干接收装置

Also Published As

Publication number Publication date
CN109361472B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
CN109361472A (zh) 一种偏振无关的相干光接入方法及***
CN104410462B (zh) 基于偏振复用的光信号调制与直接检测的方法及装置
CN104104417B (zh) 超高速光纤无线mimo传输方法
CN110739997A (zh) 基于偏振复用的自相干检测光载射频链路的方法
CN103414516B (zh) 基于同/外差探测的双向有线/无线混合光接入方法与***
CN105281862A (zh) 一种偏振复用直接检测***及方法
IT8967995A1 (it) Sistema di comunicazione coerente in fibra ottica a diversita' di polarizzazione in trasmissione
TW201017245A (en) Light-modulating apparatus
Hussien et al. Comprehensive investigation of coherent optical OFDM-RoF employing 16QAM external modulation for long-haul optical communication system
CN102307066A (zh) 基于FSK-D8PSK-ASK-PolMUX的高速光传输***和方法
Xiao et al. Review on the Millimeter‐Wave Generation Techniques Based on Photon Assisted for the RoF Network System
Rommel et al. Real-time high-bandwidth mm-wave 5G NR signal transmission with analog radio-over-fiber fronthaul over multi-core fiber
US11128382B2 (en) Multi-modulation-format compatible high-speed laser signal generation system and method
CN117097431B (zh) 时延控制设备、光时分复用方法、解复用方法及***
CN110224758A (zh) 一种光信号调制***及其传输***
Muthu et al. Bidirectional MM-Wave Radio over Fiber transmission through frequency dual 16-tupling of RF local oscillator
CN103414503B (zh) 采用相位分集接收相干光正交频分复用接入信号的***
CN110224760A (zh) 一种用于时间bb84协议的片上解码器及解码方法
Nejad et al. Four-channel RoF transmission over polarization maintaining elliptical ring core fiber
Magidi et al. Optical carrier suppression with modified duo binary return to zero and polarization shift keying modulation schemes over free space communication system
CN104601247A (zh) 本振增强型差分信号接收装置
Eghbal et al. Tandem dual-electrode Mach Zehnder modulators generating W-band signals for an OCDMA radio-over-fiber system
CN205812028U (zh) 一种超高速光子射频信息融合传输***
Zhang et al. Full-duplex transmission without an uplink light source for a millimeter-wave radio over a free-space optical system
Tang et al. Transmission performance of a 400 Gbit s− 1 all-optical orthogonal frequency division multiplexing system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant