CN109346611B - 一种光探测器原型器件的制备方法 - Google Patents

一种光探测器原型器件的制备方法 Download PDF

Info

Publication number
CN109346611B
CN109346611B CN201811124266.1A CN201811124266A CN109346611B CN 109346611 B CN109346611 B CN 109346611B CN 201811124266 A CN201811124266 A CN 201811124266A CN 109346611 B CN109346611 B CN 109346611B
Authority
CN
China
Prior art keywords
film
pedot
pss
pvk
quartz tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811124266.1A
Other languages
English (en)
Other versions
CN109346611A (zh
Inventor
吕燕飞
徐竹华
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201811124266.1A priority Critical patent/CN109346611B/zh
Publication of CN109346611A publication Critical patent/CN109346611A/zh
Application granted granted Critical
Publication of CN109346611B publication Critical patent/CN109346611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种光探测器原型器件的制备方法,本发明在铜薄膜基底上生长石墨烯,通过热氧化在铜基底与石墨烯两者夹层中间生长氧化亚铜纳米厚度的二维薄膜,之后再石墨烯上表面制备空穴注入层聚(3,4‑乙烯二氧噻吩)‑聚苯乙烯磺酸(PEDOT:PSS)薄膜,再在PEDOT:PSS薄膜上表面制备空穴传输层聚乙烯基咔唑(PVK),最后在PVK薄膜表面制备金属电极完成器件的制备。本发明具有厚度薄、光响应快、柔性好的优点。

Description

一种光探测器原型器件的制备方法
技术领域
本发明属于器件制备领域,具体涉及一种氧化亚铜作为光电转换层的可见光光电探测器。
背景技术
光电探测器件是能将入射光信号转变成电信号的器件。可探测不同波长的光辐射,用于成像、工业自动化控制、移动物体的跟踪和控制等领域。
氧化亚铜是无机金属氧化物P型直接带隙半导体材料,在可见光照射下能够产生光电导现象,氧化亚铜光响应好,可以用于可见光光电探测器材料。近年来随着柔性电子技术的发展,柔性光电探测器件的制备也引起关注。
发明内容
本发明针对现有技术的不足,提出了一种光探测器原型器件的制备方法。
本发明将氧化亚铜纳米薄膜材料与有机材料结合,制备具有一定柔性的光电探测器。本发明在铜薄膜基底上生长石墨烯,通过热氧化在铜基底与石墨烯两者夹层中间生长氧化亚铜纳米厚度的二维薄膜,之后再石墨烯上表面制备空穴注入层聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)薄膜,再在PEDOT:PSS薄膜上表面制备空穴传输层聚乙烯基咔唑(PVK),最后在PVK薄膜表面制备金属电极完成器件的制备。
本发明一种光探测器原型器件的制备方法的具体步骤是:
步骤(1).通过化学气相沉积法(CVD)在铜(Cu)薄膜表面生长单原子层厚度的石墨烯薄膜。取边长为1厘米厚125微米的正方形铜薄膜,放入CVD***中的石英管中,向石英管中通入氢气,氢气流速(20sccm);石英管从室温加热至1000℃,升温速率20℃/min;向石英管中通入甲烷,甲烷流速(100sccm);在1000℃保温40min后,石英管快速降温至600℃,降温速率200℃/min,600℃后石英管自然降至室温,停止通入甲烷气体、氢气气体。获得生长在金属铜表面的单原子层厚的石墨烯(Gr)。产物结构为Cu/Gr.
步骤(2).步骤(1)的产物放入180℃的烘箱中,烘箱中的湿度通过加湿器控制在80%。放置12小时后取出。产物结构为中间夹有氧化亚铜(Cu2O)的三明治结构,Cu/Cu2O/Gr.
步骤(3).在石墨烯表面通过旋涂法涂覆一层聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)薄膜。PEDOT:PSS水溶液采用市售产品。旋涂转速为3000转/分钟。PEDOT:PSS薄膜厚度为20nm。形成Cu/Cu2O/Gr/PEDOT:PSS叠层结构。
步骤(4).在PEDOT:PSS薄膜表面继续通过旋涂法涂覆一层聚乙烯基咔唑(PVK)薄膜。将PVK溶解于氯仿溶液中,浓度为0.02g/ml。旋涂转速为4000转/分钟。PVK薄膜厚度为20nm。形成Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构。
步骤(5).在Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构的PVK上表面通过热蒸发法沉积金属金电极。
本发明制备的光探测器,将无机纳米薄膜与有机材料结合,具有厚度薄、光响应快、柔性好的优点。
附图说明
图1为本发明的结构示意图。
具体实施方式
如图1所示,本发明一种光探测器原型器件的制备方法的具体步骤是:
步骤(1).通过化学气相沉积法(CVD)在铜(Cu)6薄膜表面生长单原子层厚度的石墨烯薄膜4。取边长为1厘米厚125微米的正方形铜薄膜,放入CVD***中的石英管中,向石英管中通入氢气,氢气流速(20sccm);石英管从室温加热至1000℃,升温速率20℃/min;向石英管中通入甲烷,甲烷流速(100sccm);在1000℃保温40min后,石英管快速降温至600℃,降温速率200℃/min,600℃后石英管自然降至室温,停止通入甲烷气体、氢气气体。获得生长在金属铜表面的单原子层厚的石墨烯(Gr)。产物结构为Cu/Gr.
步骤(2).步骤(1)的产物放入180℃的烘箱中,烘箱中的湿度通过加湿器控制在80%。放置12小时后取出。产物结构为中间夹有氧化亚铜(Cu2O)5的三明治结构,Cu/Cu2O/Gr.
步骤(3).在石墨烯表面通过旋涂法涂覆一层聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)薄膜3。PEDOT:PSS水溶液采用市售产品。旋涂转速为3000转/分钟。PEDOT:PSS薄膜厚度为20nm。形成Cu/Cu2O/Gr/PEDOT:PSS叠层结构。
步骤(4).在PEDOT:PSS薄膜表面继续通过旋涂法涂覆一层聚乙烯基咔唑(PVK)薄膜2。将PVK溶解于氯仿溶液中,浓度为0.02g/ml。旋涂转速为4000转/分钟。PVK薄膜厚度为20nm。形成Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构。
步骤(5).在Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构的PVK上表面通过热蒸发法沉积金属金电极1。

Claims (2)

1.一种光探测器原型器件的制备方法,其特征在于,该方法具体包括以下步骤:
步骤(1)、通过化学气相沉积法在铜薄膜表面生长单原子层厚度的石墨烯薄膜;
步骤(2)、步骤(1)的产物放入180℃的烘箱中,烘箱中的湿度通过加湿器控制在湿度为80%;放置12小时后取出;产物结构为中间夹有氧化亚铜的三明治结构,Cu/Cu2O/Gr;
步骤(3)、在石墨烯表面通过旋涂法涂覆一层聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜,旋涂转速为3000转/分钟;PEDOT:PSS薄膜厚度为20nm;形成Cu/Cu2O/Gr/PEDOT:PSS叠层结构;其中聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸薄膜即PEDOT:PSS薄膜;
步骤(4)、在PEDOT:PSS薄膜表面继续通过旋涂法涂覆一层聚乙烯基咔唑薄膜;其中聚乙烯基咔唑薄膜为将聚乙烯基咔唑溶解于氯仿溶液中,浓度为0.02g/ml;旋涂转速为4000转/分钟;聚乙烯基咔唑薄膜厚度为20nm;形成Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构;其中PVK即聚乙烯基咔唑;
步骤(5)、在Cu/Cu2O/Gr/PEDOT:PSS/PVK叠层结构的PVK上表面通过热蒸发法沉积金属金电极。
2.根据权利要求1所述的一种光探测器原型器件的制备方法,其特征在于:步骤(1)具体为取正方形铜薄膜,放入CVD***中的石英管中,向石英管中通入氢气,氢气流速为20sccm;石英管从室温加热至1000℃,升温速率20℃/min;向石英管中通入甲烷,甲烷流速100sccm;在1000℃保温40min后,石英管快速降温至600℃,降温速率200℃/min,600℃后石英管自然降至室温,停止通入甲烷气体、氢气气体;获得生长在金属铜表面的单原子层厚的石墨烯(Gr);产物结构为Cu/Gr。
CN201811124266.1A 2018-09-26 2018-09-26 一种光探测器原型器件的制备方法 Active CN109346611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811124266.1A CN109346611B (zh) 2018-09-26 2018-09-26 一种光探测器原型器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811124266.1A CN109346611B (zh) 2018-09-26 2018-09-26 一种光探测器原型器件的制备方法

Publications (2)

Publication Number Publication Date
CN109346611A CN109346611A (zh) 2019-02-15
CN109346611B true CN109346611B (zh) 2022-04-08

Family

ID=65306565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811124266.1A Active CN109346611B (zh) 2018-09-26 2018-09-26 一种光探测器原型器件的制备方法

Country Status (1)

Country Link
CN (1) CN109346611B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730929A (zh) * 2007-05-08 2010-06-09 朗姆研究公司 清洁cmp后的晶片的热学方法
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
CN103882494A (zh) * 2014-03-12 2014-06-25 浙江大学 一种Cu2O/ZnO异质结材料的制备方法
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9685567B2 (en) * 2012-07-20 2017-06-20 Nutech Ventures Nanocomposite photodetector
US10651409B2 (en) * 2012-07-20 2020-05-12 Nutech Ventures Narrowband nanocomposite photodetector
AU2013319979B2 (en) * 2012-09-18 2016-08-25 Oxford University Innovation Limited Optoelectronic device
US9331293B2 (en) * 2013-03-14 2016-05-03 Nutech Ventures Floating-gate transistor photodetector with light absorbing layer
CN109791987B (zh) * 2016-10-05 2023-10-24 天光材料科技股份有限公司 有机半导体化合物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730929A (zh) * 2007-05-08 2010-06-09 朗姆研究公司 清洁cmp后的晶片的热学方法
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
CN103882494A (zh) * 2014-03-12 2014-06-25 浙江大学 一种Cu2O/ZnO异质结材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Facile synthesis and capacitive performance of Cu@Cu2O/graphene nanocomposites";Yan Li等;《Ceramics International》;20141125;第41卷(第3期);第4248-4253页 *
"Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowwire/electrolyte heterojunctions";Zhiming Bai等;《Journal of Alloys and compounds》;20160310;第675卷;第325-330页 *

Also Published As

Publication number Publication date
CN109346611A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
KR101119916B1 (ko) 그래핀 전극과 유기물/무기물 복합소재를 사용한 전자 소자 및 그 제조 방법
US20180248118A1 (en) Organic-inorganic perovskite materials and optoelectronic devices fabricated by close space sublimation
TW200816535A (en) Controlled growth of larger heterojunction interface area for organic photosensitive devices
Periasamy et al. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
CN104051560A (zh) 一种基于三维自组装纳米材料的新型红外探测器
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
Huang et al. Easily processable Cu2O/Si self-powered photodetector array for image sensing applications
Mazumdar et al. Designing electron transporting layer for efficient perovskite solar cell by deliberating over nano-electrical conductivity
Aseena et al. Solution-synthesized Cu2O as a hole transport layer for a ZnO-based planar heterojunction perovskite solar cell fabricated at room temperature
CN109346611B (zh) 一种光探测器原型器件的制备方法
CN104952967A (zh) 一种ZnO基薄膜晶体管型紫外探测器及其制备方法
KR101218381B1 (ko) 금속산화물 나노와이어-월 전도막의 제조방법 및 이를 포함하는 유기태양전지
Nawar et al. Improving the optical and electrical properties of Zinc Oxide thin film by Cupric Oxide dopant
Wu et al. Decorating MoS2 nanoscrolls with solution-processed PbI2 nanocrystals for improved photosensitivity
CN114122192A (zh) 一种薄膜制备方法及光电探测器
CN115440888A (zh) 一种基于金属与电介质混合薄膜源极的柔性垂直沟道场效应管
Hasan et al. Surface interface structural studies of CH3NH3PbI3 thin films using synchrotron source X-ray diffraction for solar cell application
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
Lu et al. Noise characteristics of ZnO-nanowire photodetectors prepared on ZnO: Ga/glass templates
CN106848067A (zh) 一种性能优异的钙钛矿太阳能电池
CN108807572B (zh) 一种银铟镓硒薄膜及其制备方法和应用
CN112071503A (zh) 一种实现多功能复合透明导电薄膜的方法及应用
CN110061135B (zh) 一种可见光光电探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant