CN109326682A - 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法 - Google Patents

基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法 Download PDF

Info

Publication number
CN109326682A
CN109326682A CN201810906340.9A CN201810906340A CN109326682A CN 109326682 A CN109326682 A CN 109326682A CN 201810906340 A CN201810906340 A CN 201810906340A CN 109326682 A CN109326682 A CN 109326682A
Authority
CN
China
Prior art keywords
layer
inp
diamond
sic
light absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810906340.9A
Other languages
English (en)
Other versions
CN109326682B (zh
Inventor
王悦湖
张菊
王雨田
张玉明
宋庆文
汤晓燕
张艺蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810906340.9A priority Critical patent/CN109326682B/zh
Publication of CN109326682A publication Critical patent/CN109326682A/zh
Application granted granted Critical
Publication of CN109326682B publication Critical patent/CN109326682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法,所述方法包括:在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层;在所述金刚石层的上表面生长第一金属材料,形成光吸收层;在所述SiC衬底的下表面生长第二金属材料,形成底电极;在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管。本发明基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法将金刚石材料应用于光吸收层,该材料在日盲区的光透率极高,有利于提高光吸收层的光吸收能力,能够大幅提高光电探测二极管的器件性能。

Description

基于金刚石/InP/SiC双异质结的光电探测二极管及其制备 方法
技术领域
本发明属于微电子技术领域,具体涉及一种基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法。
背景技术
随着近年来医学测温、航空航天、雷达探测等领域的研究与探索工作的不断深入,生产发展对于光线尤其紫外光等相关探测器的要求越来越高,如光电对抗中紫外对抗与反对抗就愈发受到军方的青睐。电磁波中波长在10~400nm的波段称为紫外线辐射,它既不同于红外线辐射,也不同于可见光辐射;其中来自太阳辐射的紫外线中被大气层几乎完全吸收的谱区被称为日盲区,是紫外探测中较难探测到的区域,而金刚石的禁带宽度为5.5eV,相当于截止波长为225nm,具有“太阳盲区”的特性,使得器件无需配置滤光片或介电涂层就能满足在可见光背景中使用。
光电探测二极管是一种基于PN结的半导体器件,一般可测量紫外光到红外光区域,现有的光电探测二极管一般为基于SiC、GaN、ZnO等材料的光电探测二极管,属于远紫外探测二极管,其探测波长一般小于220nm,目前的光电探测二极管仍存在诸多问题,如光吸收能力弱、紫外探测方面能力不强等。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
本发明的一个方面提供了一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法,包括:
在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层;
在所述金刚石层的上表面生长第一金属材料,形成光吸收层;
在所述SiC衬底的下表面生长第二金属材料,形成底电极;
在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管。
在本发明的一个实施例中,所述SiC衬底由N型4H-SiC或6H-SiC材料制成。
在本发明的一个实施例中,在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层,包括:
利用PECVD工艺,在所述SiC衬底的上表面生长掺杂N元素的SiC材料,形成所述同质外延层;
利用MOVPE工艺,在所述同质外延层的上表面生长掺杂N元素的InP材料,形成所述InP层;
利用HFCVD工艺,在所述InP层的上表面生长掺杂N、P、O或S元素的金刚石材料,形成所述金刚石层。
在本发明的一个实施例中,在所述金刚石层的上表面生长第一金属材料,形成光吸收层,包括:
采用第一掩膜板,利用磁控溅射工艺在所述金刚石层的上表面溅射Au材料,形成所述光吸收层。
在本发明的一个实施例中,在所述SiC衬底的下表面生长第二金属材料,形成底电极,包括:
利用磁控溅射工艺在所述SiC衬底的下表面生长第二金属材料;
在N2的气氛中,利用快速热退火工艺在所述SiC衬底与所述第二金属材料之间形成欧姆接触,以形成底电极。
在本发明的一个实施例中,利用磁控溅射工艺在所述SiC衬底的下表面生长第二金属材料,包括:
以Ti材料作为靶材,以Ar作为溅射气体,在所述SiC衬底的下表面溅射Ti材料。
在本发明的一个实施例中,在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管,包括:
采用第二掩膜版,利用磁控溅射工艺在所述光吸收层的上表面生长第三金属材料;
在N2和Ar的气氛中,利用快速热退火工艺在所述衬底与所述第三金属材料之间形成欧姆接触,以形成所述顶电极。
在本发明的一个实施例中,采用第二掩膜版,利用磁控溅射工艺在所述光吸收层的上表面生长第三金属材料,包括:
以Ni材料作为靶材,以Ar作为溅射气体,在所述SiC衬底的下表面生长Ni材料;
以Au材料作为靶材,以Ar作为溅射气体,在所述Ni材料的上表面溅射Au材料,形成Ni/Au叠层双金属材料。
本发明的另一方面提供了一种基于金刚石/InP/SiC双异质结的光电探测二极管,自下而上依次包括底电极、衬底、N型同质外延层、InP层、N型金刚石层、光吸收层和顶电极,其中,
所述N型同质外延层由掺杂N元素的SiC材料制成;所述InP层由掺杂N元素的P型InP材料制成,所述N型金刚石层由掺杂N、P、O或S元素的金刚石材料制成。
在本发明的一个实施例中,所述N型同质外延层(2)、所述InP层(3)和所述N型金刚石层(4)的厚度均为2-8μm。
与现有技术相比,本发明的有益效果在于:
1、本发明基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法将金刚石材料应用于光吸收层,该材料在日盲区的光透率极高,可达85%以上,甚至达到90%,非常适合应用于光吸收层,其透明导电的电学特性也有利于提高光吸收层的光吸收能力,能够大幅提高光电探测二极管的器件性能。
2、本发明的光电探测二极管通过SiC和lnP形成异质结,lnP和金刚石形成异质结,从而形成双异质结结构,形成双势垒,有效降低了低漏电流,大幅度提高了光电二极管的器件可靠性。
附图说明
图1是本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法流程图;
图2a-图2g为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备过程示意图;
图3为本发明实施例提供的一种第一掩膜版的结构示意图;
图4为本发明实施例提供的一种第二掩膜版的结构示意图;
图5为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的截面示意图;
图6为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的俯视示意图。
具体实施方式
下面结合具体实施例对本发明内容做进一步的描述,但本发明的实施方式不限于此。
实施例一
请一并参见图1、图2a至图2g、图3以及图4,图1是本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法流程图;图2a-图2g为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备过程示意图;图3为本发明实施例提供的一种第一掩膜版的结构示意图;图4为本发明实施例提供的一种第二掩膜版的结构示意图。本实施例的制备方法包括以下步骤:
S1:在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层;
具体地,所述S1包括:
S11:利用PECVD(等离子体增强化学气相沉积)工艺,在所述SiC衬底1的上表面生长掺杂N元素的SiC材料,形成所述同质外延层2,如图2b所示,在本实施例中,所述N元素的掺杂浓度为1016cm-3量级,N型同质外延层2的厚度可为2-8μm;
S12:利用MOVPE(金属有机气相外延)工艺,在所述同质外延层2的上表面生长掺杂N元素的InP材料形成所述InP层3,如图2c所示,在本实施例中,所述N元素的掺杂浓度为1016cm-3量级,InP层3的厚度可为2-8μm;
S13:利用HFCVD(热丝辅助化学气相沉积)工艺,在所述InP层3的上表面生长掺杂N、P、O或S元素的金刚石材料形成所述金刚石层4,如图2d所示,在本实施例中,所述N、P、O或S元素的掺杂浓度为1012cm-3量级,金刚石层4的厚可为2-8μm。
进一步地,在步骤S1之前,所述制备方法还包括:
S0:选取SiC衬底;
选取N型4H-SiC或N型6H-SiC材料作为所述衬底1,如图2a所示。在本实施例中,选取衬底的厚度可为100-400μm。进一步地,利用湿法清洗工艺对所述SiC衬底进行清洗。
接着,S2:在所述金刚石层的上表面生长第一金属材料形成光吸收层;
利用图3所示的第一掩膜版,并采用Ar作为溅射气体,采用磁控溅射工艺在所述金刚石层4的上表面溅射第一金属材料,形成光吸收层。在本实施例中,所述第一金属材料为Au金属。
具体地,溅射前,用高纯Ar(质量百分比为99.999%的Ar)对磁控溅射设备腔体进行5分钟清洗,然后抽真空;选用质量百分比>99.99%的Au为溅射靶材,同时以质量百分比为99.999%的Ar作为溅射气体通入溅射腔;在真空度为6×10-4-1.3×10-3Pa、Ar流量为20-30cm3/s、靶材基距为10cm以及工作功率为100W的条件下溅射Au材料,形成所述光吸收层7,光吸收层7的厚度可为25-95nm,如图2e所示。
此外,光吸收层7还可选用Ti、Au、Ni等材料。
S3:在所述SiC衬底的下表面生长第二金属材料,形成底电极;
所述S3包括:
S31:利用磁控溅射工艺在所述SiC衬底的下表面生长第二金属材料。
利用磁控溅射工艺,在包括SiC衬底1、所述同质外延层2、所述InP层3、所述金刚石层4及所述光吸收层7的整个衬底的下表面溅射所述第二金属材料。在本实施例中,所述第二金属材料为Ti材料。
具体地,溅射前,用质量百分比为99.999%的Ar对磁控溅射设备腔体进行5分钟清洗,然后抽真空;选用质量百分比>99.99%的Ti为溅射靶材,同时以质量百分比为99.999%的Ar作为溅射气体通入溅射腔;在真空度为6×10-4-1.3×10-3Pa、Ar流量为20-30cm3/s、靶材基距为10cm以及工作功率为100W的条件下溅射Ti材料。
S32:在N2的气氛中,利用快速热退火工艺在所述SiC衬底与所述第二金属材料之间形成欧姆接触,以形成底电极。
具体地,在N2的气氛中,采用快速热退火工艺,在800-1000℃温度下快速热退火3-10min,在所述SiC衬底与所述第二金属材料之间形成欧姆接触,以形成底电极5,底电极5的厚度可为180-240nm,如图2f所示。
S4:在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管。
所述S4包括:
S41:采用第二掩膜版,利用磁控溅射工艺在所述光吸收层的上表面生长第三金属材料。
在本实施例中,所述第三金属材料为Ni/Au叠层双金属材料。
利用图4所示的第二掩膜版,并采用Ar作为溅射气体,采用磁控溅射工艺在所述光吸收层的上表面溅射Ni/Au叠层双金属材料。
具体地,首先,在溅射前,用高纯Ar对磁控溅射设备腔体进行5分钟清洗,然后抽真空;选用质量百分比>99.99%的Ni为溅射靶材,并以质量百分比为99.999%的Ar作为溅射气体通入溅射腔;利用图6所示的第四掩膜版,在真空度为6×10-4-1.3×10-3Pa、Ar流量为20-30cm3/s、靶材基距为10cm以及工作功率为20W-100W的条件下溅射Ni材料,所述Ni材料的厚度为20nm-30nm。
进一步地,用高纯Ar对磁控溅射设备腔体进行5分钟清洗,然后抽真空;选用质量百分比>99.99%的Au为溅射靶材,以质量百分比为99.999%的Ar作为溅射气体通入溅射腔;利用图6所示的第四掩膜版,在真空度为6×10-4-1.3×10-3Pa、Ar流量为20-30cm3/s、靶材基距为10cm以及工作功率为20W-100W的条件下,在Ti材料的上表面溅射Au材料,形成Ti/Au叠层双金属材料,其中,所述Au材料的厚度为150nm-250nm。
S42:在N2和Ar的气氛中,利用快速热退火工艺在所述衬底与所述第三金属材料之间形成欧姆接触,以形成所述顶电极。
具体地,在N2和Ar的气氛中,采用快速热退火工艺,在800-1000℃温度下快速热退火3-10min,在所述衬底与所述第三金属材料之间形成欧姆接触,以形成所述顶电极6,顶电极6的厚度为150-300nm,如图2g所示。
此外,顶电极6可以为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或者由ITO(导电玻璃)等导电性化合物形成。另外,顶电极6还可以具有由不同的2种以上金属构成的2层结构,例如Au/Ti。底电极5可以为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或由ITO等导电性化合物形成。另外,底电极5还可以具有由不同的2种及以上金属构成的2层结构,例如Au/Ti叠层双金属材料。
此外,上述实施例中所使用的第一掩膜版和第二掩膜版可以为光刻掩膜版。
另外,需要重点强调的是,步骤S3和步骤S4中的底电极和顶电极的制备流程并不固定。可以先进行底电极的制备,也可以先进行顶电极的制备,此处不做任何限制。
本发明基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法将金刚石材料应用于光吸收层,该材料在日盲区的光透率极高,可达85%以上,甚至达到90%,非常适合应用于光吸收层,其透明导电的电学特性也有利于提高光吸收层的光吸收能力,能够大幅提高光电探测二极管的器件性能。
实施例二
请参见图5和图6,图5为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的截面示意图;图6为本发明实施例提供的一种基于金刚石/InP/SiC双异质结的光电探测二极管的俯视示意图。本实施例的基于金刚石/InP/SiC双异质结的光电探测二极管自下而上依次包括底电极5、衬底1、N型同质外延层2、InP层3、N型金刚石层4、光吸收层7和顶电极6,其中,N型同质外延层2由掺杂N元素的SiC材料制成;InP层3由掺杂N元素的P型InP材料制成,N型金刚石层4由掺杂N、P、O或S元素的金刚石材料制成。
进一步地,在本实施例中,衬底1由N型4H-SiC或6H-SiC材料制成,N型同质外延层2由掺杂N元素且掺杂浓度为1016cm-3量级的SiC材料制成;InP层3由掺杂N元素且掺杂浓度为1016cm-3量级的P型InP材料制成,N型金刚石层4由掺杂N、P、O或S且掺杂浓度为1012cm-3量级的金刚石材料制成,光吸收层7由Ti、Au或Ni材料制成。底电极5由Au、Al或Ti制成,顶电极6由Au材料和Ti材料重叠的双金属材料制成。
进一步地,衬底1的厚度为100-400μm,N型同质外延层2、InP层3和N型金刚石层4的厚度均为2-8μm,光吸收层7的厚度为25-95nm,底电极5的厚度为180-240nm,顶电极6的厚度为150-300nm。
此外,顶电极6可以为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或者由ITO(导电玻璃)等导电性化合物形成。其中,Au、Ag、Pt化学性质稳定;Al、Ti、Ni成本低。另外,顶电极6还可以具有由不同的2种以上金属构成的2层结构,例如Au/Ti。底电极5可以为Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属材料、包含这些金属中2种以上合金或由ITO等导电性化合物形成。另外,底电极5还可以具有由不同的2种及以上金属构成的2层结构,例如Au/Ti叠层双金属材料。
本实施例的光电探测二极管采用了双异质结结构,形成双势垒,可有效降低低漏电流,从而大幅提高光电二极管的器件可靠性,且随着在SiC衬底上进行同质外延以及InP层的生长工艺的逐渐成熟,加上金刚石薄膜的生长工艺的日渐完善,本发明的实用性也逐渐提高。另外,本实施例的光电探测二极管将金刚石材料应用于光吸收层,充分发挥其在紫外光探测方面的优异性能,该材料在日盲区的光透率极高,非常适合应用于光吸收层,从而大幅提高光电探测二极管的器件性能。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种基于金刚石/InP/SiC双异质结的光电探测二极管的制备方法,其特征在于,包括:
在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层;
在所述金刚石层的上表面生长第一金属材料,形成光吸收层;
在所述SiC衬底的下表面生长第二金属材料,形成底电极;
在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管。
2.根据权利要求1所述的制备方法,其特征在于,所述SiC衬底由N型4H-SiC或6H-SiC材料制成。
3.根据权利要求1所述的制备方法,其特征在于,在SiC衬底的上表面连续生长同质外延层、InP层以及金刚石层,包括:
利用PECVD工艺,在所述SiC衬底的上表面生长掺杂N元素的SiC材料,形成所述同质外延层;
利用MOVPE工艺,在所述同质外延层的上表面生长掺杂N元素的InP材料,形成所述InP层;
利用HFCVD工艺,在所述InP层的上表面生长掺杂N、P、O或S元素的金刚石材料,形成所述金刚石层。
4.根据权利要求1所述的制备方法,其特征在于,在所述金刚石层的上表面生长第一金属材料,形成光吸收层,包括:
采用第一掩膜板,利用磁控溅射工艺在所述金刚石层的上表面溅射Au材料,形成所述光吸收层。
5.根据权利要求1所述的制备方法,其特征在于,在所述SiC衬底的下表面生长第二金属材料,形成底电极,包括:
利用磁控溅射工艺在所述SiC衬底的下表面生长第二金属材料;
在N2的气氛中,利用快速热退火工艺在所述SiC衬底与所述第二金属材料之间形成欧姆接触,以形成底电极。
6.根据权利要求5所述的制备方法,其特征在于,利用磁控溅射工艺在所述SiC衬底的下表面生长第二金属材料,包括:
以Ti材料作为靶材,以Ar作为溅射气体,在所述SiC衬底的下表面溅射Ti材料。
7.根据权利要求1所述的制备方法,其特征在于,在所述光吸收层的上表面生长第三金属材料,形成顶电极,从而制备出所述基于金刚石/InP/SiC双异质结的光电探测二极管,包括:
采用第二掩膜版,利用磁控溅射工艺在所述光吸收层的上表面生长第三金属材料;
在N2和Ar的气氛中,利用快速热退火工艺在所述衬底与所述第三金属材料之间形成欧姆接触,以形成所述顶电极。
8.根据权利要求7所述的制备方法,其特征在于,采用第二掩膜版,利用磁控溅射工艺在所述光吸收层的上表面生长第三金属材料,包括:
以Ni材料作为靶材,以Ar作为溅射气体,在所述SiC衬底的下表面生长Ni材料;
以Au材料作为靶材,以Ar作为溅射气体,在所述Ni材料的上表面溅射Au材料,形成Ni/Au叠层双金属材料。
9.一种基于金刚石/InP/SiC双异质结的光电探测二极管,其特征在于,自下而上依次包括底电极(5)、衬底(1)、N型同质外延层(2)、InP层(3)、N型金刚石层(4)、光吸收层(7)和顶电极(6),其中,
所述N型同质外延层(2)由掺杂N元素的SiC材料制成;所述InP层(3)由掺杂N元素的P型InP材料制成,所述N型金刚石层(4)由掺杂N、P、O或S元素的金刚石材料制成。
10.根据权利要求9所述的光电探测二极管,其特征在于,所述N型同质外延层(2)、所述InP层(3)和所述N型金刚石层(4)的厚度均为2-8μm。
CN201810906340.9A 2018-08-10 2018-08-10 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法 Active CN109326682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810906340.9A CN109326682B (zh) 2018-08-10 2018-08-10 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810906340.9A CN109326682B (zh) 2018-08-10 2018-08-10 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN109326682A true CN109326682A (zh) 2019-02-12
CN109326682B CN109326682B (zh) 2020-07-31

Family

ID=65264271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810906340.9A Active CN109326682B (zh) 2018-08-10 2018-08-10 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN109326682B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120119203A1 (en) * 2010-11-11 2012-05-17 Jizhi Zhang GROUP IV ELEMENT DOPED P-TYPE Zn(Mg,Cd,Be)O(S,Se) SEMICONDUCTOR
US20140367824A1 (en) * 2011-09-29 2014-12-18 The Govemment of the United States of America, as represented by the Secretary of the Navy Graphene on Semiconductor Detector
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120119203A1 (en) * 2010-11-11 2012-05-17 Jizhi Zhang GROUP IV ELEMENT DOPED P-TYPE Zn(Mg,Cd,Be)O(S,Se) SEMICONDUCTOR
US20140367824A1 (en) * 2011-09-29 2014-12-18 The Govemment of the United States of America, as represented by the Secretary of the Navy Graphene on Semiconductor Detector
CN106449894A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D COQUILLAT等: "InP Double Heterojunction Bipolar Transistor for broadband terahertz detection and imaging systems", 《JOURNAL OF PHYSICS: CONFERENCE SERIES》 *

Also Published As

Publication number Publication date
CN109326682B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN106449894B (zh) 基于双异质结的Ga2O3/GaN/SiC光电探测二极管及其制备方法
CN106409987B (zh) 基于Ir2O3/Ga2O3的深紫外APD探测二极管及其制作方法
CN107302054B (zh) 双异质结光探测器及其制备方法
CN103928532B (zh) 一种碳化硅沟槽mos结势垒肖特基二极管及其制备方法
US8257561B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN103077963B (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
CN107644939B (zh) 宽谱响应光电探测器及其制备方法
CN107425090B (zh) 垂直型光电探测器及其制备方法
Arora et al. Sputtered-growth of high-temperature seed-layer assisted β-Ga2O3 thin film on silicon-substrate for cost-effective solar-blind photodetector application
Ilican et al. XPS Studies of Electrodeposited Grown F‐Doped ZnO Rods and Electrical Properties of p‐Si/n‐FZN Heterojunctions
CN101409311B (zh) 一种硅基双异质结可见盲紫外探测器及其制造方法
Bosio et al. A metal-oxide contact to ε-Ga2O3 epitaxial films and relevant conduction mechanism
Wang et al. The effect of Ga-doped nanocrystalline ZnO electrode on deep-ultraviolet enhanced GaN photodetector
CN101030533A (zh) ZnO金属肖特基接触的制备方法及其在紫外探测器中的应用
Kuo et al. Low operation voltage of nitride-based LEDs with Al-doped ZnO transparent contact layer
CN109166935A (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
CN110265500B (zh) 一种4H-SiC像素肖特基辐射探测器及其制备方法
CN109326682A (zh) 基于金刚石/InP/SiC双异质结的光电探测二极管及其制备方法
KR20130068448A (ko) 발광다이오드
CN109244179A (zh) 基于金刚石/SiC异质结构的光电NPN晶体管及其制备方法
CN104124282B (zh) 一种Si/NiO:Na异质pn结二极管
CN105449029B (zh) 一种采用单肖特基结构的氧化锌紫外雪崩探测器
Chen et al. Effects of preparation parameters on growth and properties of β-Ga2O3 film
Sheu et al. Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant