CN109308907A - 单信道降噪 - Google Patents

单信道降噪 Download PDF

Info

Publication number
CN109308907A
CN109308907A CN201810832737.8A CN201810832737A CN109308907A CN 109308907 A CN109308907 A CN 109308907A CN 201810832737 A CN201810832737 A CN 201810832737A CN 109308907 A CN109308907 A CN 109308907A
Authority
CN
China
Prior art keywords
noise
signal
block
mask
pectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810832737.8A
Other languages
English (en)
Other versions
CN109308907B (zh
Inventor
M.克里斯托弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Harman Becker Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Becker Automotive Systems GmbH filed Critical Harman Becker Automotive Systems GmbH
Publication of CN109308907A publication Critical patent/CN109308907A/zh
Application granted granted Critical
Publication of CN109308907B publication Critical patent/CN109308907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Noise Elimination (AREA)

Abstract

本公开涉及降噪***和降噪方法。降噪***包括:检测器块,所述检测器块被配置成基于输入信号的信噪比频谱而检测所述输入信号中的噪声分量;以及掩蔽块,所述掩蔽块可操作地与所述检测器块耦合,并且被配置成生成最终频谱噪声去除掩码并在检测到所述输入信号中的噪声分量的情况下将所述最终频谱噪声去除掩码应用到所述输入信号,所述最终频谱噪声去除掩码被配置成在应用时抑制所述输入信号中的所述噪声分量。

Description

单信道降噪
技术领域
本公开涉及单信道降噪***和方法(一般称为“***”)。
背景技术
用于远场声音捕获的***(也被称为远场麦克风或远场麦克风***)适于记录来自定位在距远场麦克风较远的距离(例如,几米)处的期望声源的声音。声源与远场麦克风之间的距离越大,期望声音噪声比越低。术语“噪声”在本案中包括不携带信息、想法或情绪的声音,例如,没有语音或音乐的声音。如果噪声是不期望的,那么它也被称为噪声。当语音或音乐被引入充满噪声的环境(诸如车辆、家庭或办公室内部的)中时,内部存在的噪声可能对期望的语音通信或音乐呈现有不期望的干扰影响。降噪通常是不期望信号的衰减,但是也可包括期望信号的放大。期望信号可以是语音信号,而不期望信号则可以是环境中干扰期望信号的任何声音。已经结合降噪来使用了三种主要方法:定向波束成形、频谱减法和基于音高的语音增强。设计用于接收空间上传播的信号的***通常遇到干扰信号的存在。如果期望信号和干扰源占用相同的时间频带,那么就不能使用时间滤波来将期望信号与干扰信号分离。期望改进降噪***和方法。
发明内容
一种降噪***包括:检测器块,所述检测器块被配置成基于输入信号的信噪比频谱而检测所述输入信号中的噪声分量;以及掩蔽块,所述掩蔽块可操作地与所述检测器块耦合,并且被配置成生成最终频谱噪声去除掩码并在检测到所述输入信号中的噪声分量的情况下将所述最终频谱噪声去除掩码应用到所述输入信号,所述最终频谱噪声去除掩码被配置成在应用时抑制所述输入信号中的所述噪声分量。
一种降噪方法包括:基于输入信号的信噪比频谱而检测所述输入信号中的噪声分量;以及成最终频谱噪声去除掩码并在检测到所述输入信号中的噪声分量的情况下将所述最终频谱噪声去除掩码应用到所述输入信号,所述最终频谱噪声去除掩码被配置成在应用时抑制所述输入信号中的所述噪声分量。
在查阅以下详细描述和随附附图后,其它***、方法、特征和优点将对本领域的技术人员显而易见。所有这些额外的***、方法、特征和优点旨在包括在本说明书内,在本发明的范围内,并且由所附权利要求书保护。
附图说明
参考以下附图和描述可更好地理解所述***。在附图中,相似参考数字在各个不同视图中指示对应部分。
图1是示出示例性远场麦克风***的示意图。
图2是示出可适用于图1中所示的远场麦克风***的示例性声学回声消除器的示意图。
图3是示出示例性滤波和求和波束成形器的示意图。
图4是示出示例性波束操纵块的示意图。
图5是示出具有自适应后置滤波器且没有自适应阻挡滤波器的示例性自适应干扰消除器的简化结构的示意图。
图6是示例性单信道降噪***的示意图。
附图描述在一个或多个结构部件的上下文中的概念。附图中所示的各种部件可以以任何方式实现,包括例如在适当硬件、硬件和其任何组合上执行的软件或固件程序代码。在一些实例中,各种部件可以反映在实际实现方式中对对应部件的使用。某些部件可以分解为多个子部件,并且某些部件可以以与本文所示的顺序不同的顺序(包括并行方式)实现。
具体实施方式
已经发现,期望信号和干扰信号通常源自不同的空间位置。因此,波束成形技术可以用于改进音频应用中的信噪比。常见波束成形技术包括延迟和求和技术、使用算法(诸如Griffiths-Jim算法)的自适应有限脉冲响应(FIR)滤波技术以及基于人类双耳听觉***的建模的技术。
波束成形器可以根据对权重的选择方式而分类为数据独立或统计上最佳的。数据独立的波束成形器中的权重不依赖于阵列数据,并且被选择为针对所有信号/干扰情景呈现指定响应。统计上最佳的波束成形器基于对数据的统计来选择权重以优化波束成形器响应。数据统计通常是未知的并且可能随时间而变化,因此使用自适应算法来获得收敛到统计上最优的解的权重。计算考虑要求使用具有由大量传感器组成的阵列的部分地自适应的波束成形器。已提出了许多不同的方法来实现最佳的波束成形器。一般,统计上最佳的波束成形器在干扰源的方向上放置零点,试图将波束成形器输出端处的信噪比最大化。
在许多应用中,期望信号可能具有未知强度并且可能不总是存在的。在此类情况下,就不可能正确估计最大信噪比(SNR)中的信号和噪声协方差矩阵。缺乏有关于期望信号的知识可能妨碍利用参考信号方法。可以通过将线性约束应用于加权矢量来克服这些限制。线性约束的使用是非常通用的方法,其允许对波束成形器的自适应响应进行广泛控制。并不存在通用线性约束设计方法,并且在许多应用中,不同类型的约束技术的组合可能是有效的。然而,试图找到单个最佳方式或设计线性约束的不同方式的组合可能限制依赖于波束成形应用的线性约束设计的技术的使用。
广义旁瓣消除器(GSC)技术提出用于解决与波束成形应用的线性约束设计技术相关联的缺点的替代方案。在本质上,GSC是用于将受约束的最小化问题改变成无约束的形式的机制。GSC使来自某个方向的期望信号未失真,同时抑制从其它方向辐射的不期望信号。然而,GSC使用双路径结构;用于实现指向期望信号的方向的固定波束成形器的期望信号路径;以及自适应地生成理想地纯噪声估计的不期望信号路径,理想地纯噪声估计从固定波束成形器的输出信号中减去,从而通过抑制噪声来增大其信噪比(SNR)。
不期望信号路径,即,噪声估计,可以以两部分式方式实现。不期望信号路径的第一块被配置成从此块的输入信号移除或阻挡期望信号的剩余分量,此块在单个输入的情况下例如是自适应阻挡滤波器,或在使用多于一个输入信号的情况下是自适应阻挡矩阵。不期望信号路径的第二块还可包括自适应(多信道)干扰消除器(AIC),以便生成单信道估计的噪声信号,然后从期望信号路径的输出信号(例如,固定波束成形器的任选地时延的输出信号)减去单信道估计的噪声信号。因此,可以抑制固定波束成形器的任选地时延的输出信号中含有的噪声,从而导致更好的SNR,因为期望信号分量理想地不受到此处理的影响。这在且仅在噪声估计内的所有期望信号分量可成功地被阻挡的情况下才成立,在实践中,这种情况很少出现,并且因此表示与当前自适应波束成形算法相关的主要缺点中的一个。
可以例如通过从总声音信号中减去经估计的回声信号来实现声学回声消除。为了提供对实际回声信号的估计,已开发了在时域中操作且可采用处理时间离散信号的自适应数字滤波器的算法。此类自适应数字滤波器以参考预设的质量函数来优化限定滤波器的传输特性的网络参数的方式操作。例如通过参考参考信号来最小化自适应网络的输出信号的均方误差来实现这个质量函数。
现在参考图1,在示例性远场声音捕获***中,来自期望声源101的对应于源信号x(n)(其中n是(离散)时间指数)的声音经由一个或多个扬声器(未示出)辐射,行进穿过房间(未示出),在那里用由传递函数h1(z)……hM(z)(其中z是频率指数)表示的对应房间脉冲响应(RIR)100进行滤波,并且在由提供M个麦克风信号的M个(M是整数,例如,2、3或更大)麦克风拾取所得声音信号之前,可最终由噪声破坏。图1中所示的示例性远场声音捕获***包括提供M个回声消除信号x1(n)……xM(n)的声学回声消除(AEC)块200、提供B个(B是整数,例如,1、2或更大)波束成形信号b1(n)……bB(n)的后续的固定波束成形器(FB)块300、提供期望源波束信号b(n)(在本文中也被称为正波束输出信号b(n))和任选地不期望源波束信号bn(n)(在本文中也被称为负波束输出信号bn(n))的后续的波束操纵块400。块100、200、300和400可操作地彼此耦合以在块100和块400之间形成至少一个信号链(信号路径)。可操作地与波束操纵块400的输出耦合且被供应有不期望源波束信号bn(n)的任选的不期望信号(负波束)包括任选的自适应阻挡滤波器(ABF)块500和后续的自适应干扰消除器(AIC)块600,(AIC)块可操作地与ABF块500耦合。ABF块500可以提供误差信号e(n)。或者,原始M个麦克风信号或AEC块200的M个输出信号或FB块300的B个输出信号可以用作ABF块500的输入信号(任选地覆盖有不期望源波束信号bn(n))以建立任选的多信道自适应阻挡矩阵(ABM)块以及任选的多信道AIC块。
也可操作地与波束操纵块400耦合且被供应有期望源波束信号b(n)的期望信号(正波束)路径包括串联连接的任选的延迟块102、减法器块103和(自适应)后置滤波器块104。自适应后置滤波器104接收减法器块103的输出信号和来自AIC块600的控制信号。任选的语音暂停检测器(未示出)可连接到自适应后置滤波器块104并在其下游,并且可连接到降噪(NR)块105和任选的自动化增益控制(AGC)块106,块中的每一个(如果存在)可连接在语音暂停检测器上游。要注意,AEC块200不是如图所示连接在FB块300上游,而是可连接在其下游,如果B<M,即,相较麦克风来说可用的波束成形器块更少,这就可能是有益的。另外,AEC块200可以分成多个子块(未示出),例如,用于每个麦克风信号的短长度子块和在BS块400下游的用于期望源波束信号的长长度子块(未示出)以及任选地用于不期望源波束信号的另一长长度子块(未示出)。另外,***不仅适用于仅具有如图所示的一个源的情况,而且可适用于与多个源结合地使用。例如,如果采用提供两个不相关信号的立体声源,那么AEC块可以由立体声学回声消除器(SAEC)块(未示出)代替。
如从图1可以看出,通过N×M个RIR滤波且可能被噪声干扰的N(=1)源信号x(n)用作AEC块200的输入。图2描绘了单个麦克风(206)、单个扬声器(205)、AEC块200的示例性实现。如本领域的技术人员将理解和了解,这种配置可扩展成包括多于一个麦克风206和/或多于一个扬声器205。由源信号x(n)表示的远端信号经由扬声器205行进通过具有传递函数(矢量)h(n)=(h1,…,hM)的回声路径201以提供回声信号xe(n)。此信号在求和节点209处被添加到近端信号v(n),近端信号可以含有背景噪声和近端语音,从而生成电麦克风(输出)信号d(n)。由自适应滤波器块202提供的经估计的回声信号在减法节点203处从麦克风信号d(n)中减去以提供误差信号eAEC(n)。自适应滤波器202被配置成最小化误差信号eAEC(n)。
具有阶数L-1的传递函数的FIR滤波器202(其中L是FIR滤波器的长度)用于对回声路径进行建模。传递函数被给出为
在块203处用于自适应滤波器的期望麦克风信号d(n)被给出为
d(n)=xT(n)h(n)+v(n),
其中x(n)=[x(n)x(n-1)...x(n-L+1)]T是含有输入信号x(n)的L个(L是整数)最近时间样本的实值矢量,并且v(n)(即,近端信号)可以包括噪声。
使用先前的符号,反馈/回声误差信号被给出为
其中矢量h(n)和含有表示声学回声路径的滤波器系数和其在时间n上通过自适应滤波器系数进行的估计。消除滤波器使用例如最小均方(LMS)算法或任何现有技术的递归算法来估计。使用LMS类型算法的步长μ(n)的LMS更新可表达为
一种简单而有效的波束成形技术是延迟和求和(DS)技术。再次参考图1,AEC块200的输出用作固定波束成形器块300的输入xi(n),其中i=1、……、M。图3中示出了固定滤波器和求和(FS)波束成形器块300的一般结构,包括具有传递函数wi(L)中的至少一个的滤波器块302,i=1、……、M,并且wi(L)=[wi(0),……,wi(L-1)],L是FB内的滤波器的长度。如果滤波器块302实现期望(实际)延迟,那么输出波束成形器信号bj(n)(j=1、……、B)被给出为
其中M是麦克风的数量,并且对于每个(固定)波束成形器输出信号bj(n),在j=1、……、B的情况下,每个麦克风具有相对于彼此的延迟τi,j。FS波束成形器可以包括加法器301,加法器经由具有传递函数wi(L)的滤波器块302接收输入信号xi(n)。
再次参考图1,由固定FS波束成形器块300输出的波束成形器信号bj(n)用作波束操纵(BS)块400的输入。来自固定波束成形器块300的每个信号取自不同的房间方向,并且可以具有不同的SNR水平。波束操纵块400的输入信号bj(n)可以含有低频分量,在语音信号的情况下诸如低频震荡、直流(DC)偏移和不想要的话音发声。这些伪像可能影响BS块400的输入信号bj(n)并且应被去除。
或者,指向不期望信号(例如,噪声)源的波束(即,不期望信号波束)可以基于指向期望声源的波束(即,期望信号波束)而通过使其指向与指向期望声源的波束相反的方向来近似,这将产生使用较少的资源的***以及具有完全相同的时间变化的波束。另外,这允许了两个波束绝不指向相同方向。
作为另一替代方案,替代仅使用指向期望源方向的波束(正波束),此波束与其相邻波束的总和可以用作正波束输出信号,因为它们全都含有高电平的期望信号,高电平的期望信号彼此相关并因此将通过求和来放大。另一方面,三个相邻波束中含有的噪声部分彼此无关并因此将通过求和来抑制。因此,三个相邻波束的最终输出信号将改进SNR。
可另选地通过使用所有FB块的除表示正波束的输出信号之外的输出信号来生成指向不期望源方向(负波束)的波束。这产生了在期望信号源的方向上具有空间0的有效的方向响应。否则,可以应用全向字符,这就可能是有益的,因为噪声通常也以全向方式进入麦克风阵列,并且很少呈定向的形式。
另外,来自BS块的任选地延迟的期望信号可以形成输出信号的基础,并且因此输入到任选的自适应后置滤波器中。由AIC块控制且递送经滤波的输出信号的自适应后置滤波器可以任选地输入到可实现已知的频谱减法的后续的单信道降噪块(例如,图1中的NR块105)和任选的(例如,最终的)自动化增益控制块(例如,图1中的AGC块106)中。
参考图4,在波束操纵块400中,其输入信号bj(n)使用高通(HP)滤波器和任选的低通(LP)滤波器块401来进行滤波,以便阻挡受噪声影响或不含有有用信号分量(例如,某些语音信号分量)的信号分量。来自滤波器块401的输出可能因噪声而具有幅度变化,这可能会在信号bj(n)内的各点间引入快速随机幅度变化。在此情况下,降噪可能是有用的(例如,在图4中所示的平滑块402中)。
通过在平滑块402中应用例如低通无限脉冲响应(IIR)滤波器或移动平均(MA)有限脉冲响应(FIR)滤波器(均未示出)来平滑来自滤波器块401的滤波信号,从而减少高频分量并几乎无变化地传送低频分量。平滑块402输出平滑信号,平滑信号仍可含有某种级别的噪声,并且因此可能导致如上所述的值得注意的明显间断。语音信号的电平典型地明显地不同于背景噪声的电平的变化,特别是由于语音信号的电平变化的动态范围更大并且发生在比背景噪声的电平变化短得多的间隔中的事实。因此,噪声估计块403中的线性平滑滤波器将涂抹掉期望信号(例如,音乐或话音信号)的急剧变化,并且滤除噪声。在许多应用中,对音乐或语音信号的这种涂抹是不可接受的,因此可以将非线性平滑滤波器(未示出)应用于噪声估计块403中的平滑信号以克服上述伪像。平滑块402的输出信号bj(n)中的数据点被修改为使得比紧邻点高(可能是由于噪声)的单独点减少,并且比相邻点低的各个点增加。这导致了更平滑的信号(以及对信号变化的更缓慢的阶跃响应)。
接着,基于来自平滑块402的平滑信号和来自噪声估计块403的经估计的背景噪声信号,计算SNR值的变化。使用SNR的变化,可以将噪声源与期望语音或音乐信号区分开。例如,低SNR值可以表示各种噪声源,诸如空调、风扇、开窗或电气装置(诸如计算机等)。可以在时域中或在时域中或在子带频域中估计SNR。
在比较器块405中,将来自块404的输出SNR值与预定阈值进行比较。如果当前SNR值大于预定阈值,那么指示例如期望语音信号的标志将被设定为例如‘1’。或者,如果当前SNR值小于预定阈值,那么指示不期望信号(诸如来自空调、风扇、开窗或电气装置(诸如计算机)的噪声)的标记将被设定为‘0’。
来自块404和405的SNR值经由路径#1到路径#B而传送到控制器块406。控制器块406将随时间而收集的多个SNR(低和高两者)值的指数与比较器块405中的状态标志进行比较。在预定时段内收集最大值和最小值的直方图。直方图中的最小值和最大值表示至少两个不同的输出信号。至少一个信号指向由S(n)表示的期望源,并且至少一个信号指向由I(n)表示的干扰源。
如果控制器块406中的低和高SNR值的指数随时间而变化,那么发起淡入淡出过程,其允许了从一个输出信号到另一输出信号的平滑迁跃,而不生成声学伪像。BS块400的输出表示随时间而选择的期望信号和任选地不期望信号波束。在此,期望信号波束表示具有最高SNR的固定波束成形器输出b(n)。任选的不期望波束表示具有最低SNR的固定波束成形器输出bn(n)。
BS块400的输出含有具有高SNR(正波束)的信号(其可以由任选的自适应阻挡滤波器(ABF)块500用作参考)和具有低SNR的任选的信号,从而形成用于任选的ABF块500的第二输入信号。ABF滤波器块500可以使用最小均方(LMS)算法控制的滤波器来自适应地从信号bn(n)(表示不期望源波束)中减去由参考信号b(n)(表示期望源波束)表示的感兴趣信号,并且提供误差信号.。从ABF块500获得的误差信号被传递到自适应干扰消除器(AIC)块600,(AIC)块自适应地去除与来自在期望信号路径中的固定波束成形器300的波束成形器输出的误差信号相关的信号分量。如已提到,其它信号可另选地或另外地用作ABM块的输入。然而,可以部分地或完全地省略包括任选的ABM、AIC和APF块的自适应波束成形器块。
首先,AIC块600使用自适应滤波器(未示出)计算干扰信号。然后,例如通过减法器块103从任选地延迟的(具有延迟102)参考信号b(n)中减去此自适应滤波器的输出来消除参考信号b(n)中的剩余干扰和噪声分量。最后,自适应后置滤波器104可以设置在减法器块103的下游以用于减少统计噪声分量(不具有不同的自相关)。如在ABF块500中那样,可以使用自适应LMS算法来更新AIC块600中的滤波器系数。可以约束AIC块600、ABF块500和AEC块中的至少一个中的滤波器系数的范数以防止它们变得过大。
图5示出了用于从期望源波束(正波束)信号b(n)中消除噪声的示例性***。因此,包括在信号b(n)中的噪声分量(由图5中的信号z(n)表示)由自适应***提供,自适应***包括滤波器控制块700,滤波器控制块通过滤波器控制信号来控制可控制滤波器800。通过减法器块103从期望信号b(n)中减去信号b(n),这任选地在延迟块102中延迟作为经延迟的期望信号b(n-γ)之后进行,以提供加法器输出信号,加法器输出信号在一定程度上含有减少的不期望噪声。表示不期望信号波束并理想地仅含有噪声而没有有用信号(诸如语音)的信号bn(n)用作滤波器控制块700的参考信号,滤波器控制块还接收加法器输出信号作为输入。已知的归一化最小均方(NLMS)算法可以用于从由BS块400提供的期望信号b(n)中滤除噪声。期望信号b(n)中的噪声分量由包括滤波器控制块700和可控制滤波器800的自适应***估计。可控制滤波器800在滤波器控制块700的控制下滤除不期望信号bn(n)以提供对期望信号b(n)中含有的噪声的估计,在减法器块103中从(任选地)延迟的期望信号b(n-γ)中减去该估计以进一步减少期望信号b(n)中的噪声。这继而将增加期望信号b(n)的信噪比(SNR)。来自滤波器控制块700的滤波器控制信号还用于控制自适应后置滤波器104。图5中所示的***不采用任选的ABF或ABM块,因为如果相较期望信号来说,它对提高纯噪声信号的质量几乎没有影响,那么可以省略由ABF或ABM块执行的对不期望信号的信号分量的附加的阻挡。因此,根据不期望信号bn(n)的质量在不降低自适应波束成形器的性能的情况下省略ABF或ABM块可以是合理的。
再次参考图1,来自APF块104的输出信号可以形成NR块105的输入信号n(n)。示例性NR块可应用为NR块105或可应用于任何其它应用或用作以下结合图6描述的自治***。在图6中所示的NR块中,讲输入信号n(n)供应到频谱变换块601,其中频谱变换块从时域变换到谱域,即,例如通过快速傅里叶变换(FFT)来变换成频谱输入信号N(ω)。将频谱输入信号N(ω)供应到任选的频谱平滑块602以进行频谱平滑。根据是否存在任选的频谱平滑块602,后续的时间平滑块603连接到任选的频谱平滑块602(如图所示)或连接到频谱变换块601(未示出)。平滑信号可以包括对信号进行滤波以捕获信号中的重要模式,而省去嘈杂、精细尺度和/或快速变化的模式。
背景噪声估计块604连接到时间平滑块603并在其下游,并且可以利用允许确定或估计输入信号n(n)中含有的背景噪声的任何已知的方法。在所示实例中,要估计的信号(即,频谱输入信号N(ω)在谱域中,使得背景噪声估计块604被设计为在谱域中操作。
在连接到背景噪声估计块604并在其下游的频谱信噪比确定(计算)块605中,处理输入到背景噪声估计块604中的信号和由背景噪声估计块输出的信号,以提供频谱信噪比SNR(ω)。例如,频谱信噪比确定块605可以将输入到背景噪声估计块604中的信号除以由背景噪声估计块604输出的信号来确定频谱信噪比SNR(ω)。
在连接到频谱信噪比确定块605并在其下游的第一估计块606中,将在谱域中的经估计的信噪比SNR(ω)与(例如,在预定频带内)预定信噪比阈值SNRTH进行比较。如果经估计的信噪比SNR(ω)超过信噪比阈值SNRTH,那么由第一估计块606输出的加权掩码(ω被设定为预定最大信噪比值,例如,高估因子MaxSnrTh。否则,加权掩码I(ω)可以被设定为恒定值,例如,1。第一估计块606还输出通过将经估计的信噪比SNR(ω)除以信噪比阈值SNRTH从经估计的信噪比SNR(ω)得到的信噪比掩码SnrMask(ω)。
在连接到第一估计块606并在其下游的噪声阻挡块607中,来自第一估计块606的SNR驱动的掩码(在此是信噪比掩码SnrMask(ω))例如通过将信噪比掩码SnrMask(ω)乘以来自第一估计块606的加权掩码I(ω)来修改以生成修改一次的SNR掩码SnrMask'(ω)。
在连接到噪声阻挡块607并在其下游的任选的第二估计块608中,将经修改的SNR掩码SnrMask'(ω)与最小阈值MINTH进行比较。如果经修改的SNR掩码SnrMask'(ω)超过最小阈值MINTH,那么修改两次的SNR掩码SnrMask”(ω)被设定为最小阈值MINTH,否则修改一次的SNR模板SnrMask'(ω)被输出为修改两次的SNR掩码SnrMask”(ω)。
在连接到第二估计块608并在其下游的第三估计块609中,修改两次的SNR掩码SnrMask”(ω)的p范数用来生成修改三次的(最终的)SNR掩码SnrMask”'(ω)。在连接到块601和609并在其下游的掩码应用块610中,修改三次的SNR掩码SnrMask”'(ω)作为噪声阻挡掩码而应用于频谱输入信号N(ω)。在掩码应用块610中,修改三次的SNR掩码SnrMask”'(ω)可以与频谱输入信号N(ω)相乘以提供频谱输出信号Y(ω)。将频谱输出信号Y(ω)供应到后续的频谱变换块611,在那里,它从频域变换回时域,即,例如通过快速傅里叶逆变换(IFFT)来变换成时域输入信号y(n)。
在图6中所示的单信道降噪***的第一个块中,估计频域中的SNR,即,频谱SNR,然后将其与预定SNR阈值SNRTH进行比较。根据此比较的结果,如果当前频谱SNR(ω)没有超过给定SNR阈值SNRTH,那么生成加权掩码I(ω),其值可以被设定为1的中性权重。否则,加权掩码I(ω)可以被设定为(可调节的)高估因子MaxSnrTh,其可以大于或等于1,即,MaxSnrTh≥0[dB]。在侧路径中,当前估计的频谱SNR值SNR(ω)可以通过给定SNR阈值SNRTH来缩放,这产生了期望掩码
接着,掩码将乘以加权掩码I(ω)的权重来得到其修改一次的频谱SNR掩码SnrMask'(ω),即
因此,生成含有频谱部分的高估值的频谱加权掩码。此频谱加权掩码的频谱部分包括由超出给定SNR阈值SNRTH的频谱SNR值SNR(ω)指示的语音信号,以及例如从频谱减法中得知并能够抑制比给定SNR阈值SNRTH低的频谱部分的SNR驱动的频谱权重。权重的大小直接地根据当前频谱SNR值SNR(ω)以及给定SNR阈值SNRTH。等于给定阈值SNRTH的频谱SNR值SNR(ω)造成SnrMask'(ω)=1的掩码值。如果那么生成修改一次的频谱SNR掩码SnrMask'(ω)<1的掩码值,并且如果那么生成修改一次的频谱SNR掩码的掩码值。
在任选的后续的块中,基于SNR的修改一次的频谱SNR掩码SnrMask'(ω)也可以被限制为可调谐的最小阈值MINTH。这意味着如果当前频谱掩码那么基于SNR的修改一次的频谱SNR掩码SnrMask'(ω)将被限制于此给定最小阈值,即,它将被设定为使得可以实现MINTH的最大降噪。
在后续的块中,计算当前的修改一次的频谱SNR掩码SnrMask'(ω)的p范数来提供修改三次的(最终的)SNR掩码SnrMask”'(ω)=(SnrMask”(ω))p。例如,可以采用p=1/2的p因子,其等于取修改两次的频谱SNR掩码SnrMask”(ω)或修改一次的频谱SNR掩码SnrMask'(ω)的平方根。SNR阈值SNRTH可以根据所选择的p因子来进行调整。例如,如果采用p=1/2的p因子,那么SNRTH的SNR阈值=30[dB],或如果应用p=1的p因子,那么可以利用SNRTH=15[dB]的SNR阈值。另外,可以将与p=1的p因子结合的SNRTH=15[dB]的SNR阈值除以除p=1之外的p因子。因此,如果选择p=1/2的p因子,那么将会得到SNRTH=15[dB]的SNR阈值,p=15[dB]1/2=30[dB]。
在另一个块中,修改三次的频谱SNR掩码SnrMask”'(ω)将应用于频谱输入信号X(ω),从而产生频谱输出信号Y(ω)=SnrMask”'(ω)·X(ω),其然后将例如利用重叠安全过程变换到时域中。
为了允许高估但在高估的情况下避免掩码的不稳定行为,可以应用替代方法。如果经修改的掩码的权重低于1,那么p范数可应用于修改(一次或两次)的SNR掩码SnrMask”(ω),这可以被认为是“正常降噪情况”,使得例如对于频谱信噪比BandSnr<SNRTH,SnrMask”'(ω)=(SnrMask”(ω))p。然而,如果经修改的掩码的权重超过1,那么可以将不同的p掩码应用于修改(一次或两次)的SNR掩码SnrMask”(ω),这可以被认为是“高估情况”,使得例如对于频谱信噪比BandSnr>SNRTH,SnrMask”'(ω)=(SnrMask”(ω))poec,其中poec是除p之外的p范数。另外,在“高估情况”中,对于SnrMask'(ω)>MaxSnrTh,根据可以将(经修改的)SNR掩码限制为最大阈值MaxSnrTh。在以上概述的情况中,p范数p可以是1/2或1,并且p范数poec可以是√2或2。
测试表明,如果在ABF块的末尾添加APF块,那么单信道降噪能够进一步增强底层远场声音捕获***的总体性能。这也在想要进一步增加语音清晰度例如以提高语音识别引擎的识别率(尤其是在不利情况下(例如在当背景噪声相较语音信号来说要高时的低SNR情况下))的情况下成立。
NR块可以放在信号处理链的末尾,但不需要连接在ABF块下游,因为该顺序以及图1中所示的***中利用的一些或所有信号处理块的存在可自由地进行选择。作为实例,可以完全省略ABF块,使得BS块可以仅递送正波束输出信号,正波束输出信号可以输入到NR块中。在另一实例中,代替FB块,可以仅利用(单)模态波束成形器,并还可以省略BS块,使得由FB块输出的信号可以输入到NR块等中。在此,FB块可以含有模态波束成形器,模态波束成形器自动地将其观察方向转向期望语音源(例如,说话者)。本文公开的简单且有效的单信道降噪***和方法基于频谱减法,其中基于当前估计的SNR来计算维纳滤波器。
已经出于说明和描述的目的而呈现了对实施方案的描述。可以鉴于以上描述执行或可以通过实践方法获得实施方案的合适的修改和变化。例如,除非另外指出,否则所述方法中的一种或多种可以由合适的装置和/或装置的组合来执行。所述方法和相关联的动作也可按照除本申请中所述的顺序之外的各种顺序、并行地和/或同时地执行。所述***本质上是示例性的,并且可以包括附加元件和/或省略元件。
如本申请中所用,以单数形式表述并用单词“一个”或“一种”引出的元件或步骤应理解为并不排除多个所述元件或步骤,除非明确指出这种排除情况。此外,对本公开的“一个实施方案”或“一个实例”的参考并非意图解释为排除也并入了所列举特征的另外实施方案的存在。术语“第一”、“第二”和“第三”等仅用作标记,而不意在对其对象施加数值要求或特定位置顺序。
本发明的实施方案大体上提供了多个电路、电气装置和/或至少一个控制器。所有对电路、至少一个控制器和其它电气装置和由它们每个提供的功能的提及不旨在受限于仅涵盖本文中图示和描述的内容。虽然特定标记可指派给所公开的各种电路、控制器和其它电气装置,但是这些标记不旨在限制各种电路、控制器和其它电气装置的操作范围。这些电路、控制器和其它电气装置可以基于所期望的特定类型的电气实现方式彼此组合和/或以任何方式被分离。
块被理解为具有以下中的至少一个的硬件***或其元件:执行软件的处理单元和用于实现相应的期望信号传送或处理功能的专用电路结构。因此,***的部分或全部可实现为由处理器或可编程数字电路执行的软件和固件。应认识到,如本文中公开的任何***可以包括任何数量的微处理器、集成电路、存储器装置(例如,闪存、随机存取存储器(RAM)、只读存储器(ROM)、电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)或其它合适的变型)和软件,它们彼此协作以执行本文公开的操作。另外,所公开的任何***可以利用任一个或多个微处理器来执行计算机程序,计算机程序体现在非瞬时计算机可读介质中,非瞬时计算机可读介质被编程为执行所公开的任何数量的功能。另外,本文提供的任何控制器包括外壳和各种数量的微处理器、集成电路和存储器装置(例如,闪存、随机存取存储器(RAM)、只读存储器(ROM)、电可编程只读存储器(EPROM)和/或电可擦除可编程只读存储器(EEPROM))。
虽然已描述了本发明的实施各种方案,但是对于本领域的普通技术人员来说显而易见的是,在本发明的范围内,更多的实施方案和实现方式是可能的。具体地讲,技术人员将认识到来自不同的实施方案的各种特征的可互换性。虽然在某些实施方案和实例的上下文中已公开了这些技术和***,但讲理解,这些技术和***可以超出具体公开的实施方案而扩展到其它实施方案和/或其用途和明显修改。

Claims (15)

1.一种降噪***,所述降噪***包括:
检测器块,所述检测器块被配置成基于输入信号的信噪比频谱而检测所述输入信号中的噪声分量;以及
掩蔽块,所述掩蔽块可操作地与所述检测器块耦合,并且被配置成生成最终频谱噪声去除掩码并在检测到所述输入信号中的噪声分量的情况下将所述最终频谱噪声去除掩码应用到所述输入信号,所述最终频谱噪声去除掩码被配置成在应用时抑制所述输入信号中的所述噪声分量。
2.如权利要求1所述的***,其中所述检测器块包括信噪比确定块,所述信噪比确定块被配置成通过确定所述输入信号的每一离散频率的信噪比来确定所述输入信号的所述信噪比频谱。
3.如权利要求1或2所述的***,其中所述掩蔽块包括:
第一估计块,所述第一估计块被配置成从所述输入信号的所述信噪比频谱生成基本频谱噪声去除掩码,所述第一估计块还被配置成将所述输入信号的所述信噪比频谱与预定信噪比阈值进行比较并根据所述比较的结果来提供加权掩码;以及
掩码修改块,所述掩码修改块被配置成根据所述加权掩码来修改所述基本频谱噪声去除掩码以提供修改一次的频谱噪声去除掩码。
4.如权利要求3所述的***,其中所述掩蔽块还包括:
第二估计块,所述第二估计块被配置成将所述修改一次的频谱噪声去除掩码与最小阈值进行比较并根据所述比较的结果来提供修改两次的频谱噪声去除掩码。
5.如权利要求3或4所述的***,其中所述掩蔽块还包括:
第三估计块,所述第三估计块被配置成将p范数应用于所述修改一次的频谱噪声去除掩码或所述修改两次的频谱噪声去除掩码。
6.如权利要求3所述的***,其中所述第一估计块还被配置成在所述估计的信噪比超过所述信噪比阈值的情况下将所述加权掩码设定为预定最大信噪比值,否则设定为预定的恒定值。
7.如权利要求4所述的***,其中所述第二估计块还被配置成在所述估计的信噪比超过最小阈值的情况下将所述修改两次的频谱噪声去除掩码设定为预定的最小值,否则设定为所述修改一次的频谱噪声去除掩码。
8.一种降噪方法,所述降噪方法包括:
基于输入信号的信噪比频谱而检测所述输入信号中的噪声分量;以及
生成最终频谱噪声去除掩码,并且在检测到所述输入信号中的噪声分量的情况下将所述最终频谱噪声去除掩码应用于所述输入信号,所述最终频谱噪声去除掩码被配置成在应用时抑制所述输入信号中的所述噪声分量。
9.如权利要求8所述的方法,其中检测噪声分量包括通过确定所述输入信号的每一离散频率的信噪比来确定所述输入信号的所述信噪比频谱。
10.如权利要求8或9所述的方法,其中生成所述最终频谱噪声去除掩码包括:
从所述输入信号的所述信噪比频谱生成基本频谱噪声去除掩码,将所述输入信号的所述信噪比频谱与预定信噪比阈值进行比较并根据所述比较的结果来提供加权掩码;以及
根据所述加权掩码来修改所述基本频谱噪声去除掩码以提供修改一次的频谱噪声去除掩码。
11.如权利要求10所述的方法,其中生成所述最终频谱噪声去除掩码包括将所述修改一次的频谱噪声去除掩码与最小阈值进行比较并根据所述比较的结果来提供修改两次的频谱噪声去除掩码。
12.如权利要求10或11所述的方法,其中生成所述最终频谱噪声去除掩码包括将p范数应用于所述修改一次的频谱噪声去除掩码或所述修改两次的频谱噪声去除掩码。
13.如权利要求10所述的方法,其中根据所述比较的所述结果来提供所述加权掩码包括在所述估计的信噪比超过所述信噪比阈值的情况下将所述加权掩码设定为预定最大信噪比值,否则设定为预定的恒定值。
14.如权利要求11所述的方法,其中根据所述比较的所述结果来提供修改两次的频谱噪声去除掩码包括在所述估计的信噪比超过最小阈值的情况下将所述修改两次的频谱噪声去除掩码设定为预定的最小值,否则设定为所述修改一次的频谱噪声去除掩码。
15.一种计算机程序,所述计算机程序包括指令,当所述程序由计算机执行时,所述指令致使所述计算机执行权利要求8至14中任一项所述的方法。
CN201810832737.8A 2017-07-27 2018-07-26 单信道降噪 Active CN109308907B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17183509 2017-07-27
EP17183509.3 2017-07-27

Publications (2)

Publication Number Publication Date
CN109308907A true CN109308907A (zh) 2019-02-05
CN109308907B CN109308907B (zh) 2023-08-29

Family

ID=59649453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810832737.8A Active CN109308907B (zh) 2017-07-27 2018-07-26 单信道降噪

Country Status (3)

Country Link
US (1) US10692514B2 (zh)
CN (1) CN109308907B (zh)
DE (1) DE102018117556B4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550740A (zh) * 2022-04-26 2022-05-27 天津市北海通信技术有限公司 噪声下的语音清晰度算法及其列车音频播放方法、***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040049383A1 (en) * 2000-12-28 2004-03-11 Masanori Kato Noise removing method and device
US20060270467A1 (en) * 2005-05-25 2006-11-30 Song Jianming J Method and apparatus of increasing speech intelligibility in noisy environments
KR20100056859A (ko) * 2008-11-20 2010-05-28 광주과학기술원 음성 인식 장치 및 방법
US20120239392A1 (en) * 2011-03-14 2012-09-20 Mauger Stefan J Sound processing with increased noise suppression
CN104103277A (zh) * 2013-04-15 2014-10-15 北京大学深圳研究生院 一种基于时频掩膜的单声学矢量传感器目标语音增强方法
CN105009209A (zh) * 2013-03-04 2015-10-28 沃伊斯亚吉公司 用于降低时域解码器中的量化噪声的装置和方法
US20160372133A1 (en) * 2015-06-17 2016-12-22 Nxp B.V. Speech Intelligibility
US20170041652A1 (en) * 2015-08-07 2017-02-09 Samsung Electronics Co., Ltd. Image data processing method and electronic device supporting the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184801B1 (en) * 2006-06-29 2012-05-22 Nokia Corporation Acoustic echo cancellation for time-varying microphone array beamsteering systems
US10224053B2 (en) * 2017-03-24 2019-03-05 Hyundai Motor Company Audio signal quality enhancement based on quantitative SNR analysis and adaptive Wiener filtering

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040049383A1 (en) * 2000-12-28 2004-03-11 Masanori Kato Noise removing method and device
US20060270467A1 (en) * 2005-05-25 2006-11-30 Song Jianming J Method and apparatus of increasing speech intelligibility in noisy environments
KR20100056859A (ko) * 2008-11-20 2010-05-28 광주과학기술원 음성 인식 장치 및 방법
US20120239392A1 (en) * 2011-03-14 2012-09-20 Mauger Stefan J Sound processing with increased noise suppression
CN105009209A (zh) * 2013-03-04 2015-10-28 沃伊斯亚吉公司 用于降低时域解码器中的量化噪声的装置和方法
CN104103277A (zh) * 2013-04-15 2014-10-15 北京大学深圳研究生院 一种基于时频掩膜的单声学矢量传感器目标语音增强方法
US20160372133A1 (en) * 2015-06-17 2016-12-22 Nxp B.V. Speech Intelligibility
US20170041652A1 (en) * 2015-08-07 2017-02-09 Samsung Electronics Co., Ltd. Image data processing method and electronic device supporting the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550740A (zh) * 2022-04-26 2022-05-27 天津市北海通信技术有限公司 噪声下的语音清晰度算法及其列车音频播放方法、***
CN114550740B (zh) * 2022-04-26 2022-07-15 天津市北海通信技术有限公司 噪声下的语音清晰度算法及其列车音频播放方法、***

Also Published As

Publication number Publication date
US10692514B2 (en) 2020-06-23
DE102018117556A1 (de) 2019-01-31
CN109308907B (zh) 2023-08-29
US20190035416A1 (en) 2019-01-31
DE102018117556B4 (de) 2024-03-21

Similar Documents

Publication Publication Date Title
US10827263B2 (en) Adaptive beamforming
US11315587B2 (en) Signal processor for signal enhancement and associated methods
US10356515B2 (en) Signal processor
CN110169041B (zh) 一种声回波消除的方法和***
US8958572B1 (en) Adaptive noise cancellation for multi-microphone systems
US10062372B1 (en) Detecting device proximities
CN107483761B (zh) 一种回波抑制方法及装置
EP1995940A1 (en) Method and apparatus for processing at least two microphone signals to provide an output signal with reduced interference
US20100246844A1 (en) Method for Determining a Signal Component for Reducing Noise in an Input Signal
CN108353107A (zh) 用于声学回声消除的双端通话检测
CN105516846A (zh) 用于优化耳机中的噪声消除的方法及用于话音通信的耳机
WO2008104446A2 (en) Method for reducing noise in an input signal of a hearing device as well as a hearing device
CN111128210A (zh) 具有声学回声消除的音频信号处理
EP2752848B1 (en) Method and apparatus for generating a noise reduced audio signal using a microphone array
Gil-Cacho et al. Wiener variable step size and gradient spectral variance smoothing for double-talk-robust acoustic echo cancellation and acoustic feedback cancellation
CN109326301A (zh) 自适应后滤波
CN109326297A (zh) 自适应后滤波
Thiergart et al. An informed MMSE filter based on multiple instantaneous direction-of-arrival estimates
CN110199528B (zh) 远场声音捕获
CN109308907A (zh) 单信道降噪
CN107545901B (zh) 信号处理装置与信号处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant