CN109301871B - 园区分布式能源微网的智慧能源调控*** - Google Patents

园区分布式能源微网的智慧能源调控*** Download PDF

Info

Publication number
CN109301871B
CN109301871B CN201811347150.4A CN201811347150A CN109301871B CN 109301871 B CN109301871 B CN 109301871B CN 201811347150 A CN201811347150 A CN 201811347150A CN 109301871 B CN109301871 B CN 109301871B
Authority
CN
China
Prior art keywords
energy
unit
heat
biomass
yuan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811347150.4A
Other languages
English (en)
Other versions
CN109301871A (zh
Inventor
汪鹏
沈忠杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Energy Conversion of CAS
Original Assignee
Guangzhou Institute of Energy Conversion of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Energy Conversion of CAS filed Critical Guangzhou Institute of Energy Conversion of CAS
Priority to CN201811347150.4A priority Critical patent/CN109301871B/zh
Publication of CN109301871A publication Critical patent/CN109301871A/zh
Application granted granted Critical
Publication of CN109301871B publication Critical patent/CN109301871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种园区分布式能源微网的智慧能源调控***,以天然气、生物质气体的热电联供***为基础,并配备智慧能源管理***。根据用户侧相应的热、电需求,智慧能源管理***自动判断多种能源供应方式的成本,然后合理选择一种或者联合供能方式,使得燃料成本最低,从而达到最优的能源节约率、年成本最低化。本发明还配有储电单元、储热单元,和常规的联供***相比,能平衡能源时空上利用的不均匀性,在保证用户侧热、电需求得到满足的前提下,通过储能措施,减少了能量的浪费等,进一步整合多能***并通过智慧能源管理及调控提高了能源的综合利用效率和***的经济性。

Description

园区分布式能源微网的智慧能源调控***
技术领域
本发明涉及分布式微网技术领域,特别是涉及一种园区分布式能源微网的智慧能源调控***
背景技术
分布式能源作为一种新的可持续能源供应方式,相比传统的集中式供能方式,具有贴近用户侧,能源传输过程损耗小,能源的利用效率高等特点,是国家能源转型的重要方向。
将相应的储电***、储热***运用于本发明中,能够起到移峰填谷,平衡能源供给侧与能源消费侧在时空上使用的不平衡性,保障***的平稳运行。将智慧能源调控***运用于本发明中,在满足用户负荷的情况下,从多种能源供应方式中选择一种最经济的供能方式,从而提高经济效益和设施利用率。
发明内容
鉴于现有技术存在的缺陷,本发明致力于提供一种园区分布式能源微网的智慧能源调控***,以解决现有分布式***存在的用户侧需求不稳定、运行不经济和能源利用效率不高等问题。
为了实现上述目的,本发明采取的技术方案如下。
一种园区分布式能源微网的智慧能源调控***,所述园区分布式能源微网包括储电池2、光伏***3、天然气热电联产***4、生物质气体热电联产***5、生物质气化炉6、蒸汽储罐7和生物质锅炉8;
生物质锅炉8接收外购生物质,将产生的热能输送至蒸汽储罐7,蒸汽储罐7还接收外购蒸汽,生物质气化炉6将用户工厂1产生的药渣处理成生物质气体并输出至生物质气体热电联产***5,生物质气体热电联产***5将产生的电能输送至用户工厂1或储电池2,产生的热能输送至蒸汽储罐7,天然气热电联产***4接收外购天然气,并将产生的电能输送至用户工厂1或储电池2,产生的热能输送至蒸汽储罐7,光伏***3产生的电能输送至用户工厂1或储电池2,储电池2将电能输送至用户工厂1;
用户工厂1的用热需求首先由生物质锅炉8产生的热能满足,其余热量由智慧能源调控***,结合用能成本,最终从生物质气体热电联产***5、天然气热电联产***4和外购蒸汽这三种供热方式中选择一种或多种最经济的供热方式,满足用户工厂1的其余用热需求;
用户工厂1的用电需求首先由外购电、储电池2和光伏***3供电满足,其余电量由智慧能源调控***,结合用能成本,最终从生物质气体热电联产***5、天然气热电联产***4这两种供电方式中选择一种或两种最经济的供电方式,满足用户工厂1的其余用电需求。
本发明与现有的分布式能源***相比具有的创新点有:(1)***构建上的创新:基于园区多种能源生产技术的特点,构建了智慧能源调控***平台,实现多种供能方式的互补、多种能源的梯级利用,通过信息化、智能化控制技术及策略,实现热、电的移峰填谷,实现能源供应***的安全稳定运行;(2)***应用上的创新:结合用户热、电需求的变化,集成多种供能技术和储能单元,基于用电量、分时电价,用热量、分时热价以及热、电负荷特性等综合分析,确定各能源利用模块的最优运行策略和需求侧负荷控制计划。园区分布式能源微网智慧管理调控***,一方面提高了能源的综合利用率,另一方面从用户侧和供能侧考虑,为用户的用热、用电需求选择经济合理的供能方式,实现了***的经济性。
附图说明
图1为本发明园区分布式能源微网的智慧能源调控***的结构示意图;
图2为本发明中用户工厂用热选择逻辑图;
图3为本发明中用户工厂用电选择逻辑图;
具体实施方式
下面结合附图阐述本发明的实施例。
如图1所示,一种园区分布式能源微网的智慧管理调控***包括用户工厂1、储电池2、光伏***3、天然气热电联产***4、生物质气体热电联产***5、生物质气化炉6、蒸汽储罐7、生物质锅炉8、智慧能源管理***9等九部分组成。
用户侧的电需求视情况由储电池2、光伏***3、天然气热电联产***4、生物质气体热电联产***5、外购电提供;用户侧的热需求视情况由天然气热电联产***4、生物质气体热电联产***5、蒸汽储罐7、生物质锅炉8、外购蒸汽提供。
现已知用户工厂1的热、电需求量以及外购生物质、外购电、外购天然气,外购蒸汽的价格。
1)考虑用户工厂1的热需求。用户工厂1的用热需求首先由生物质锅炉8来满足,如果生物质锅炉8产生的热量能满足用户工厂1的热需求,那么智慧能源管理***9会发出指令关闭生物质气体热电联产***5和天然气热电联产***4;如果生物质锅炉8产生的热量不能满足用户工厂1的热需求,那么智慧能源管理***9首先计算出ΔQ=Q需求-Q生物质锅炉,然后分别比较需要外购蒸汽产生ΔQ热量,开启生物质气体热电联产***5产生ΔQ热量和开启天然气热电联产***4产生ΔQ热量的成本,从这三种供热方式中,选择一种成本最低的供热方式以满足用户工厂剩余ΔQ的热量需求;
2)考虑用户工厂1的电需求。用户工厂1的用电需求首先由外购电,储电池2和光伏3提供,如果外购电,储电池2和光伏3提供的电量能满足用户工厂1的用电需求量,那么智慧能源管理***9会发出指令关闭生物质气体热电联产***5和天然气热电联产***4;如果外购电,储电池2和光伏3提供的电量不能满足用户工厂1的用电需求量,那么智慧能源管理***9首先计算出ΔE=E需求-E外购电+储电池+光伏,然后分别比较开启生物质气体热电联产***5产生ΔE电量和开启天然气热电联产***4产生ΔE电量的成本,从这两种供电方式中,选择一种成本最低的供电方式以满足用户工厂剩余ΔE的电量需求。
根据园区分布式能源微网的智慧管理调控方法,以热电联供***运行费用最低建立优化运行目标,在用户工厂1满足热、电需求得同时,使得目标函数值最小,其目标函数为:
以热电联供***运行费用最低建立优化运行目标,其目标函数为:
CSal=CSQ+CSE
CSQ=CSpl+CSbl+if exist[min CSst,CSgs+CScg,CSbg]
CSE=CSel+CSrf+CSpv+if exist[min(CSgs+CScg,CSbg)]
公式中CSal为总成本,单位为yuan;CSQ为热需求的总费用,单位为yuan;CSE为电需求的总费用,单位为yuan;CSpl=SPpc∫SPp(t)dt,其中CSpl为总的生物质颗粒价格,单位为yuan,SPpc为单位生物质颗粒价格,单位为yuan/ton,SPp为外购生物质颗粒量,单位为ton;CSbl=∑(BLdc∫SIGN(BLeo(t))dt),其中CSbl为操作生物质锅炉8的费用,单位为yuan,BLdc为单位时间操作成本,单位为yuan/h,BLeo为生物质锅炉8的热能输出量,单位为kW;CSst=SPhc∫SPh(t)dt,其中CSst为总的外购热价,单位为yuan,SPhc单位热价,单位为yuan/kWh,SPh为外购热量,单位为kW;CSgs=SPgc∫SPg(t)dt,其中CSgs为总的外购天然气价格,单位为yuan,SPgc为单位天然气价格,单位为yuan/m3,SPg为外购天然气量,单位为m3;CScg=∑(CGdc∫SIGN(CGeo(t))dt),其中CScg为操作天然气热电联产***4的费用,单位为yuan,CGdc为单位时间操作成本,单位为yuan/h,CGeo为天然气热电联产***4产生的电量,单位为kW;CSbg=∑(BGdc∫SIGN(BGeo(t))dt),其中CSbg为操作生物质气体热电联产***5的费用,单位为yuan,BGdc为单位时间操作成本,单位为yuan/h,BGeo为热电联产生物质气体热电联产***5产生的电量,单位为kW;
Figure BDA0001864029800000061
Figure BDA0001864029800000062
Figure BDA0001864029800000063
其中CSel为总的电价,单位为yuan,SPec1、SPec2、SPec3为不同时间段的分时电价,单位为yuan/kWh,SPe为外购电量,单位为kW;CSrf=∑(RFdc∫SIGN(|RFeio(t)|)dt),其中CSrf为操作储电池[2]的费用,单位为yuan,RFdc为单位时间操作成本,单位为yuan/h,RFeio为储电池2的冲、放电量,单位为kW;CSpv为操作光伏***3的费用,单位为yuan。
综上所述,智慧能源管理***9能根据用户的热、电需求,从多种能源供应方式中选择一种最经济的供能方式,使用户的用能成本最低,从而达到效益的最大化。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (1)

1.一种园区分布式能源微网的智慧能源调控***,其特征在于,
所述园区分布式能源微网包括储电池(2)、光伏***(3)、天然气热电联产***(4)、生物质气体热电联产***(5)、生物质气化炉(6)、蒸汽储罐(7)和生物质锅炉(8);
生物质锅炉(8)接收外购生物质,将产生的热能输送至蒸汽储罐(7),蒸汽储罐(7)还接收外购蒸汽,生物质气化炉(6)将用户工厂(1)产生的药渣处理成生物质气体并输出至生物质气体热电联产***(5),生物质气体热电联产***(5)将产生的电能输送至用户工厂(1)或储电池(2),产生的热能输送至蒸汽储罐(7),天然气热电联产***(4)接收外购天然气,并将产生的电能输送至用户工厂(1)或储电池(2),产生的热能输送至蒸汽储罐(7),光伏***(3)产生的电能输送至用户工厂(1)或储电池(2),储电池(2)将电能输送至用户工厂(1);
用户工厂(1)的用热需求首先由生物质锅炉(8)产生的热能满足,其余热量由智慧能源调控***,结合用能成本,最终从生物质气体热电联产***(5)、天然气热电联产***(4)和外购蒸汽这三种供热方式中选择一种或多种最经济的供热方式,满足用户工厂(1)的其余用热需求;
用户工厂(1)的用电需求首先由外购电、储电池(2)和光伏***(3)供电满足,其余电量由智慧能源调控***,结合用能成本,最终从生物质气体热电联产***(5)、天然气热电联产***(4)这两种供电方式中选择一种或两种最经济的供电方式,满足用户工厂(1)的其余用电需求;
所述园区分布式能源微网的电平衡满足如下关系式:
∑FAee=SPe+∑CGeo+∑BGeo+∑PVeo+∑RFeio+∑PMed
公式中FAee为用户工厂(1)的用电需求,单位为kw;SPe为外购电量,单位为kw;CGeo为天然气热电联产***(4)产生的电量,单位为kw;BGeo为生物质气体热电联产***(5)产生的电量,单位为kw;PVeo为光伏***(3)产生的电量,单位为kw;RFeio为储电池(2)产生的电量,单位为kw;PMed为外部输入到用户工厂(1)用来干燥药渣的电量,单位为kw;
所述园区分布式能源微网的热平衡满足如下关系式:
SAei=∑CGho+∑BGho+∑BLeo+SPh
公式中SAei为***热能的需求,单位为kw;CGho为天然气热电联产***(4)产生的热量,单位为kw;BGho为生物质气体热电联产***(5)产生的热量,单位为kw;BLeo为生物质锅炉(8)产生的热量,单位为kw;SPh为外购蒸汽,单位为kw;
根据用户工厂(1)用热的需求量计算进入生物质锅炉(8)的生物质消耗量,并依据生物质锅炉(8)的运行效率,计算并输出生物质锅炉(8)产生的热能;
根据用户工厂(1)用热、用电的需求量计算进入天然气热电联产***(4)的外购天然气消耗量,并依据天然气热电联产***(4)的运行效率,计算并输出天然气热电联产***(4)产生的热能和电能;
根据用户工厂(1)用热、用电的需求量计算进入生物质气体热电联产***(5)的生物质气体消耗量,并依据生物质气体热电联产***(5)的运行效率,计算并输出生物质气体热电联产***(5)产生的热能和电能;
以热电联供***运行费用最低建立优化运行目标,其目标函数为:
CSal=CSQ+CSE
CSQ=CSpl+CSbl+if exist[min(CSst,CSgs+CScg,CSbg)]
CSE=CSel+CSrf+CSpv+if exist[min(CSgs+CScg,CSbg)]
公式中CSal为总成本,单位为yuan;CSQ为热需求的总费用,单位为yuan;CSE为电需求的总费用,单位为yuan;CSpl=SPpc∫SPp(t)dt,其中CSpl为总的生物质颗粒价格,单位为yuan,SPpc为单位生物质颗粒价格,单位为yuan/ton,SPp为外购生物质颗粒量,单位为ton;CSbl=∑(BLdc∫SIGN(BLeo(t))dt),其中CSbl为操作生物质锅炉(8)的费用,单位为yuan,BLdc为单位时间操作成本,单位为yuan/h,BLeo为生物质锅炉(8)的热能输出量,单位为kW;CSst=SPhc∫SPh(t)dt,其中CSst为总的外购热价,单位为yuan,SPhc单位热价,单位为yuan/kWh,SPh为外购热量,单位为kW;CSgs=SPgc∫SPg(t)dt,其中CSgs为总的外购天然气价格,单位为yuan,SPgc为单位天然气价格,单位为yuan/m3,SPg为外购天然气量,单位为m3;CScg=∑(CGdc∫SIGN(CGeo(t))dt),其中CScg为操作天然气热电联产***(4)的费用,单位为yuan,CGdc为单位时间操作成本,单位为yuan/h,CGeo为天然气热电联产***(4)产生的电量,单位为kW;CSbg=∑(BGdc∫SIGN(BGeo(t))dt),其中CSbg为操作生物质气体热电联产***(5)的费用,单位为yuan,BGdc为单位时间操作成本,单位为yuan/h,BGeo为热电联产生物质气体热电联产***(5)产生的电量,单位为kW;
Figure FDA0003368020760000041
Figure FDA0003368020760000042
Figure FDA0003368020760000043
其中CSel为总的电价,单位为yuan,SPec1、SPec2、SPec3为不同时间段的分时电价,单位为yuan/kWh,SPe为外购电量,单位为kW;CSrf=∑(RFdc∫SIGN(|RFeio(t)|)dt),其中CSrf为操作储电池[2]的费用,单位为yuan,RFdc为单位时间操作成本,单位为yuan/h,RFeio为储电池(2)的冲、放电量,单位为kW;CSpv为操作光伏***(3)的费用,单位为yuan。
CN201811347150.4A 2018-11-13 2018-11-13 园区分布式能源微网的智慧能源调控*** Active CN109301871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811347150.4A CN109301871B (zh) 2018-11-13 2018-11-13 园区分布式能源微网的智慧能源调控***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811347150.4A CN109301871B (zh) 2018-11-13 2018-11-13 园区分布式能源微网的智慧能源调控***

Publications (2)

Publication Number Publication Date
CN109301871A CN109301871A (zh) 2019-02-01
CN109301871B true CN109301871B (zh) 2022-02-18

Family

ID=65146399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811347150.4A Active CN109301871B (zh) 2018-11-13 2018-11-13 园区分布式能源微网的智慧能源调控***

Country Status (1)

Country Link
CN (1) CN109301871B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567027B (zh) * 2019-08-16 2021-05-18 中国能源建设集团广东省电力设计研究院有限公司 一种污泥焚烧炉与供热机组耦合的***
CN110648252A (zh) * 2019-09-26 2020-01-03 云南电网有限责任公司电力科学研究院 基于柔性动态热平衡的建筑物热电调度方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994569A (zh) * 2010-09-25 2011-03-30 河北理工大学 生物质能与太阳能分布式能源综合利用***
CN107093898A (zh) * 2017-04-11 2017-08-25 赫普热力发展有限公司 一种应用清洁能源发电电解制氢注入燃气管网的***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170134B (zh) * 2011-05-05 2013-03-06 许继集团有限公司 微电网并网到离网控制方法及无缝切换方法
US20160218505A1 (en) * 2013-08-28 2016-07-28 Robert Bosch Gmbh System and Method for Energy Asset Sizing and Optimal Dispatch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994569A (zh) * 2010-09-25 2011-03-30 河北理工大学 生物质能与太阳能分布式能源综合利用***
CN107093898A (zh) * 2017-04-11 2017-08-25 赫普热力发展有限公司 一种应用清洁能源发电电解制氢注入燃气管网的***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The optimal structure planning and energy management strategies of smart multi energy systems;Tengfei Ma;《Energy》;20180629;第124页右栏,图1 *

Also Published As

Publication number Publication date
CN109301871A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109193626B (zh) 一种分布式能源站选型与定容优化规划统一求解方法
CN109146182A (zh) 计及多种储能的分布式冷热电联供***的经济调度方法
Shen et al. Multi-objective capacity configuration optimization of an integrated energy system considering economy and environment with harvest heat
CN109523092B (zh) 多能互补冷热电联供***及其协同调度方法
Wu et al. Multi-objective and multi-algorithm operation optimization of integrated energy system considering ground source energy and solar energy
CN108629462A (zh) 含储能的综合能源微网优化规划方法及综合能源微网***
CN111244939B (zh) 一种计及需求侧响应的多能互补***两级优化设计方法
CN110807588B (zh) 一种多能源耦合综合能源***的优化调度方法
Ren et al. A novel planning method for design and dispatch of hybrid energy systems
Fan et al. Two-layer collaborative optimization for a renewable energy system combining electricity storage, hydrogen storage, and heat storage
CN109301871B (zh) 园区分布式能源微网的智慧能源调控***
CN111027747A (zh) 一种考虑用户舒适度风险偏好的家庭能量控制方法
CN112836882A (zh) 考虑设备负载率变化的区域综合能源***运行优化方法
CN113806952B (zh) 一种考虑源-荷-储的冷热电综合能源***及其优化运行方法
Tang et al. Multi-objective optimal dispatch for integrated energy systems based on a device value tag
Fang et al. A study on the energy storage scenarios design and the business model analysis for a zero-carbon big data industrial park from the perspective of source-grid-load-storage collaboration
Li et al. Planning model of integrated energy system considering P2G and energy storage
CN109255487A (zh) 一种基于标准化矩阵模型的综合能源***优化方法
Teng et al. A novel economic analyzing method for CCHP systems based on energy cascade utilization
CN116646985A (zh) 计及碳排放的农村住宅光-沼储能综合能源***两阶段鲁棒优化调度模型
CN110516863A (zh) 一种冷热电联供型多微网主动配电***双层优化方法
Qiao et al. Energy hub‐based configuration optimization method of integrated energy system
Li et al. Study on multi-energy complementary model of coupling system of distribution network and heat pump energy storage
Hui et al. Capacity Allocation Optimization of Components in Regional Integrated Micro-energy System
Wang et al. Collaborative optimization dispatch for multi-microgrids system with combined cooling, heating and power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant