CN109301740B - Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation - Google Patents

Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation Download PDF

Info

Publication number
CN109301740B
CN109301740B CN201811260000.XA CN201811260000A CN109301740B CN 109301740 B CN109301740 B CN 109301740B CN 201811260000 A CN201811260000 A CN 201811260000A CN 109301740 B CN109301740 B CN 109301740B
Authority
CN
China
Prior art keywords
phase
double
framework
outlet
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811260000.XA
Other languages
Chinese (zh)
Other versions
CN109301740A (en
Inventor
王曦冉
来聪
何英静
李帆
沈舒仪
朱克平
王婷婷
章敏捷
郁丹
蔡优悠
陈旭阳
徐旸
谷纪亭
邹波
胡哲晟
但扬清
牛威
周海波
施进平
何东
冯伟
常安
李青
翁华
吴君
唐人
周林
刘林萍
吕韵
张代红
李春
王思远
赵勇
赵聪
张会旭
孙擎宇
杨卓然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd
Zhejiang Huayun Electric Power Engineering Design Consulting Co
Original Assignee
State Grid Corp of China SGCC
Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd
Zhejiang Huayun Electric Power Engineering Design Consulting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Economic and Technological Research Institute of State Grid Zhejiang Electric Power Co Ltd, Zhejiang Huayun Electric Power Engineering Design Consulting Co filed Critical State Grid Corp of China SGCC
Priority to CN201811260000.XA priority Critical patent/CN109301740B/en
Publication of CN109301740A publication Critical patent/CN109301740A/en
Application granted granted Critical
Publication of CN109301740B publication Critical patent/CN109301740B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/02Non-enclosed substations; Substations with enclosed and non-enclosed equipment mounted on pole, e.g. pole transformer substation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/10Truss-like structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/24Cross arms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • E04H5/04Transformer houses; Substations or switchgear houses

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

The invention discloses a double-layer framework double-outlet structure of an outlet interval of a transformer substation. In the existing double-layer framework wire outlet structure, the suspension position of the three-phase insulator at the upper layer of the framework is right above the suspension position of the three-phase insulator at the lower layer, and a space rectangle is integrally formed, so that the problem that the electrical distance between wires is smaller or insufficient when wire inlet is summarized exists. The invention adopts a double-layer arranged outlet spacing framework, the outlet spacing framework is connected with 6 wires of a double-circuit line, the suspension points of the wire insulators on the outlet spacing framework are distributed in delta and V shapes from left to right, a parallelogram vertical to the ground is integrally formed, and the outlet spacing framework is directly connected with a double-circuit first-stage outlet iron tower of the same tower after outlet. The invention can effectively reduce the whole width of the outlet framework of the outlet space, reduce the number of first-stage towers and occupy the land, and simultaneously effectively ensure the scientificity of the space distribution of the circuit and the circuit without cross contact.

Description

Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation
Technical Field
The invention belongs to the field of transformer substation outlet interval arrangement, and particularly relates to a transformer substation outlet interval double-layer framework double-outlet structure.
Background
At present, the traditional 110kV outdoor wire outlet interval arrangement adopts A, B, C three-phase wire space parallel arrangement, single wire outlet frames are used for arranging single-circuit three-phase circuits, the wire outlet frames are arranged in parallel at the same height, and the transverse distance occupied by wire outlet is consistent with the span distance occupied by equipment interval; when the ground at the outlet of the transformer substation is tense, the tower is subjected to the following conditions: 1. the transverse arrangement is difficult, and the transverse width of the whole outgoing line arrangement needs to be greatly narrowed; 2. the transformer substation uses regular land, but the tower is difficult to erect outside the enclosing wall, and when the outlet framework is connected into the double-circuit primary tower of the same tower, the ABC three-phase transverse arrangement is transferred into the ABC three-phase longitudinal arrangement, so that the conditions of shortened electric distance and even insufficient safety requirements are generated.
In addition, in the existing double-layer framework wire outlet structure, the suspension position of the three-phase insulator at the upper layer of the framework is right above the suspension position of the three-phase insulator at the lower layer, and a space rectangle is integrally formed, so that the problem that the electrical distance between wires is small or insufficient when the wires are summarized and incoming wires exists, and the structure for expanding the space arrangement distance as much as possible is a main solution means of the existing double-layer framework wire outlet structure.
Disclosure of Invention
In order to solve the problem that the transverse width of the outlet interval of the existing transformer substation needs to be reduced or the range of a vertical tower is limited, and meanwhile, the space arrangement capacity of wires is expanded to the greatest extent, the invention provides a double-layer framework double-outlet structure of the outlet interval of the transformer substation, which effectively reduces the whole width of an outlet framework of the outlet interval, reduces the number and occupied area of first-stage towers, and ensures the scientificity of space distribution of circuits and that the circuits do not cross.
The invention adopts the technical scheme that: a double-layer framework double-outlet structure of an outlet interval of a transformer substation comprises outlet interval frameworks which are arranged in a double-layer mode, wherein the outlet interval frameworks are connected into 6 wires of a double-circuit line altogether, wire insulator hanging points on the outlet interval frameworks are distributed in delta and V shapes from left to right, parallelograms perpendicular to the ground are integrally formed, and after outlet wires, the outlet wire interval frameworks are directly connected into a double-circuit first-stage outlet iron tower of the same tower.
The invention relates to an outgoing line mode for increasing the longitudinal space distribution of an outgoing line interval to compress a transverse wiring space, which is applied to the design and construction stages of a transformer substation.
As a supplement to the above technical scheme, the upper layer of the wire outlet spacing frame is provided with 3 wires in and out, and the wires comprise a B-phase wire of a first wire return and a A, C-phase wire of a second wire return; the next layer of the wire outlet spacing framework also goes in and out 3 wires in total, and comprises A, C phase of a first wire return and B phase of a second wire return; the double-circuit lines are distributed left and right, the suspension points of the first-circuit three-phase wire insulators form delta-shaped arrangement on the wire outlet interval framework, and the suspension points of the second-circuit three-phase wire insulators form delta-shaped (namely inverted delta-shaped) arrangement on the wire outlet interval framework.
As a supplement to the technical scheme, the space distance between each phase of wire insulator hanging point and the adjacent wire insulator hanging point on the wire outlet spacing framework is 1.2 times of the phase spacing. The phase spacing is the bus outgoing line phase spacing.
As a supplement to the technical scheme, the transformer substation is a 110kV transformer substation, the distance between the suspension point of the insulator of the lower framework of the outlet spacing framework and the ground is 7.0-8.0m, and the suspension point of the insulator of the upper framework is 3.0-3.5m from the suspension point of the insulator of the lower framework; the lower layer framework cross beam of the outlet line interval framework is parallel to the upper layer framework cross beam and is positioned in a space plane.
As a supplement to the technical scheme, the double-outlet arrangement mode of the double-layer framework of the outlet interval of the transformer substation further comprises a first line side isolating switch and a second line side isolating switch;
the first loop is connected to the first line side isolating switch, three phases of the first line side isolating switch are arranged in a T-shaped space, namely, vertical projection of the three phases is in a T shape, the first line side isolating switch B is located at a later phase interval compared with A, C, namely, the vertical projection center of the B phase is separated from a connecting line of A, C vertical projection by a phase interval, the B phase is higher than A, C phase by 1.2 times, and the A phase and the C phase of the first line side isolating switch are separated by two phases and are located at the same horizontal height;
the second loop is connected to the second line side isolating switch, the three phases of the second line side isolating switch are arranged in a V-shaped space, namely, the vertical projection of the three phases is in a V shape, the second line side isolating switch A, C is located at a phase distance behind the B phase, namely, the distance between the vertical projection center of the B phase and the connecting line of the vertical projection of the A, C phase is one phase distance, the A, C phase is 1.2 times higher than the B phase distance, and the A phase and the C phase of the second line side isolating switch are located at two phases distance and are located at the same horizontal height.
The three phases of the line side isolating switch adopt T-shaped space arrangement and V-shaped space arrangement, and the space optimization is carried out on the outlet space width.
As a supplement to the technical proposal, a first loop B phase wire (upper layer framework) on the left side is connected to the upper side upper most Fang Jueyuan sub-lower end of the double-loop first-stage outgoing iron tower on the same tower, and A, C phase wires (lower layer framework) are respectively connected to the lower ends of insulators on the middle and lower sides of the double-loop first-stage outgoing iron tower on the same tower; the second loop A, C phase conductor (upper layer framework) near the right side is respectively connected to the lower end of the uppermost and middle insulator at the right side of the double-circuit first-stage outgoing iron tower of the same tower, and the B phase conductor (lower layer framework) is connected to the lower end of the insulator at the left side of the double-circuit first-stage outgoing iron tower of the same tower. Therefore, the phase sequence can be marked under each stage of iron towers, and the inspection and phase change are convenient.
The invention has the beneficial effects that: the invention solves the problem that the transverse width of the outlet interval of the existing transformer substation needs to be reduced or the range of the vertical tower is limited, and simultaneously, the space arrangement capacity of the wires is expanded to the greatest extent. The double-circuit lines are arranged on the line-outlet interval framework in a delta-shaped and V-shaped mode, parallelograms perpendicular to the ground are integrally formed, line distribution is led to space comprehensive distribution from a pure single plane, the integral width of the line-outlet interval outlet framework is reduced, the number of first-stage towers and occupied land are reduced, and scientificity of line space distribution and no line cross contact can be effectively ensured. The three phases of the line side isolating switch adopt T-shaped and V-shaped space arrangement, and space optimization is carried out on the outlet space width.
Drawings
Fig. 1 is a side view of the left-hand "delta" outlet arrangement of the present invention, showing primarily the relative positions of the overall outlet structure, in which: 1. a first loop; 3. a bus side isolation switch; 4. a circuit breaker; 5. a first line side isolation switch; 8. a first loop B phase conductor; 9. a first return A, C phase conductor; 10. a wire outlet spacing frame; 11. a left insulator string; 12. the same tower double-circuit first-stage outgoing iron tower; 13. a first loop A phase outgoing line; 14. a first loop B phase outgoing line; 15. the first loop C is outgoing.
Fig. 2 is a top view of the left-hand "delta" line out arrangement of the present invention, wherein: 1A, a first loop line A is led in; 1B, a first loop B phase incoming line; 1C, a first loop line C is led in; 3. a bus side isolation switch; 4. a circuit breaker; 5. a first line side isolation switch; 10. a wire outlet spacing frame; 11. a left insulator string; 12. the same tower double-circuit first-stage outgoing iron tower.
Fig. 3 is an exploded elevation view of the apparatus of the left side delta arrangement of the present invention (omitting the same tower double-circuit first stage outlet pylon), in which: 51. a first line side disconnector a phase; 52. a first line side disconnector B-phase; 53. a first line side disconnector C-phase; 10. a wire outlet spacing frame; 101. a left side framework A phase; 102. a left side frame B phase; 103. left side frame C phase.
Fig. 4 is a side view of the right "", shaped wire arrangement of the present invention, showing primarily the relative positions of the overall wire structure, in which: 2. a second loop; 3. a bus side isolation switch; 4. a circuit breaker; 6. a second line side isolation switch; 20. a second loop B-phase conductor; 21. a second loop A, C phase conductor; 10. a wire outlet spacing frame; 16. a right insulator string; 12. the same tower double-circuit first-stage outgoing iron tower; 17. a second loop A phase outgoing line; 18. a second loop B phase outgoing line; 19. and a second loop C is led out.
Fig. 5 is a top view of the right side "v" shaped line out arrangement of the present invention, wherein: 2A, a second loop A phase incoming line; 2B, a second loop B phase incoming line; 2C, a second loop C phase incoming line; 3. a bus side isolation switch; 4. a circuit breaker; 6. a second line side isolation switch; 10. a wire outlet spacing frame; 16. a right insulator string; 12. the same tower double-circuit first-stage outgoing iron tower.
Fig. 6 is an exploded front view of the "v" shaped outlet arrangement of the present invention (omitting the same tower double-circuit first stage outlet pylon), in which: 61. a second line side disconnector a phase; 62. a second line side disconnector B phase; 63. a second line side disconnector C-phase; 10. a wire outlet spacing frame; 104. a right side frame A phase; 105. a right side frame B phase; 106. right side frame C phase.
Fig. 7 is an overall side view of a 110kV double-delta shaped outlet structure of the present invention.
Fig. 8 is an overall top view of the 110kV double-delta shaped outlet structure of the present invention.
Fig. 9 is a front view of the line side disconnector to outlet bay frame of the 110kV double delta outlet structure of the present invention.
Detailed Description
The invention is further described below with reference to the drawings and the detailed description.
The double-layer framework double-wire outlet structure of the 110kV transformer substation wire outlet interval is shown in figures 7-9, 6 wires of a double-circuit line are connected to the wire outlet interval framework in a total mode, wire insulator hanging points on the wire outlet interval framework are distributed in a delta and V shape from left to right, a parallelogram perpendicular to the ground is integrally formed, and the wire outlet interval framework is directly connected to a 110kV same-tower double-circuit first-stage wire outlet iron tower after wire outlet.
The relevant arrangement is as follows: after the three phases of the first loop 1 pass through the bus line isolating switch 3 and the breaker 4 in parallel, the three phases are connected into a first line side isolating switch 5 (in a T shape) which is arranged in space, namely, the vertical projection of the three phases is in a T shape, the phase B52 of the line side isolating switch is 1.6m later than the phases A, C, 51 and 53, namely, the vertical projection center of the phase B is 1.6m away from the connecting line vertically projected from A, C, the phase B is higher than the phase A, C, the horizontal distance of the wire leading-out spacing framework 10 in a line insulator string in a plane view is 3m away from the phase A of the first line side isolating switch, the first layer of the wire leading-out spacing framework is 7.5m away from the ground, the second layer of the wire leading-out spacing framework is 1.66m away from the first layer, the first loop A phase wires are connected to the leftmost side of the lower layer of the wire leading-out spacing framework 10 from the first line side isolating switch 5, the first loop C phase wires are connected to the leftmost side of the upper layer of the wire leading-out spacing framework 10 from the first line side isolating switch 5, and the first loop C phase wires are connected to the leftmost position of the lower layer of the wire spacing framework 10 in the three-phase overall configuration delta 3 is formed, as shown in figure 1-3.
After the three phases of the second loop wire 2 pass through the bus line isolating switch 3 and the breaker 4 in parallel, the second line isolating switch 6 (in a V shape) which is arranged in space is connected, namely, the vertical projection of the three phases is in a V shape, the phases 61 and 63 of the line isolating switch A, C are 1.6m later than the connection line of the vertical projection center of the B phase and the vertical projection of the A, C, namely, the distance between the vertical projection center of the B phase and the connection line of the B phase is 1.6m, the A, C phase is higher than the 1.92m of the B phase, the second loop wire A is connected to the middle of the upper layer of the line spacing frame 10 from the second line isolating switch 6, the second loop wire B is connected to the right of the lower layer of the line spacing frame 10 from the second line isolating switch 6, the second loop wire C is connected to the right of the upper layer of the line spacing frame 10 from the second line isolating switch 6, and the three phases are integrally arranged in a ' Y ' shape ' as shown in fig. 4-6.
The overlooking distance from the wire outlet spacing framework to the iron tower is 5m, a first loop B phase outlet 14 (an upper layer framework) positioned near the left side is connected to the lower end of the uppermost Fang Jueyuan sub-on the left side of the double-circuit first-stage wire outlet iron tower, and first loop A, C phase outlets 13 and 15 (a lower layer framework) are respectively connected to the lower ends of the middle and lower insulators on the left side of the double-circuit first-stage wire outlet iron tower; the second loop A, C phase outgoing lines 17 and 19 (upper layer framework) positioned near the right side are respectively connected to the lower end of the uppermost and middle insulator at the right side of the double-circuit first-stage outgoing line iron tower of the same tower, and the second loop B phase outgoing line 18 (lower layer framework) is connected to the lower end of the insulator at the left side of the double-circuit first-stage outgoing line iron tower of the same tower; and the phase sequence is marked under each stage of iron tower, so that the inspection and phase change are convenient.
It will be readily appreciated by those skilled in the art that the foregoing description is merely a preferred embodiment of the invention and is not intended to limit the invention, but any modifications, equivalents, improvements or alternatives falling within the spirit and principles of the invention are intended to be included within the scope of the invention.

Claims (3)

1. The double-layer framework double-outgoing-line structure of the transformer substation outgoing-line interval comprises an outgoing-line interval framework, a first line side isolating switch and a second line side isolating switch which are arranged in a double-layer mode, and is characterized in that the outgoing-line interval framework is connected with 6 wires of a double-circuit line in a total mode, wire insulator hanging points on the outgoing-line interval framework are distributed in a delta and V shape from left to right, a parallelogram perpendicular to the ground is integrally formed, and the outgoing-line interval framework is directly connected with a double-circuit first-stage outgoing-line iron tower of the same tower after outgoing lines;
the upper layer of the wire outlet interval framework is provided with 3 wires in and out in total and comprises a B-phase wire of a first wire return and a A, C-phase wire of a second wire return; the next layer of the wire outlet spacing framework also goes in and out 3 wires in total, and comprises A, C phase of a first wire return and B phase of a second wire return; the double-circuit lines are distributed left and right, the suspension points of the first-loop three-phase wire insulators form delta-shaped arrangement on the wire outlet interval framework, and the suspension points of the second-loop three-phase wire insulators form delta-shaped arrangement on the wire outlet interval framework;
the first loop is connected to the first line side isolating switch, three phases of the first line side isolating switch are arranged in a T-shaped space, namely vertical projection of the three phases is in a T shape, the first line side isolating switch B is separated by a phase interval behind the first line side isolating switch A, C, namely the vertical projection center of the first line side isolating switch B is separated by a phase interval from a connecting line of A, C vertical projection, the phase B is 1.2 times of the phase interval which is higher than the phase A, C, and the phase A and the phase C of the first line side isolating switch are separated by two phases and are positioned on the same horizontal height;
the second loop is connected to a second line side isolating switch, the three phases of the second line side isolating switch are arranged in a V-shaped space, namely, the vertical projection of the three phases is in a V shape, the second line side isolating switch A, C is closer to the rear phase interval than the second line side isolating switch B, namely, the vertical projection center of the second line side isolating switch B is separated from the connecting line of A, C vertical projection by one phase interval, the A, C phase is 1.2 times of the phase interval, and the phase A and the phase C of the second line side isolating switch are separated by two phases and are positioned on the same horizontal height;
the upper side of the upper side Fang Jueyuan sub-lower end of the double-circuit first-stage outgoing iron tower is connected with a first circuit B phase lead near the left side, and A, C phase leads are respectively connected with the lower ends of insulators at the middle and lower sides of the double-circuit first-stage outgoing iron tower; the second loop A, C phase wires close to the right are respectively connected to the lower ends of the uppermost insulator and the middle insulator on the right side of the double-loop first-stage outgoing iron tower of the same tower, and the B phase wires are connected to the lower ends of the insulators on the left side of the double-loop first-stage outgoing iron tower of the same tower.
2. The double-layer framework double-outlet structure of the outlet interval framework of the transformer substation according to claim 1, wherein the space distance between each phase conductor insulator hanging point and the adjacent conductor insulator hanging point on the outlet interval framework is 1.2 times of the phase distance.
3. The transformer substation outlet interval double-layer framework double-outlet structure according to claim 1, wherein the transformer substation is a 110kV transformer substation, the distance between an outlet interval framework lower-layer framework insulator hanging point and the ground is 7.5-8.0m, and the distance between an upper-layer framework insulator hanging point and the lower-layer framework is 3.0-3.5m; the lower layer framework cross beam of the outlet line interval framework is parallel to the upper layer framework cross beam and is positioned in a space plane.
CN201811260000.XA 2018-10-26 2018-10-26 Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation Active CN109301740B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811260000.XA CN109301740B (en) 2018-10-26 2018-10-26 Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811260000.XA CN109301740B (en) 2018-10-26 2018-10-26 Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation

Publications (2)

Publication Number Publication Date
CN109301740A CN109301740A (en) 2019-02-01
CN109301740B true CN109301740B (en) 2023-10-24

Family

ID=65158862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811260000.XA Active CN109301740B (en) 2018-10-26 2018-10-26 Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation

Country Status (1)

Country Link
CN (1) CN109301740B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111711079B (en) * 2020-05-22 2021-11-16 中国电建集团河北省电力勘测设计研究院有限公司 Three-phase two-column arrangement mode of low-voltage bus bar of 500kV transformer substation
CN112081427A (en) * 2020-08-31 2020-12-15 江苏神马电力股份有限公司 Power transformation framework

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077371A (en) * 1963-01-31 1967-07-26 Rutenberg Abraham Improvements in or relating to high tension electric power conductor suspension
JP2003023711A (en) * 2001-07-04 2003-01-24 Chubu Electric Power Co Inc Transmission line straining iron tower structure
CN205029186U (en) * 2015-10-19 2016-02-10 国网山东省电力公司经济技术研究院 Built on stilts outlet structure of two article fonts of indoor transformer substation combination formula
CN105356307A (en) * 2015-10-23 2016-02-24 国家电网公司 Overhead outlet system for GIS room
CN105610081A (en) * 2016-03-16 2016-05-25 中国能源建设集团安徽省电力设计院有限公司 Triangular GIS outgoing line layout structure for voltage grade of 500kV and below
CN106150177A (en) * 2016-08-26 2016-11-23 中国能源建设集团安徽省电力设计院有限公司 A kind of terminal anchor support for double-layer frame outlet
CN205724627U (en) * 2016-06-30 2016-11-23 中国电力工程顾问集团西北电力设计院有限公司 A kind of three-dimensional compact outlet structure being applicable to transformer station 330kV GIS
CN209217541U (en) * 2018-10-26 2019-08-06 国网浙江省电力有限公司经济技术研究院 A kind of double outlet structures of substation's outgoing line interval double-layer frame

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077371A (en) * 1963-01-31 1967-07-26 Rutenberg Abraham Improvements in or relating to high tension electric power conductor suspension
JP2003023711A (en) * 2001-07-04 2003-01-24 Chubu Electric Power Co Inc Transmission line straining iron tower structure
CN205029186U (en) * 2015-10-19 2016-02-10 国网山东省电力公司经济技术研究院 Built on stilts outlet structure of two article fonts of indoor transformer substation combination formula
CN105356307A (en) * 2015-10-23 2016-02-24 国家电网公司 Overhead outlet system for GIS room
CN105610081A (en) * 2016-03-16 2016-05-25 中国能源建设集团安徽省电力设计院有限公司 Triangular GIS outgoing line layout structure for voltage grade of 500kV and below
CN205724627U (en) * 2016-06-30 2016-11-23 中国电力工程顾问集团西北电力设计院有限公司 A kind of three-dimensional compact outlet structure being applicable to transformer station 330kV GIS
CN106150177A (en) * 2016-08-26 2016-11-23 中国能源建设集团安徽省电力设计院有限公司 A kind of terminal anchor support for double-layer frame outlet
CN209217541U (en) * 2018-10-26 2019-08-06 国网浙江省电力有限公司经济技术研究院 A kind of double outlet structures of substation's outgoing line interval double-layer frame

Also Published As

Publication number Publication date
CN109301740A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
US6646861B1 (en) Gas insulated switchgear
CN109301740B (en) Double-layer framework double-outgoing-line structure for outgoing line interval of transformer substation
CN102427203B (en) Method for arranging air insulated switchgear (AIS) power distribution unit of smart substation
CN109286168B (en) Double-outlet arrangement mode of double-layer framework of outlet intervals of transformer substation
CN209217541U (en) A kind of double outlet structures of substation's outgoing line interval double-layer frame
CN116111495A (en) Compact arrangement structure of outgoing lines of transformer substation
CN102255250B (en) High-voltage distribution device for alternating current filter field
JPH044707A (en) Gas insulation switchgear
CN111613974B (en) Alternating current filter field arrangement structure with optimized arrangement
CN208939337U (en) A kind of high-tension switch gear
CN208015086U (en) Main transformer low-pressure side main breaker circuit arrangement based on vertical arrangement busbar
CN209419008U (en) Power distribution cabinet
CN208209382U (en) A kind of inflatable switch cabinet pedestal accessory module
CN103066545B (en) A kind of Novel high-voltage overhead intensive type busbar distribution system
CN105610081B (en) A kind of Chinese character pin-shaped GIS outlets arrangement for being used for 500kV and following voltage class
CN2453559Y (en) Double loop hanging wire and terminal rod combined with cable
CN205070288U (en) Outlet structure of GIS equipment
CN105119228A (en) A double-loop overhead transmission line overhead single-loop phase modulation wiring rod and a wiring structure
CN207542568U (en) The full overhead outlet structure of GIS double-layer frames
CN205081387U (en) Prefabricated cabin formula transformer substation of word formula of arranging
CN208939446U (en) A kind of HGIS equipment
CN109904769B (en) Arrangement structure of 220kV outdoor power distribution device
CN217823725U (en) 10kV double-outlet high-voltage cabinet
CN218919987U (en) Single-interval three-circuit outlet arrangement structure of HGIS power distribution device
CN216413516U (en) Vertical bus outlet structure of HGIS equipment of transformer substation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant