CN109294645A - It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method - Google Patents

It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method Download PDF

Info

Publication number
CN109294645A
CN109294645A CN201810369392.7A CN201810369392A CN109294645A CN 109294645 A CN109294645 A CN 109294645A CN 201810369392 A CN201810369392 A CN 201810369392A CN 109294645 A CN109294645 A CN 109294645A
Authority
CN
China
Prior art keywords
coke
communicated
methanol
stove gas
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810369392.7A
Other languages
Chinese (zh)
Inventor
虎骁
付海华
闫永红
范广州
王巨春
高炬
史军伟
侯建亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gantry Shaanxi Coal Chemical Industry Co Ltd
Original Assignee
Gantry Shaanxi Coal Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gantry Shaanxi Coal Chemical Industry Co Ltd filed Critical Gantry Shaanxi Coal Chemical Industry Co Ltd
Priority to CN201810369392.7A priority Critical patent/CN109294645A/en
Publication of CN109294645A publication Critical patent/CN109294645A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Abstract

Coke-stove gas synthesis of methanol with joint production LNG, richness H are utilized the invention discloses a kind of2Device, including feed gas compressor, feed gas compressor is communicated with supercharger by temp.-changing adsorption detar, de- naphthalene device, and supercharger output end is communicated with the de- CO of MDEA by dry cleaning fine de-sulfur device2Device, MDEA take off CO2First output end of device is communicated with molecular sieve dehydration, mercury removal device;Molecular sieve dehydration, mercury removal device output end are communicated with membrane separation device, and the first output end of membrane separation device is communicated with cryogenic liquefying LNG device;The CO output end of cryogenic liquefying LNG device is communicated with CO purifying plant, H2Output end is communicated with H2Purifying plant, LNG output end export LNG;Output end, the H of CO purifying plant2The output end of purifying plant is connected to synthesic gas compressor, and the output end of synthesic gas compressor is communicated with methanol synthesizer, and methanol synthesizer output end is communicated with methanol rectifying system;The present invention can be by the Multiple components in coke-stove gas while extraction and application.

Description

It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method
Technical field
The invention belongs to coke-stove gas deep process technology fields, in particular to a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method.
Background technique
The coking of high pollution, high energy consumption is looked forward in continuous reinforcement with China to energy-saving and emission-reduction and environmental protection requirement How industry improves the key that the utilization rate of coke by-products becomes its own energy-saving and emission-reduction, increases economic efficiency.In coking pair In product, importance is only second to the coke-stove gas of coke, according to annual coke output in 2014 up to 4.8 hundred million tons, coke output per ton 430Nm3Coke-stove gas is estimated that producing coke-oven coal tolerance per year can be up to 206,400,000,000 Nm3, for so a large amount of and very valuable The height of resource, utilization efficiency plays vital influence to the performance of enterprises of coking.
Coke-stove gas forms (volume %) are as follows: hydrogen 55-60%, methane 23-27%, carbon monoxide 5-8%, C2 or more insatiable hunger With hydrocarbon 2-4%, carbon dioxide 1.5-3%, nitrogen 3-7%, oxygen 0.3-0.8%.
In recent years, coke-stove gas liquefaction LNG processed was utilized under the highest attention of coke-stove gas resource utilization in country (english abbreviation of liquefied natural gas liquefied natural gas), methanol processed, clean energy resource hydrogen processed, production cleaning combustion Material oil by the technologies such as methanation synthetic natural gas or maturation or has industrialized.But these technologies and equipment are only One or both of coke-stove gas ingredient is utilized, coke-stove gas can't preferably be utilized comprehensively, thus, it is necessary to grind Study carefully a kind of utilization coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method, simultaneously by the Multiple components in coke-stove gas Extraction and application.
Summary of the invention
Coke-stove gas synthesis of methanol with joint production LNG, richness H are utilized the object of the present invention is to provide a kind of2Device and method, should Device and method have technical level advanced under the premise of guaranteeing product quality, stable and reliable operation, and economic benefit height etc. is excellent Gesture;And it can be by the Multiple components in coke-stove gas while extraction and application.
To achieve the above objectives, the present invention is achieved by the following scheme.
Scheme one:
It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: including to coke-stove gas The feed gas compressor compressed, the feed gas compressor output end are communicated with temp.-changing adsorption detar, de- naphthalene device, institute State temp.-changing adsorption detar, de- naphthalene device output end is communicated with the supercharger that second-compressed is carried out to coke-stove gas, the pressurization Machine output end is communicated with dry cleaning fine de-sulfur device, and the dry cleaning fine de-sulfur device output end is communicated with MDEA and takes off CO2 Device, the MDEA take off CO2First output end of device is communicated with molecular sieve dehydration, mercury removal device;The molecular sieve dehydration takes off Mercury device output end is communicated with membrane separation device, and first output end of membrane separation device is communicated with cryogenic liquefying LNG device, The membrane separation device second output terminal exports H2;The CO output end of the cryogenic liquefying LNG device is communicated with CO purification dress It sets, H2Output end is communicated with H2Purifying plant, LNG output end export LNG;Output end, the H of the CO purifying plant2Purification The output end of device is connected to synthesic gas compressor, and the output end of the synthesic gas compressor is communicated with methanol synthesizer, The methanol synthesizer output end is communicated with methanol rectifying system.
The characteristics of technical solution and further improvement:
Further, the MDEA takes off CO2The second output terminal of device exports CO2;The synthesic gas compressor and CO are purified CO compressor is communicated between device, the MDEA takes off CO2The second output terminal of device is connected to the input terminal of CO compressor.
Further, the feed gas compressor, supercharger, synthesic gas compressor be all made of by middle pressure steam driving from Core type compressor.
Further, the temp.-changing adsorption detar, de- naphthalene device include 5~10 adsorption towers.
Further, the dry cleaning fine de-sulfur device includes to be sequentially communicated the heat exchanger to form loop, level-one pre-add Hydrogen converter, level-one hydro-conversion device, moderate temperature desulphurization slot, secondary hydrogenation converter, zinc oxide desulfurization slot.
Further, the input terminal of the heat exchanger is communicated with pre- desulfurizer, and the input terminal of the pre- desulfurizer is communicated with Filter;The output end of the heat exchanger is communicated with water cooler.
Further, the molecular sieve dehydration, mercury removal device include 1~4 molecular sieve water separation tower, 1~4 molecular sieve Demercuration tower.
Further, dust filter unit is communicated between the molecular sieve dehydration, mercury removal device and membrane separation device.
Further, the membrane separation device includes 15~45 UF membrane sticks.
Further, the CO purifying plant includes 4~20 pressure-swing absorbers being sequentially communicated, H2Purifying plant includes 6~24 pressure-swing absorbers being sequentially communicated.
Further, the methanol rectifying system use three-tower rectification device, comprising be sequentially communicated pre-rectifying tower, pressurization Tower, atmospheric distillation tower, methanol preheater, methanol condenser, storage tank.
Scheme two:
It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Method, based on it is above-mentioned using coke-stove gas synthesize first Alcohol coproduction LNG, richness H2Device, it is characterised in that: the following steps are included:
Step 1 is improved the pressure of coke-stove gas by feed gas compressor, mentions the pressure of coke-stove gas from 1~3Kpa Up to 0.35~0.4Mpa;
Step 2 contains pressure by temp.-changing adsorption detar, de- naphthalene device in the coke-stove gas of 0.35~0.4Mpa The impurity such as the micro tar, naphthalene, the dirt that have are removed, and the tar, naphthalene, dirt of coke-stove gas is made to be reduced to 5mg/Nm respectively3、 10mg/Nm3、3mg/Nm3Below;
Step 3, by supercharger to tar, naphthalene, dust content in 5mg/Nm3、10mg/Nm3、3mg/Nm3Coke oven below Coal gas is compressed, and improves the pressure of coke-stove gas to 2.8Mpa~3.0Mpa;
Step 4, by dry cleaning fine de-sulfur device to the organic sulfur for the coke-stove gas that pressure is 2.8Mpa~3.0Mpa It is removed with inorganic sulfur, total sulfur content in coke-stove gas is made to be reduced to 0.1ppm or less;
Step 5 takes off CO by MDEA2The CO that device contains total sulfur content in 0.1ppm coke-stove gas below2It carries out Removing, makes the CO in coke-stove gas2Content is reduced to 20PPmV or less;
Step 6, by molecular sieve dehydration, mercury removal device to CO2What content contained in 20PPmV coke-stove gas below Trace Mercury, moisture are removed, and the moisture in coke-stove gas, mercury content is made to be reduced to 1ppmV, 1 μ g/m respectively3Below;
Step 7, by membrane separation device to moisture, mercury content respectively in 1ppmV, 1 μ g/m3In coke-stove gas below CH4It is recycled, while to H2Carry out isolated H2, make in coke-stove gas 99% CH4It obtains recycling and enters lower road work Sequence, while obtaining the H of 98% or more purity2
Step 8 carries out cryogenic separation to the coke-stove gas for having recycled 99%CH4 by cryogenic liquefying LNG device, obtains To LNG, while obtaining rich H2With rich CO gas;
Step 9 is purified by the CO purifying plant rich CO isolated to cryogenic liquefying LNG device, is obtained pure The CO that degree is 99% or more;Pass through H2The purifying plant rich H isolated to cryogenic liquefying LNG device2It is purified, is obtained The H that purity is 99% or more2
Step 10, by synthesic gas compressor to H2The H that the purity of purifying plant output is 99% or more2It purifies and fills with CO The CO gas that the purity for setting output is 99% or more is compressed, and H is made2It improves with CO mixture pressure to 5.8~6.0Mpa;
Step 11, the H for being 5.8~6.0Mpa to pressure by methanol synthesizer2It is synthesized with CO mixed gas Methanol obtains crude carbinol product;
Step 12 carries out rectifying to the crude carbinol product that methyl alcohol synthetic reactor synthesizes by methanol rectifying system, obtains essence Methanol.
The characteristics of technical solution and further improvement:
Further, in step 6, by being communicated with dust between molecular sieve dehydration, mercury removal device and membrane separation device Filter is to moisture, mercury content respectively in 1ppmV, 1 μ g/m3The dust carried in coke-stove gas below is filtered.
Further, in step 10, coming out purity to CO purifying plant by CO compressor first is 99% or more CO gas and MDEA take off CO2The CO that device is separated2Gas is compressed, and CO and CO are made2Mixture pressure improves to 2.3~ 2.5Mpa, then again by synthesic gas compressor to H2, CO and CO2Mixed gas is compressed, and H is made2, CO and CO2Mixed pressure Power is improved to 5.8~6.0Mpa.
Further, in step 11, when by methanol synthesizer synthesizing methanol, first by pressure be 5.8~ The H of 6.0Mpa2, CO and CO2Mixed gas preheating makes its temperature rise to 225~255 DEG C, enters methyl alcohol synthetic reactor afterwards.
Of the invention utilizes coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method, by coke-stove gas successively into Row compression, temp.-changing adsorption (TSA-detar and naphthalene), second-compressed, dry cleaning fine de-sulfur, MDEA method take off CO2, dehydration it is de- After mercury, UF membrane process, through cryogenic liquefying LNG product;The H that will be separated during low-temperature liquefaction simultaneously2With CO and The CO that MDEA process is separated2It is sent into methyl alcohol synthetic reactor methanol after mixing in proportion, and UF membrane process is isolated The rich H come2It is recycled as product.This method has technical level advanced under the premise of guaranteeing product quality, stable Reliably, the advantages such as economic benefit height;And it can be by the Multiple components in coke-stove gas while extraction and application.
Detailed description of the invention
Fig. 1 is a kind of utilization coke-stove gas synthesis of methanol with joint production LNG, richness H of the invention2Method flow diagram;
Fig. 2 is coke-stove gas fine desulfurizing technology flow diagram;
Fig. 3 is coke-stove gas removing CO2Process flow diagram;
Fig. 4 is coke-stove gas liquefaction deep cooling LNG process flow diagram;
Fig. 5 is methanol synthesizing process flow diagram.
Specific embodiment
The following describes the present invention in detail with reference to the accompanying drawings and specific embodiments.
It is with coke-stove gas synthesizing methanol (200,000 tons/year) coproduction LNG (250,000 tons/year), richness H below2(70,000 Nm3/ h) Technique is embodiment.
It referring to Fig.1, is a kind of utilization coke-stove gas synthesis of methanol with joint production LNG, richness H of the invention2The process of method show It is intended to;The device includes the feed gas compressor compressed to coke-stove gas, and feed gas compressor output end is communicated with alternating temperature Detar, de- naphthalene device are adsorbed, temp.-changing adsorption detar, de- naphthalene device output end are communicated with and carry out second-compressed to coke-stove gas Supercharger, supercharger output end is communicated with dry cleaning fine de-sulfur device, and dry cleaning fine de-sulfur device output end is communicated with MDEA takes off CO2Device, MDEA take off CO2First output end of device is communicated with molecular sieve dehydration, mercury removal device;Molecular sieve dehydration takes off Mercury device output end is communicated with membrane separation device, and the first output end of membrane separation device is communicated with cryogenic liquefying LNG device, film point H is exported from device second output terminal2;The CO output end of cryogenic liquefying LNG device is communicated with CO purifying plant, H2Output end It is communicated with H2Purifying plant, LNG output end export LNG;Output end, the H of CO purifying plant2The output end of purifying plant connects It is connected to synthesic gas compressor, the output end of synthesic gas compressor is communicated with methanol synthesizer, and methanol synthesizer output end connects It is connected with methanol rectifying system.
As shown in figure 3, MDEA takes off CO2The second output terminal of device exports CO2;Synthesic gas compressor and CO purifying plant it Between be communicated with CO compressor, MDEA takes off CO2The second output terminal of device is connected to the input terminal of CO compressor.
Feed gas compressor, supercharger, synthesic gas compressor are all made of the centrifugal compressor driven by middle pressure steam.
Temp.-changing adsorption detar, de- naphthalene device include 5~10 adsorption towers.
As shown in Fig. 2, dry cleaning fine de-sulfur device includes to be sequentially communicated the heat exchanger to form loop, level-one pre-add hydrogen turn Change device, level-one hydro-conversion device, moderate temperature desulphurization slot, secondary hydrogenation converter, zinc oxide desulfurization slot.
The input terminal of heat exchanger is communicated with pre- desulfurizer, and the input terminal of pre- desulfurizer is communicated with filter;Heat exchanger it is defeated Outlet is communicated with water cooler.
Molecular sieve dehydration, mercury removal device include 1~4 molecular sieve water separation tower, 1~4 molecular sieve demercuration tower.
Dust filter unit is communicated between molecular sieve dehydration, mercury removal device and membrane separation device.
Membrane separation device includes 15~45 UF membrane sticks.
As shown in figure 4, cryogenic liquefying separator includes pre-cooling tower, main cold tower, low-temperature fractionating tower.
CO purifying plant includes 4~20 pressure-swing absorbers being sequentially communicated, H2Purifying plant include be sequentially communicated 6~ 24 pressure-swing absorbers.
As shown in figure 5, methanol rectifying system use three-tower rectification device, comprising be sequentially communicated pre-rectifying tower, pressurizing tower, Atmospheric distillation tower, methanol preheater, methanol condenser, storage tank.
It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Method, based on it is above-mentioned using coke-stove gas synthesize first Alcohol coproduction LNG, richness H2Device, comprising the following steps:
Step 1 is improved the pressure of coke-stove gas by feed gas compressor, mentions the pressure of coke-stove gas from 1~3Kpa Up to 0.35~0.4Mpa.
Coke-stove gas (1~3Kpa of pressure, 25 DEG C of temperature) is passed through into centrifugal compressor (three-stage cooling, three sections of compressions) pressure It is reduced to 0.385Mpa, and isolates part grease, is sent to subsequent workshop section, provides pressure and energy for rear workshop section.
Step 2 contains pressure by temp.-changing adsorption detar, de- naphthalene device in the coke-stove gas of 0.35~0.4Mpa The impurity such as the micro tar, naphthalene, the dirt that have are removed, and the tar, naphthalene, dirt of coke-stove gas is made to be reduced to 5mg/Nm respectively3、 10mg/Nm3、3mg/Nm3Below.
Coke-stove gas is passed through in adsorption tower (filling acticarbon composition multiple-hearth adsorption bed in tower) from bottom, Adsorbent adsorbs naphthalene, tar, H in coke-stove gas at 30~40 DEG C, 0.38Mpa2The net of qualification is discharged in the impurity such as S, tower top Change gas, a part is sent to lower process, and a part is used as adsorption tower regeneration gas.After absorption reaches saturation, by operating adsorption tower Inlet/outlet pipeline valve transfer realizes absorption and regeneration conversion operation.A part outlet purified gas is heated to low-pressure steam It 170 DEG C, is regenerated into the adsorption bed in adsorption tower, after regeneration completely, continues that absorption is swept and cooled down with cold cleaning air-blowing Agent bed can put into adsorption operations to 40 DEG C again.By detar, de- naphthalene treatment process, can make tar in unstripped gas, Naphthalene, dirt are reduced to 5mg/Nm respectively3、10mg/Nm3、3mg/Nm3Below.
Step 3, by supercharger to tar, naphthalene, dust content in 5mg/Nm3、10mg/Nm3、3mg/Nm3Coke oven below Coal gas is compressed, and improves the pressure of coke-stove gas to 2.8Mpa~3.0Mpa.
The coke-stove gas (pressure 0.385Mpa, 40 DEG C of temperature) for removing tar and naphthalene is passed through into compressor compresses extremely 2.94Mpa, and part grease is isolated, it is sent to subsequent workshop section, provides pressure and energy for rear workshop section.
Step 4, by dry cleaning fine de-sulfur device to the organic sulfur for the coke-stove gas that pressure is 2.8Mpa~3.0Mpa It is removed with inorganic sulfur, total sulfur content in coke-stove gas is made to be reduced to 0.1ppm or less.
The fine de-sulfur of coke-stove gas uses dry purification process, fine de-sulfur specifically comprises the processes of: coke-stove gas first passes around pre- Desulfurizer tentatively removes H2After S, 350~420 are warming up to heat exchange is carried out in heat exchanger by purified coke-stove gas DEG C, level-one pre-add hydrogen converter, level-one hydro-conversion device (temperature: 350~420 DEG C, pressure: 2.8Mpa) are sequentially entered, it will be burnt Organic sulfur (specifically including that COS, thioether, thiophene etc.) in producer gas is converted into H under iron-molybdic catalyst effect2S, then into Enter moderate temperature desulphurization slot, the H2S of conversion is removed, is again introduced into secondary hydrogenation converter further by organic sulfur conversion, most It is removed by H2S of the zinc oxide desulfurization slot to conversion, makes the total sulfur content (mainly including inorganic sulfur and organic sulfur) in oven gas It takes off to 0.1ppm hereinafter, reaching the requirement of LNG combined production of methanol.
Step 5 takes off CO by MDEA2The CO that device contains total sulfur content in 0.1ppm coke-stove gas below2It carries out Removing, makes the CO in coke-stove gas2Content is reduced to 20PPmV or less.
Coke-stove gas removes CO2Technique use wet process removing process, select activative MDEA (N methyldiethanol amine) be Absorbent, selects one section of absorption, one section of regeneration, and MDEA solution is recycled.Wherein, the coke-stove gas entered from bottom and top The activative MDEA solution of entrance filler surface in absorption tower inversely contacts, abundant mass-and heat-transfer, the CO in coke-stove gas2It is inhaled It takes in and (absorbs CO into liquid phase2MDEA solution be known as rich solution), rich solution enters regenerator, inner-tower filling material surface with from lower and On stripping vapor reverse flow, carry out sufficient mass-and heat-transfer;CO in rich solution2It is largely parsed to gas phase and with air lift Steam is flowed out from regeneration overhead, is obtained regenerated MDEA solution and is recycled sprinkling absorbing and removing CO after cooling2, obtained CO2Gas It is sent to methanol-fueled CLC process.
Step 6, by molecular sieve dehydration, mercury removal device to CO2What content contained in 20PPmV coke-stove gas below Trace Mercury, moisture are removed, and the moisture in coke-stove gas, mercury content is made to be reduced to 1ppmV, 1 μ g/m respectively3Below;Then Existed respectively by being communicated with dust filter unit between molecular sieve dehydration, mercury removal device and membrane separation device to moisture, mercury content 1ppmV、1μg/m3The dust carried in coke-stove gas below is filtered.
This process removes coke-stove gas with chemiadsorption using the moisture in alternating temperature pressure swing adsorption method removing coke-stove gas In mercury.Wherein, coke-stove gas enters in adsorption cleaning tower, and moisture is trapped (2.65Mpa, 40 DEG C) on the sorbent, dry Gas enters demercuration tower after dust-filtering, and sulfur impregnated adsorbent is loaded in demercuration tower, in the mercury and active carbon duct in gas It is trapped after reaction of Salmon-Saxl.After dehydration, demercuration process, moisture, mercury content in coke-stove gas are reduced to 1ppmV, 1 μ g/ respectively m3
Step 7, by membrane separation device to filtered moisture, mercury content respectively in 1ppmV, 1 μ g/m3Coke below CH in producer gas4It is recycled, while to H2Carry out isolated H2, make in coke-stove gas 99% CH4Recycling is obtained to enter Next procedure, while obtaining the H of 98% or more purity2
Coke-stove gas enters UF membrane process and carries out dehydrogenation, and film two sides gas component partial pressure difference pushes away in membrane separation device Under dynamic, H2Selectively penetrating enters in membrane tube, as infiltration gas drain separator after enrichment, the H that will be separated2As product, Purity is up to 99% or more.Impermeable gas carries out cryogenic separation and prepares LNG.
Step 8, by cryogenic liquefying LNG device to having recycled 99%CH4Coke-stove gas carry out cryogenic separation, obtain To LNG, while obtaining rich H2With rich CO gas.
This process uses " the natural gas liquefaction process with lithium bromide precooling " and mixed working fluid cooling flow.Coke-stove gas is first First in precool heat exchanger device, main cold heat exchanger with rich CO, H for backflowing2Gas exchanges heat, and is cooled to after -125 DEG C mixed with gas-liquid It closes object and enters decarburization tower bottom reboiler, heated to decarburization tower bottom of rectifying tower, then enter dehydrogenation rectifying from tower bottom at -131.6 DEG C Tower isolates the rich H that purity is 99% from tower top2Successively by LNG subcooler, main cold heat exchanger and precool heat exchanger device as production Product storage is stand-by, and (- 134 DEG C, 2.4Mpa) of materials at bottom of tower enter decarburization rectifying column, and tower top obtains rich CO gas, and tower bottom obtains object (- 133 DEG C, 0.51Mpa) of material are cooled to -161 DEG C by LNG subcooler and obtain LNG product.
Step 9 is purified by the CO purifying plant rich CO isolated to cryogenic liquefying LNG device, is obtained pure The CO that degree is 99% or more;Pass through H2The purifying plant rich H isolated to cryogenic liquefying LNG device2It is purified, is obtained The H that purity is 99% or more2
This system presses 4 towers to vacuumize process using the absorption of 24 tower, 6 tower 11 times, and oil-free anhydrous unstripped gas enters in suction The adsorption tower of attached step, CO and a small amount of N in unstripped gas2Etc. being adsorbed by adsorbent, pneumatic transmission Ru Xia workshop section among tower out.Work as CO Purity forward position when being exported close to bed, close rectifying section adsorption column inlet valve and outlet valve, so that its is stopped absorption, pass through 11 times Dead space and adsorbent part carbon monoxide move on to lower pressure column to the CO of pressure step recycling bed dead space simultaneously It with concentrate bed CO purity, then is replaced using product gas along absorption direction, carbon monoxide purity in tower is made to reach product It is required that.Replacement completion is regenerated with vacuum pump by the extraction of 99.0% carbon monoxide product, and to adsorbent.Vacuum terminates Afterwards, it using the displacement gas of other towers, boosts to vacuum bed, while the gas that recycling cements out.Then it undergoes 11 times and presses It rises, gradually boosts to bed, finally by final rise to close to adsorptive pressure, adsorbent bed just initially enters next sorption cycle mistake Journey.
This system pressure-variable adsorption mentions hydrogen production device by 12 adsorption tower groups at wherein two adsorption tower is in while feeding always The state of absorption, technical process by absorption, eight drop pressures, along put, inverse put, vacuumize regeneration, eight boost pressures and Product finally boost and etc. composition.
Step 10, by synthesic gas compressor to H2The H that the purity of purifying plant output is 99% or more2It purifies and fills with CO The CO gas that the purity for setting output is 99% or more is compressed, and H is made2It improves with CO mixture pressure to 5.8~6.0Mpa;
Step 11, the H for being 5.8~6.0Mpa to pressure by methanol synthesizer2It is synthesized with CO mixed gas Methanol obtains crude carbinol product;
Step 12 carries out rectifying to the crude carbinol product that methyl alcohol synthetic reactor synthesizes by methanol rectifying system, obtains essence Methanol.
This rectifier unit uses tri-columns rectification process, using a pre-rectifying tower and two main distillation column (pressurization behaviour Make (0.55MPa), an atmospheric operation), make atmospheric tower tower bottom reboiler heat source with pressurizing tower overhead vapours condensation heat, can produce High-purity anhydrous methanol (methanol content can reach 99.95% or more) out, while organic impurities is isolated from methanol product, it is special It is not ethyl alcohol.
Preferably, in step 10, the CO that purity is 99% or more is come out to CO purifying plant by CO compressor first Gas and MDEA take off CO2The CO that device is separated2Gas is compressed, and CO and CO are made2Mixture pressure improves to 2.3~ 2.5Mpa, then again by synthesic gas compressor to H2, CO and CO2Mixed gas is compressed, and H is made2, CO and CO2Mixed pressure Power is improved to 5.8~6.0Mpa.When by methanol synthesizer synthesizing methanol, the H for being first 5.8~6.0Mpa by pressure2、CO With CO2Mixed gas preheating makes its temperature rise to 225~255 DEG C, enters methyl alcohol synthetic reactor afterwards.
The CO and MDEA that the purity for purifying out from PSA purification CO device is 99% or more are taken off using desorption air compressor CO2The CO that the purity that device is separated is 98.5% or more2Gas is compressed, make the pressure of CO and CO2 mixed gas from 0.007Mpa or so is increased to 2.3~2.5Mpa.
It is closed first with methanol through the compressed unstripped gas of synthesic gas compressor (temperature: 40 DEG C, pressure: 5.8~6.0Mpa) Heat exchange, which is carried out, at the gas that tower exports is warming up to 225~255 DEG C of entrance methyl alcohol synthetic reactor (vertical heat-insulated pipe shell mould reactor), 5.5Mpa, under conditions of 225~255 DEG C, CO, CO2With H2Reaction generates first alcohol and water, while there are also micro other organic miscellaneous Matter generates, and the gas and imported materials gas after reaction carry out heat exchange and is cooled to 25~40 DEG C, then obtains slightly through gas-liquid separation Methanol product, and continuously discharge a small amount of recyclegas from system and enter coke oven combustion as off-gas.Mating methanol simultaneously Synthetic tower has a waste-heat recovery device, and by-product middle pressure steam (temperature: 220~245 DEG C, pressure: 2.3~2.7Mpa) 30t/h.
Of the invention utilizes coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method, by coke-stove gas successively into Row compression, temp.-changing adsorption (TSA-detar and naphthalene), second-compressed, dry cleaning fine de-sulfur, MDEA method take off CO2, dehydration it is de- After mercury, UF membrane process, through cryogenic liquefying LNG product;The H that will be separated during low-temperature liquefaction simultaneously2With CO and The CO that MDEA process is separated2It is sent into methyl alcohol synthetic reactor methanol after mixing in proportion, and UF membrane process is isolated The rich H come2It is recycled as product.This method has technical level advanced under the premise of guaranteeing product quality, stable Reliably, the advantages such as economic benefit height;And it can be by the Multiple components in coke-stove gas while extraction and application.
Although embodiment of the present invention is described in conjunction with attached drawing above, the invention is not limited to tool Body embodiment and application field, the specific embodiment are only schematical, directiveness, rather than restricted 's.Those skilled in the art are not departing from range that the claims in the present invention are protected under the enlightenment of specification In the case of, a variety of forms can also be made, these belong to the column of protection of the invention.

Claims (10)

1. a kind of utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: including being carried out to coke-stove gas The feed gas compressor of compression, the feed gas compressor output end are communicated with temp.-changing adsorption detar, de- naphthalene device, the change Temperature absorption detar, de- naphthalene device output end are communicated with the supercharger that second-compressed is carried out to coke-stove gas, and the supercharger is defeated Outlet is communicated with dry cleaning fine de-sulfur device, and the dry cleaning fine de-sulfur device output end is communicated with MDEA and takes off CO2Device, The MDEA takes off CO2First output end of device is communicated with molecular sieve dehydration, mercury removal device;The molecular sieve dehydration, demercuration dress It sets output end and is communicated with membrane separation device, first output end of membrane separation device is communicated with cryogenic liquefying LNG device, described Membrane separation device second output terminal exports H2;The CO output end of the cryogenic liquefying LNG device is communicated with CO purifying plant, H2Output end is communicated with H2Purifying plant, LNG output end export LNG;Output end, the H of the CO purifying plant2Purifying plant Output end be connected to synthesic gas compressor, the output end of the synthesic gas compressor is communicated with methanol synthesizer, described Methanol synthesizer output end is communicated with methanol rectifying system.
2. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The MDEA takes off CO2The second output terminal of device exports CO2;CO is communicated between the synthesic gas compressor and CO purifying plant Compressor, the MDEA take off CO2The second output terminal of device is connected to the input terminal of CO compressor.
3. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The dry cleaning fine de-sulfur device includes to be sequentially communicated the heat exchanger to form loop, level-one pre-add hydrogen converter, level-one to add hydrogen Converter, moderate temperature desulphurization slot, secondary hydrogenation converter, zinc oxide desulfurization slot.
4. a kind of as claimed in claim 3 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The input terminal of the heat exchanger is communicated with pre- desulfurizer, and the input terminal of the pre- desulfurizer is communicated with filter;The heat exchanger Output end be communicated with water cooler.
5. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The molecular sieve dehydration, mercury removal device include 1~4 molecular sieve water separation tower, 1~4 molecular sieve demercuration tower.
6. a kind of utilization coke-stove gas synthesis of methanol with joint production LNG, richness H as claimed in claim 1 or 52Device, feature exists In: dust filter unit is communicated between the molecular sieve dehydration, mercury removal device and membrane separation device.
7. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The membrane separation device includes 15~45 UF membrane sticks.
8. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The CO purifying plant includes 4~20 pressure-swing absorbers being sequentially communicated, H2Purifying plant includes 6~24 be sequentially communicated Pressure-swing absorber.
9. a kind of as described in claim 1 utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: The methanol rectifying system use three-tower rectification device, comprising be sequentially communicated pre-rectifying tower, pressurizing tower, atmospheric distillation tower, first Alcohol preheater, methanol condenser, storage tank.
10. a kind of utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Method, be based on a kind of utilization described in claim 1 Coke-stove gas synthesis of methanol with joint production LNG, richness H2Device, it is characterised in that: the following steps are included:
Step 1, by feed gas compressor improve coke-stove gas pressure, make the pressure of coke-stove gas from 1~3Kpa improve to 0.35~0.4Mpa;
Step 2 contains pressure by temp.-changing adsorption detar, de- naphthalene device in the coke-stove gas of 0.35~0.4Mpa The impurity such as micro tar, naphthalene, dirt are removed, and the tar, naphthalene, dirt of coke-stove gas is made to be reduced to 5mg/Nm respectively3、10mg/Nm3、 3mg/Nm3Below;
Step 3, by supercharger to tar, naphthalene, dust content in 5mg/Nm3、10mg/Nm3、3mg/Nm3Coke-stove gas below It is compressed, improves the pressure of coke-stove gas to 2.8Mpa~3.0Mpa;
Step 4, by dry cleaning fine de-sulfur device to the organic sulfur and nothing of the coke-stove gas that pressure is 2.8Mpa~3.0Mpa Machine sulphur is removed, and total sulfur content in coke-stove gas is made to be reduced to 0.1ppm or less;
Step 5 takes off CO by MDEA2The CO that device contains total sulfur content in 0.1ppm coke-stove gas below2It is removed, Make the CO in coke-stove gas2Content is reduced to 20PPmV or less;
Step 6, by molecular sieve dehydration, mercury removal device to CO2Content contains micro in 20PPmV coke-stove gas below Mercury, moisture are removed, and the moisture in coke-stove gas, mercury content is made to be reduced to 1ppmV, 1 μ g/m respectively3Below;
Step 7, by membrane separation device to moisture, mercury content respectively in 1ppmV, 1 μ g/m3CH in coke-stove gas below4 It is recycled, while to H2Carry out isolated H2, make in coke-stove gas 99% CH4It obtains recycling and enters next procedure, simultaneously Obtain the H of 98% or more purity2
Step 8 carries out cryogenic separation to the coke-stove gas for having recycled 99%CH4 by cryogenic liquefying LNG device, obtains LNG, while obtaining rich H2With rich CO gas;
Step 9 is purified by the CO purifying plant rich CO isolated to cryogenic liquefying LNG device, and obtaining purity is 99% or more CO;Pass through H2The purifying plant rich H isolated to cryogenic liquefying LNG device2It is purified, obtains purity For 99% or more H2
Step 10, by synthesic gas compressor to H2The H that the purity of purifying plant output is 99% or more2It is defeated with CO purifying plant The CO gas that purity out is 99% or more is compressed, and H is made2It improves with CO mixture pressure to 5.8~6.0Mpa;
Step 11, the H for being 5.8~6.0Mpa to pressure by methanol synthesizer2Synthesizing methanol is carried out with CO mixed gas, Obtain crude carbinol product;
Step 12 carries out rectifying to the crude carbinol product that methyl alcohol synthetic reactor synthesizes by methanol rectifying system, obtains refined methanol.
CN201810369392.7A 2018-04-24 2018-04-24 It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method Pending CN109294645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810369392.7A CN109294645A (en) 2018-04-24 2018-04-24 It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810369392.7A CN109294645A (en) 2018-04-24 2018-04-24 It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method

Publications (1)

Publication Number Publication Date
CN109294645A true CN109294645A (en) 2019-02-01

Family

ID=65167628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810369392.7A Pending CN109294645A (en) 2018-04-24 2018-04-24 It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method

Country Status (1)

Country Link
CN (1) CN109294645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799322A (en) * 2019-03-12 2019-05-24 中国华能集团清洁能源技术研究院有限公司 A kind of multifunctional coal gasification experiment test device
CN110746996A (en) * 2019-11-20 2020-02-04 陕西煤业化工集团神木天元化工有限公司 Pulverized coal quality-based comprehensive utilization method
CN112897464A (en) * 2021-01-18 2021-06-04 西南化工研究设计院有限公司 Process for producing hydrogen and coproducing LNG (liquefied Natural gas) by using raw gas with methanation
CN112961711A (en) * 2021-02-08 2021-06-15 赛鼎工程有限公司 System and method for preparing LNG (liquefied Natural gas) and coproducing methanol, liquid ammonia and hydrogen through coke oven gas purification
US11738317B2 (en) 2021-01-15 2023-08-29 CRI, hf Reactor for synthesizing methanol or other products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799322A (en) * 2019-03-12 2019-05-24 中国华能集团清洁能源技术研究院有限公司 A kind of multifunctional coal gasification experiment test device
CN110746996A (en) * 2019-11-20 2020-02-04 陕西煤业化工集团神木天元化工有限公司 Pulverized coal quality-based comprehensive utilization method
US11738317B2 (en) 2021-01-15 2023-08-29 CRI, hf Reactor for synthesizing methanol or other products
CN112897464A (en) * 2021-01-18 2021-06-04 西南化工研究设计院有限公司 Process for producing hydrogen and coproducing LNG (liquefied Natural gas) by using raw gas with methanation
CN112897464B (en) * 2021-01-18 2022-05-17 西南化工研究设计院有限公司 Process for producing hydrogen and coproducing LNG (liquefied natural gas) by using raw gas with methanation
CN112961711A (en) * 2021-02-08 2021-06-15 赛鼎工程有限公司 System and method for preparing LNG (liquefied Natural gas) and coproducing methanol, liquid ammonia and hydrogen through coke oven gas purification
CN112961711B (en) * 2021-02-08 2021-11-26 赛鼎工程有限公司 System and method for preparing LNG (liquefied Natural gas) and coproducing methanol, liquid ammonia and hydrogen through coke oven gas purification

Similar Documents

Publication Publication Date Title
CN109294645A (en) It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device and method
CN102115684B (en) Method for producing liquefied natural gas by using coke oven gas
CN101575540B (en) Method for producing liquefied natural gas and carbinol simultaneously
CN104030875B (en) High yield highly purified catalytic cracked dry gas sharp separation process for purification and device
CN106440658A (en) Combination process for preparing liquefied natural gas (LNG) through high-oxygen-content and high-nitrogen-content coalbed methane
CN105716370A (en) System and method of preparing hydrogen rich gas and carbon monoxide from synthesis gas
CN102491269A (en) Method for extracting hydrogen gas from coke oven gas
CN103497801B (en) A kind of technique utilizing carbon black tail gas to prepare synthetic natural gas
CN102977960A (en) Process for co-producing and synthetic natural gas and food-grade carbon dioxide by using calcium carbide furnace gas
CN107285279A (en) A kind of method using the purified synthesis gas of complete warm journey pressure-variable adsorption with separating
CN217459345U (en) Device for producing low-carbon methanol by using coke oven gas
CN107916145A (en) Low-temp methanol washes the method and device of journey mesohigh recycling carbon dioxide
CN209052640U (en) It is a kind of to utilize coke-stove gas synthesis of methanol with joint production LNG, richness H2Device
CN100384510C (en) Method for removing sulfides and carbon dioxide by high pressure
CN104031681A (en) Method for recovering ethylene and hydrogen from refinery dry gases by combining cold oil absorption and pressure swing adsorption (PSA)
CN103695043B (en) Method for drying, purifying and cooling conversion rough synthesized gas and SNG product gas through low-temperature methanol washing and device thereof
CN102659104B (en) Process for extracting carbon dioxide and hydrogen jointly by decarburization-pressure swing adsorption of shift gas
CN104043315A (en) Method for recovering hydrogen and ethylene from high and low pressure refinery dry gas
CN107138025B (en) Low-temperature methanol washing process for efficiently recycling pressure energy and cold energy
CN1872679A (en) Method for preparing liquid carbon dioxide in foodstuff level by using tail gas of cement kiln
CN111004079A (en) Separation method and device for preparing ethylene reaction gas through oxidative coupling of methane
CN111004082A (en) System and method for removing carbon dioxide from C2 fraction
CN108014598B (en) Non-methane alkane in low-temperature methanol washing tail gas of crushed coal is removed and C is recovered2+Hydrocarbon system and method
CN212842469U (en) Single-tower cryogenic rectification argon recovery system with argon circulation and hydrogen circulation
CN212316051U (en) Poly-generation device for producing natural gas by using underground gasified gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190201

WD01 Invention patent application deemed withdrawn after publication