CN109293982B - 一种具有高机械强度的复合气凝胶的制备方法 - Google Patents

一种具有高机械强度的复合气凝胶的制备方法 Download PDF

Info

Publication number
CN109293982B
CN109293982B CN201811343652.XA CN201811343652A CN109293982B CN 109293982 B CN109293982 B CN 109293982B CN 201811343652 A CN201811343652 A CN 201811343652A CN 109293982 B CN109293982 B CN 109293982B
Authority
CN
China
Prior art keywords
composite aerogel
cellulose
gelatin
mechanical strength
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811343652.XA
Other languages
English (en)
Other versions
CN109293982A (zh
Inventor
吴伟兵
吴晶晶
左克曼
戴红旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Guoxu Beijing Holdings Co ltd
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201811343652.XA priority Critical patent/CN109293982B/zh
Publication of CN109293982A publication Critical patent/CN109293982A/zh
Application granted granted Critical
Publication of CN109293982B publication Critical patent/CN109293982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种具有高机械强度的复合气凝胶的制备方法,在明胶水溶液中同时加入纳米纤维素和石墨烯增强材料,混合分散均匀,再加入双醛类化学交联剂,通过形成缩醛和席夫碱的方式调控气凝胶结构,制备出高机械强度复合气凝胶。本发明采用一维纳米纤维素和二维氧化石墨烯提供骨架结构,并通过氢键与明胶分子作用,提高复合气凝胶机械强度。采用双醛类交联剂与纳米纤维素和明胶发生化学交联,分别生成缩醛和席夫碱,形成三维网状结构,进一步提高复合气凝胶机械强度,最大比压缩模量达2.5MPa·cm3/g。使用的原料无毒无害,生物可降解,制备工艺简单,满足经济环保的要求。所制备的复合气凝胶在隔热材料、节能材料、隔音材料、吸附剂等方面具有广泛的应用。

Description

一种具有高机械强度的复合气凝胶的制备方法
技术领域
本发明属于高分子复合材料技术领域,具体涉及一种具有高机械强度的复合气凝胶的制备方法。
背景技术
气凝胶材料是由胶体粒子或高聚物分子相互聚结构成的一种纳米多孔材料,具有三维开孔骨架结构,主要通过溶胶凝胶法和特殊的干燥技术制备而成[Boday D J,Muriithi B,Stover RJ,et al.J Non-Cryst Solids,2012,358:1575-1580;Azevedo C,Cenedese P,Dubot P.J Mater Sci,2011,22:1161-1169],其具有低密度、高比表面积、高孔隙率、强吸附性、超低热导率等多种独特的物理化学性质,可用作隔热材料、节能材料、隔音材料、吸附剂、催化剂以及催化剂载体等[Pierre A C,Pajonk G M.Chem Rev,2002,102:4243-4265;Cui S,Cheng W W,Shen X D,et al.Energy Environ Sci,2011,4(6):2070-2074]。然而,由于一般气凝胶材料存在脆性大、强度低等缺点,限制了其实际应用,增加气凝胶基体强度成为目前研究的一个重点。随着纳米科技的进步,气凝胶力学性能改善可通过其与纳米材料的复合来实现[冯坚,高庆福,冯军宗,等.国防科技大学学报,2010,32(1):40-44]。
明胶是一种线形多肽高分子,包含有十八种不同的氨基酸,具有部分三股螺旋结构,分子链上存在-OH、-NH2、-COOH等活性官能团。明胶作为一种非常传统的水溶性天然高分子,具有无毒性、生物可降解和低成本等优点,并广泛的应用于食品、医药和摄影领域。明胶在高温下可溶解在水中,在低温下可凝成冻胶,是一种优良的制备气凝胶的基底材料[Emo C,Patrizia C,Femandes E G,et al.Biomacromolecules,2001,2:806-811;Elzoghby A O.J Control Release,2013,172:1075-1091]。
石墨烯可以看作是由碳原子通过杂化方式构筑而成具有单原子层厚度的二维平面结构,是第一种真正意义的二维晶体材料[Geim A K,Novoselov K S.Nat Mater,2007,6:183-191]。石墨烯单原子厚度的特征使该结构的原子能够暴露,表现出超高比表面积,这一系列优异的特性使得石墨烯在诸多领域中表现出潜在的应用前景和广阔的应用价值[Zhao J,Ren W,Cheng H-M.J Mater Chem,2012,22:20197-20202]。
发明内容
发明目的:针对现有技术中存在的不足,本发明的目的是提供一种具有高机械强度的复合气凝胶的制备方法,制备的复合气凝胶具有高机械强度,最大屈服强度可达42kPa,具有良好的实际应用性能。
技术方案:为了实现上述发明目的,本发明采用的技术方案为:
一种具有高机械强度的复合气凝胶的制备方法,在纳米纤维素和石墨烯的混合溶液中加入明胶,混合分散均匀,再加入双醛类化学交联剂,通过与纳米纤维素形成缩醛和与明胶形成席夫碱的方式调控气凝胶结构,制备出复合气凝胶。
所述的具有高机械强度的复合气凝胶的制备方法,步骤如下:
1)配置纳米纤维素和石墨烯分散液,超声分散混合均匀;
2)取明胶加入到步骤1)得到的混合分散液中,加热条件下搅拌分散均匀;
3)将双醛类交联剂加入到步骤2)得到的混合溶液中,搅拌分散均匀;
4)预冷步骤3)得到的溶液形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥机中冷冻干燥得到复合气凝胶样品;
5)将得到的复合气凝胶在烘箱中熟化。
步骤1)中,纳米纤维素为纤维素纳米纤丝、纤维素纳米晶和细菌纤维素中的一种。
步骤1)中,纳米纤维素和石墨烯的混合分散液稳定均匀纳米纤维素和石墨烯的总质量百分比浓度0.5~2.0wt%。
步骤2)中,加热搅拌温度40~70℃。
步骤2)中,纳米纤维素与明胶的质量比为0.5∶99.5~10∶90,氧化石墨烯与纳米纤维素质量比为1∶5~1∶1。
步骤3)中,所述双醛类交联剂为乙二醛、戊二醛和双醛淀粉中的一种。
步骤3)中,双醛类交联剂与纳米纤维素、石墨烯和明胶总质量的百分比为3~30wt%。
步骤3)中,在50~70℃、pH 5~6条件下反应2~6h,得到均匀透明的溶液。
步骤4)中,将步骤3)得到的溶液在4℃下预冷12h后形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥机中-91℃条件下冷冻干燥3天得到复合气凝胶样品。
步骤5)中,将得到的复合气凝胶在105~120℃的烘箱里熟化1~4h。
所述的具有高机械强度的复合气凝胶的制备方法所获得的复合气凝胶。
有益效果:与现有技术相比,本发明具有以下优势:
1)采用一维纳米纤维素和二维氧化石墨烯提供骨架结构,并通过氢键与明胶分子作用,提高复合气凝胶机械强度。
2)采用双醛类交联剂与纳米纤维素和明胶发生化学交联,分别生成缩醛和席夫碱,形成三维网状结构,进一步提高复合气凝胶机械强度,最大比压缩模量达2.5MPa·cm3/g。
3)使用的原料无毒无害,生物可降解,制备工艺简单,满足经济环保的要求。
4)所制备的复合气凝胶在隔热材料、节能材料、隔音材料、吸附剂等方面具有广泛的应用前景。
附图说明
图1是细菌纤维素-氧化石墨烯-明胶-双醛淀粉复合气凝胶的应力应变曲线图,图中标识表示明胶、细菌纤维素和氧化石墨烯的质量分数比;
图2是纤维素纳米纤丝-氧化石墨烯-明胶-乙二醛复合气凝胶外形照片图;
图3是纤维素纳米纤丝-氧化石墨烯-明胶-戊二醛复合气凝胶的表面电镜照片图;
图4是细菌纤维素-氧化石墨烯-明胶-双醛淀粉复合气凝胶在pH7.4的磷酸盐缓冲溶液中的平衡溶胀度图,横坐标为明胶、细菌纤维素和氧化石墨烯的质量分数比。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
1、TEMPO介导氧化法制备纤维素纳米纤丝分散液
首先将10g绝干纤维浆料浸泡在500mL去离子水中,依次加入TEMPO(0.16g)、NaBr(1.6g)在室温下连续机械搅拌使其混合均匀。然后添加120mL NaClO(7.6mmol/L)溶液开始氧化反应。反应期间将整个反应体系的pH值保持在10-10.5之间,直到pH值不再下降,添加50mL乙醇终止反应。将反应后的浆料浸泡在0.1mol/L的HCl中酸化洗涤。然后将洗涤后的浆料定量至1.5wt%,pH值调节到10,探头式超声细胞破碎仪(200W)处理20分钟,得到均匀透明的纤维素纳米纤丝分散液。
2、纤维素纳米纤丝-氧化石墨烯-明胶-双醛淀粉复合气凝胶的制备,步骤如下:
1)将上述纤维素纳米纤丝分散液和氧化石墨烯分散液(市售)共混,用探头式超声细胞破碎仪(200W)处理分散15分钟,得到均匀的混合分散液,其中纤维素纳米纤丝和氧化石墨烯的质量分数分别为0.8wt%和0.4wt%;
2)取明胶颗粒加入到上述纤维素纳米纤丝和氧化石墨烯的分散液中,在60℃下快速机械搅拌2h使其分散均匀。明胶、纤维素纳米纤丝和氧化石墨烯的绝干质量比为8.5∶1∶0.5;
3)在95℃下糊化双醛淀粉30min,将10wt%糊化后的戊二醛(相对于明胶、纤维素纳米纤丝和氧化石墨烯总质量)加入到混合均匀的纤维素纳米纤丝、氧化石墨烯与明胶的混合溶液中,加入适量水,控制水溶液中总固含量为1.5wt%;在温度60℃,pH等于5.5条件下反应3h得到均匀透明的溶液;
4)在4℃下,将步骤3)得到的均匀透明的溶液预冷12h后,形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥器中-91℃条件下冷冻干燥3天得到复合气凝胶样品;
5)将得到的复合气凝胶在110℃的烘箱里熟化2h;
6)取直径10mm、高度20mm的复合气凝胶,在万能力学试验机上测试复合气凝胶的应力-应变曲线,测试条件:加载速率2mm/min,应变70%。结果如图1所示,测得最大屈服强度42kPa,弹性模量72kPa。
纤维素纳米纤丝-氧化石墨烯-明胶-乙二醛复合气凝胶外形照片如图1所示;纤维素纳米纤丝-氧化石墨烯-明胶-戊二醛复合气凝胶的表面电镜照片如图2所示,气凝胶具有微观三维网状结构,有利于提高其机械强度。
实施例2
细菌纤维素-氧化石墨烯-明胶-双醛淀粉复合气凝胶的制备,步骤如下:
1)将细菌纤维素分散液(市售)和氧化石墨烯分散液(市售)共混,用探头式超声细胞破碎仪(200W)处理分散15分钟,得到均匀的混合分散液,其中细菌纤维素和氧化石墨烯的质量分数分别为0.6wt%和0.6wt%。
2)取明胶颗粒加入到上述细菌纤维素和氧化石墨烯的分散液中,在60℃下快速机械搅拌2h使其分散均匀。明胶、细菌纤维素和氧化石墨烯的绝干质量比为9∶0.5∶0.5;
3)在95℃下糊化双醛淀粉30min,将20wt%糊化后的双醛淀粉(相对于明胶、细菌纤维素和氧化石墨烯总质量)加入到混合均匀的细菌纤维素、氧化石墨烯与明胶的混合溶液中,加入适量水,控制水溶液中总固含量为2wt%;在温度60℃,pH等于5.5条件下反应3h得到均匀透明的溶液;
4)在4℃下,将步骤3)得到的均匀透明的溶液预冷12h后,形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥器中-91℃条件下冷冻干燥3天得到复合气凝胶样品;
5)将得到的复合气凝胶在105℃的烘箱里熟化2.5h;
6)取直径10mm、高度20mm的复合气凝胶,在万能力学试验机上测试复合气凝胶的应力-应变曲线,测试条件:加载速率2mm/min,应变70%。测得屈服强度27kPa,弹性模量62kPa。
细菌纤维素-氧化石墨烯-明胶-双醛淀粉复合气凝胶在pH7.4的磷酸盐缓冲溶液中的平衡溶胀度如图3所示,横坐标为明胶、细菌纤维素和氧化石墨烯的质量分数比。所得气凝胶具有良好的吸水润胀性能,交联结构保证了其在水相中的完整性。
不同含量配比的细菌纤维素-氧化石墨烯-明胶-双醛淀粉复合气凝胶的应力应变曲线如图1所示,图中标识表示明胶、细菌纤维素和氧化石墨烯的质量分数比。
实施例3
1、TEMPO介导氧化法制备纤维素纳米纤丝分散液
首先将10g绝干纤维浆料浸泡在500mL去离子水中,依次加入TEMPO(0.16g)、NaBr(1.6g)在室温下连续机械搅拌使其混合均匀。然后添加120mLNaClO(7.6mmol/L)溶液开始氧化反应。反应期间将整个反应体系的pH值保持在10-10.5之间,直到pH值不再下降,添加50mL乙醇终止反应。将反应后的浆料浸泡在0.1mol/L的HCl中酸化洗涤。然后将洗涤后的浆料定量至1.5wt%,pH值调节到10,探头式超声细胞破碎仪(200W)处理20分钟,得到均匀透明的纤维素纳米纤丝分散液。
2、纤维素纳米纤丝-明胶-双醛淀粉复合气凝胶的制备,步骤如下:
1)取明胶颗粒加入到上述纤维素纳米纤丝分散液中,在60℃下快速机械搅拌2h使其分散均匀。明胶、纤维素纳米纤丝的绝干质量比为8.5∶1.5;
2)在95℃下糊化双醛淀粉30min,将10wt%糊化后的戊二醛(相对于明胶、和纤维素纳米纤丝总质量)加入到混合均匀的纤维素纳米纤丝与明胶的混合溶液中,加入适量水,控制水溶液中总固含量为1.5wt%;在温度60℃,pH等于5.5条件下反应3h得到均匀透明的溶液;
3)在4℃下,将步骤2)得到的均匀透明的溶液预冷12h后,形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥器中-91℃条件下冷冻干燥3天得到复合气凝胶样品;
4)将得到的复合气凝胶在110℃的烘箱里熟化2h;
5)取直径10mm、高度20mm的复合气凝胶,在万能力学试验机上测试复合气凝胶的应力-应变曲线,测试条件:加载速率2mm/min,应变70%。测得最大屈服强度15kPa,弹性模量30kPa。可见,未添加氧化石墨烯的复合气凝胶机械强度相对于添加氧化石墨烯的复合气凝胶有显著下降。
实施例4
细菌纤维素-氧化石墨烯-明胶复合气凝胶的制备,步骤如下:
1)将细菌纤维素分散液(市售)和氧化石墨烯分散液(市售)共混,用探头式超声细胞破碎仪(200W)处理分散15分钟,得到均匀的混合分散液,其中细菌纤维素和氧化石墨烯的质量分数分别为0.6wt%和0.6wt%。
2)取明胶颗粒加入到上述细菌纤维素和氧化石墨烯的分散液中,在60℃下快速机械搅拌2h使其分散均匀。明胶、细菌纤维素和氧化石墨烯的绝干质量比为9∶0.5∶0.5;
3)在4℃下,将步骤2)得到的均匀透明的溶液预冷12h后,形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥器中-91℃条件下冷冻干燥3天得到复合气凝胶样品;
4)取直径10mm、高度20mm的复合气凝胶,在万能力学试验机上测试复合气凝胶的应力-应变曲线,测试条件:加载速率2mm/min,应变70%。测得屈服强度22kPa,弹性模量40kPa。未经双醛淀粉交联的复合气凝胶在水中润胀后不能保持完整形态,随时间延长,复合气凝胶结构逐渐瓦解。

Claims (4)

1.一种具有高机械强度的复合气凝胶的制备方法,其特征在于,在纳米纤维素和石墨烯的混合溶液中加入明胶,混合分散均匀,再加入双醛类化学交联剂,通过形成缩醛和席夫碱结构的方式调控气凝胶结构,制备出复合气凝胶;步骤如下:
1)配置纳米纤维素和石墨烯分散液,超声分散混合均匀;纳米纤维素和石墨烯的混合分散液稳定均匀,纳米纤维素和石墨烯的总质量百分比浓度0.5~2.0wt%;
2)取明胶加入到步骤1)得到的混合分散液中,加热条件下搅拌分散均匀;加热搅拌温度40~70℃,纳米纤维素与明胶的质量比为0.5∶99.5~10∶90,石墨烯与纳米纤维素质量比为1∶5~1∶1;
3)将双醛类交联剂加入到步骤2)得到的混合溶液中,在50~70℃、pH 5~6条件下反应2~6h,得到均匀透明的溶液;所述双醛类交联剂为乙二醛、戊二醛和双醛淀粉中的一种,双醛类交联剂占纳米纤维素、石墨烯和明胶总质量的百分比为3~30wt%;
4)预冷步骤3)得到的溶液形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥机中冷冻干燥得到复合气凝胶样品;
5)将得到的复合气凝胶在105~120℃的烘箱里熟化1~4h。
2.根据权利要求1所述的具有高机械强度的复合气凝胶的制备方法,其特征在于,步骤1)中,纳米纤维素为纤维素纳米纤丝、纤维素纳米晶和细菌纤维素中的一种。
3.根据权利要求1所述的具有高机械强度的复合气凝胶的制备方法,其特征在于,步骤4)中,将步骤3)得到的溶液在4℃下预冷12h后形成水凝胶,然后用液氮迅速冷冻,在冷冻干燥机中-91℃条件下冷冻干燥3天得到复合气凝胶样品。
4.权利要求1~3任一项所述的具有高机械强度的复合气凝胶的制备方法所获得的复合气凝胶。
CN201811343652.XA 2018-11-12 2018-11-12 一种具有高机械强度的复合气凝胶的制备方法 Active CN109293982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811343652.XA CN109293982B (zh) 2018-11-12 2018-11-12 一种具有高机械强度的复合气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811343652.XA CN109293982B (zh) 2018-11-12 2018-11-12 一种具有高机械强度的复合气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN109293982A CN109293982A (zh) 2019-02-01
CN109293982B true CN109293982B (zh) 2021-04-30

Family

ID=65146513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811343652.XA Active CN109293982B (zh) 2018-11-12 2018-11-12 一种具有高机械强度的复合气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN109293982B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754951B (zh) * 2019-02-19 2020-07-24 浙江理工大学 一种纤维素-石墨烯复合透明导电膜及其制备方法
CN110075768A (zh) * 2019-04-30 2019-08-02 华南理工大学 双醛淀粉纳米晶/石墨烯复合气凝胶及其制备方法与应用
CN111635554B (zh) * 2020-06-23 2021-06-22 中南大学 明胶/羟乙基纤维素-SiO2复合气凝胶及其制备方法与应用
CN112940284A (zh) * 2021-01-27 2021-06-11 嘉兴职业技术学院 速散热石墨烯/纤维素水凝胶及其降温贴
CN113121953B (zh) * 2021-03-24 2022-08-12 云南大学 三维整体石墨烯气凝胶-聚亚胺复合材料及其制备方法
CN115490925A (zh) * 2022-09-16 2022-12-20 西南大学 一种氧化纤维素纳米纤丝/明胶复合气凝胶的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348545A (zh) * 2015-12-03 2016-02-24 郑州大学 一种制备超高强度明胶或胶原基复合水凝胶的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348545A (zh) * 2015-12-03 2016-02-24 郑州大学 一种制备超高强度明胶或胶原基复合水凝胶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems;Shok Yin Ooi et.al.;《Industrial Crops and Products》;20151214;第93卷;第2.2节,第230页右栏第2段 *
Graphene-Oxide-Sheet-Induced Gelation of Cellulose and Promoted Mechanical Properties of Composite Aerogels;Jing Zhang et.al.;《The Journal of Physical Chemistry》;20120320;第116卷;第2.2节,第4节 *

Also Published As

Publication number Publication date
CN109293982A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109293982B (zh) 一种具有高机械强度的复合气凝胶的制备方法
Zhang et al. Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior
WO2018219160A1 (zh) 一种高强度网络结构纳米载体材料的制备方法
Abe et al. Cellulose nanofiber-based hydrogels with high mechanical strength
Zhang et al. Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose
Hu et al. Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties
CN105153438A (zh) 高强度高溶胀性纳米纤维素/聚乙烯醇复合水凝胶的制备方法
CN105692587B (zh) 一种利用天然结构高分子纳米纤维气凝胶制备氮掺杂的碳气凝胶及其制备方法
Chen et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment
CN112957525B (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
Zhuang et al. A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial
Sethi et al. Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application
NL2030477B1 (en) Underwater Elastic Cellulose Aerogel and Preparation Method and Application Thereof
CN110483830B (zh) 超轻高弹丝素微纳米纤维气凝胶及其制备方法与应用
CN113527753B (zh) 一种常压制备的生物基泡沫材料及其制备方法和应用
Huang et al. Sodium alginate/carboxyl-functionalized graphene composite hydrogel via neodymium ions coordination
Wang et al. Bimetallic ions synergistic cross‐linking high‐strength rapid self‐healing antibacterial hydrogel
Jia et al. Construction of highly stretchable silica/polyacrylamide nanocomposite hydrogels through hydrogen bond strategy
Duong et al. Nanocellulose aerogels as thermal insulation materials
CN111825857B (zh) 一种水凝胶及其制备方法和应用
Beaumont et al. Cellulose nanofibrils: From hydrogels to aerogels
Maraschin et al. Chitosan nanocomposites with graphene-based filler
CN107670596A (zh) 氧化石墨烯聚海藻酸钠丙烯酸凝胶的制备方法
CN109912836B (zh) 氨基化羟基磷灰石/壳聚糖复合气凝胶及其制备方法与应用
Guajardo et al. Comparative study of graphene oxide-gelatin aerogel synthesis: chemical characterization, morphologies and functional properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240513

Address after: Room 0602, 5th Floor, Tianxingjian Business Building, No. 47 Fuxing Road, Haidian District, Beijing, 100080

Patentee after: Zhongke Guoxu (Beijing) Holdings Co.,Ltd.

Country or region after: China

Address before: Longpan road Xuanwu District of Nanjing city of Jiangsu Province, No. 159 210037

Patentee before: NANJING FORESTRY University

Country or region before: China