CN109277095B - Silicon-containing alumina carrier and preparation method and application thereof - Google Patents

Silicon-containing alumina carrier and preparation method and application thereof Download PDF

Info

Publication number
CN109277095B
CN109277095B CN201710595986.5A CN201710595986A CN109277095B CN 109277095 B CN109277095 B CN 109277095B CN 201710595986 A CN201710595986 A CN 201710595986A CN 109277095 B CN109277095 B CN 109277095B
Authority
CN
China
Prior art keywords
silicon
physical pore
agent
pore
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710595986.5A
Other languages
Chinese (zh)
Other versions
CN109277095A (en
Inventor
任靖
张勇
李顺新
宋春利
姜艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Catalyst Co
Original Assignee
China Petroleum and Chemical Corp
Sinopec Catalyst Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Catalyst Co filed Critical China Petroleum and Chemical Corp
Priority to CN201710595986.5A priority Critical patent/CN109277095B/en
Publication of CN109277095A publication Critical patent/CN109277095A/en
Application granted granted Critical
Publication of CN109277095B publication Critical patent/CN109277095B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to the field of catalyst carrier preparation, and discloses a silicon-containing alumina carrier, a preparation method and application thereof, wherein the method comprises the following steps of (1) carrying out first contact on a first silicon-containing solution and a first physical pore-enlarging agent, and carrying out second contact on a second silicon-containing solution and a second physical pore-enlarging agent; (2) mixing, molding, drying and roasting the contacted first physical pore-enlarging agent and the contacted second physical pore-enlarging agent obtained in the step (1) and pseudo-boehmite to obtain a silicon-containing alumina carrier; wherein, the first silicon-containing solution and the second silicon-containing solution both contain silicate ester, the particle size of the first physical pore-enlarging agent is 100-540 meshes, and the particle size of the second physical pore-enlarging agent is 900-2000 meshes. The alumina carrier containing silicon prepared by the method has higher mechanical strength and a suitable pore structure, and is particularly suitable for the field of residual oil hydrodemetallization.

Description

Silicon-containing alumina carrier and preparation method and application thereof
Technical Field
The invention relates to the field of catalyst carrier preparation, in particular to a silicon-containing alumina carrier and a preparation method and application thereof.
Background
With the improvement of the deep processing level of raw materials in the world, the main energy structure gradually develops towards macromolecules and high carbon, especially for China with the general heavy crude oil. In order to effectively solve the problems of catalyst activity reduction or inactivation and the like caused by overlarge diffusion resistance of heavy oil components in catalyst pore channels, heavy metal impurity deposition and coking, the alumina carrier widely used in the industries of petrochemical industry and the like is urgently required to have the characteristics of large pore volume and large pore diameter. The large pore size is favorable for macromolecular compounds to diffuse into the catalyst particles, and the large pore volume is favorable for improving the metal or coke capacity.
US4448896 discloses a process for preparing a residual oil hydrodemetallization catalyst, which comprises at least one group viii and/or group vib metal element as an active component, supported on a large pore alumina carrier. The preparation method of the residual oil hydrodemetallization catalyst comprises the steps of uniformly kneading pseudo-boehmite and carbon black powder, forming, drying, roasting in an oxygen-containing atmosphere to prepare an alumina carrier, then impregnating VIII-group and VIB-group active metal components on the carrier, or uniformly kneading the pseudo-boehmite, the carbon black powder and a compound containing the VIII-group and VIB-group active metal components, forming, drying, and roasting in an oxygen-containing atmosphere to prepare the hydrodemetallization catalyst.
CN1160602A discloses a large-aperture alumina carrier and a preparation method thereof. The preparation process includes mixing pseudoboehmite with physical pore-enlarging agent such as carbon black and chemical pore-enlarging agent such as phosphide, kneading, forming, drying and roasting to obtain alumina carrier. The method can overcome the defects of using a physical pore-expanding agent and a chemical pore-expanding agent separately, but the mechanical strength of the carrier needs to be further improved.
CN1597868A discloses a petroleum wax hydrogenation catalyst and a preparation method thereof. The method adopts silicon-containing and phosphorus-containing aluminum hydroxide prepared by a CO2 neutralization method as a carrier material of a catalyst, wherein silicon and phosphorus in the silicon-containing and phosphorus-containing aluminum hydroxide are added step by step, part of silicon-containing and phosphorus-containing compounds are mixed with sodium metaaluminate solution and then are gelatinized, part of silicon-containing compounds are added after the gelatinization or in the aging process, and most of phosphorus-containing compounds are added in the peptization or slurrying process after aluminum hydroxide is generated and washed. The method ensures that most of silicon and phosphorus are distributed on the surface of the aluminum hydroxide, and effectively plays the role of synergistically regulating the physicochemical property and the pore structure of the surface of the catalyst by the silicon and the phosphorus. The catalyst prepared by the method has low pore volume and pore diameter, and is not suitable for the field of heavy oil and residual oil hydrodemetallization.
CN101433863A discloses a composite oxide carrier and a preparation method thereof. The method comprises the steps of coprecipitating precursors of alumina, silicon dioxide and zirconia with an alkali solution, adding a surfactant to improve the pore structure and the acidity and alkalinity, washing, filtering and roasting the obtained precipitate at a high temperature to obtain composite oxide powder, and extruding and molding the composite oxide powder to obtain the carrier. The pore structure of the carrier prepared by the method is also not suitable for the field of heavy oil and residual oil hydrodemetallization.
Disclosure of Invention
The invention aims to overcome the problems of inapplicability of pore structure and poor mechanical strength of the silicon-containing alumina carrier in the prior art, and provides a preparation method of the silicon-containing alumina carrier.
In order to achieve the above object, the present invention provides, in one aspect, a method for preparing a silicon-containing alumina support, the method comprising the steps of,
(1) carrying out first contact on the first silicon-containing solution and a first physical pore-enlarging agent, and carrying out second contact on the second silicon-containing solution and a second physical pore-enlarging agent;
(2) mixing, molding, drying and roasting the contacted first physical pore-enlarging agent and the contacted second physical pore-enlarging agent obtained in the step (1) and pseudo-boehmite to obtain a silicon-containing alumina carrier;
wherein, the first silicon-containing solution and the second silicon-containing solution both contain silicate ester, the particle size of the first physical pore-enlarging agent is 100-540 meshes, and the particle size of the second physical pore-enlarging agent is 900-2000 meshes.
Preferably, the first physical pore-expanding agent and the second physical pore-expanding agent are respectively selected from one or more of carbon black powder, charcoal or wood dust; more preferably, the first physical pore-expanding agent and the second physical pore-expanding agent are both carbon black powder.
Preferably, the weight ratio of the first physical pore-expanding agent to the second physical pore-expanding agent is 2: 1-3:1, more preferably 2.5: 1-3:1. More preferably, the first physical pore-expanding agent is added in an amount of 10 to 15 wt% based on the dry basis of alumina. More preferably, the second physical pore-expanding agent is added in an amount of 5 to 10 wt% based on the dry basis of alumina.
Preferably, the dosage ratio of the first silicon-containing solution to the second silicon-containing solution is 2-12: 1. more preferably, the combined amount of the first and second silicon containing solutions is from 2.5 to 7 wt.% on a dry basis of alumina, calculated as silica.
Preferably, the volume of the first silicon-containing solution is 30-50% of the saturated water absorption capacity of the first physical pore-enlarging agent. More preferably, the volume of the second silicon-containing solution is the saturated water absorption capacity of the second physical pore-enlarging agent.
In a second aspect, the present invention provides a silicon-containing alumina support obtained by the above preparation method.
The third aspect of the invention provides an application of the silicon-containing alumina carrier in preparing a hydrodemetallization catalyst, in particular an application in a heavy oil and residual oil hydrodemetallization catalyst.
According to the technical scheme, the method comprises the steps of dipping a silicon dioxide precursor into two physical pore-expanding agents with different particle sizes, kneading the dipped physical pore-expanding agents and pseudo-boehmite for molding, roasting molded objects in a nitrogen atmosphere, and then roasting the molded objects in an air atmosphere to obtain the silicon-containing alumina carrier. When the silicon dioxide is roasted in the nitrogen atmosphere, the silicon dioxide and the aluminum oxide on the surface act to combine to form the composite oxide. When the physical pore-expanding agent is baked in the air atmosphere, the physical pore-expanding agent is oxidized and removed. On one hand, the silicon dioxide plays a role in supporting a framework, and on the other hand, the carbon deposition resistance and sintering resistance of the catalyst are improved, so that the alumina carrier with good mechanical property, pore structure and catalytic effect is obtained. Meanwhile, the gas formed during oxidation of the physical pore-expanding agent can play a good role in pore expansion, and the physical pore-expanding agents with different particle sizes can be selected to effectively adjust the pore structure of the carrier.
Further, the present application makes the degree of impregnation of the silica precursor different in the two physical pore-enlarging agents of different particle sizes, ensuring that the first physical pore-enlarging agent of larger particle size is not completely impregnated, and the second physical pore-enlarging agent of smaller particle size is completely impregnated. Through the technical scheme, a silicon dioxide shell layer is formed in the first physical pore-expanding agent, so that a good framework supporting effect is achieved, collapse of macropores is prevented, and mass transfer and diffusion of reactants (such as residual oil molecules) are facilitated through corresponding pore channels; in the second physical pore-enlarging agent, the silicon dioxide is loaded on the contact surface of the second physical pore-enlarging agent and the alumina carrier and interacts with the alumina, and due to the existence of the silicon dioxide, the acidity of the obtained pore-site carrier is reduced, the carbon deposition resistance and sintering resistance of the corresponding catalyst are improved, and the service life of the catalyst is prolonged.
Detailed Description
The endpoints of the ranges and any values disclosed herein are not limited to the precise range or value, and such ranges or values should be understood to encompass values close to those ranges or values. For ranges of values, between the endpoints of each of the ranges and the individual points, and between the individual points may be combined with each other to give one or more new ranges of values, and these ranges of values should be considered as specifically disclosed herein.
The preparation method of the silicon-containing alumina carrier comprises the following steps,
(1) carrying out first contact on the first silicon-containing solution and a first physical pore-enlarging agent, and carrying out second contact on the second silicon-containing solution and a second physical pore-enlarging agent;
(2) mixing, molding, drying and roasting the contacted first physical pore-enlarging agent and the contacted second physical pore-enlarging agent obtained in the step (1) and pseudo-boehmite to obtain a silicon-containing alumina carrier;
wherein, the first silicon-containing solution and the second silicon-containing solution both contain silicate ester, the particle size of the first physical pore-enlarging agent is 100-540 meshes, and the particle size of the second physical pore-enlarging agent is 900-2000 meshes.
According to the invention, the first physical pore-expanding agent and the second physical pore-expanding agent are not particularly limited, and can play a pore-expanding effect in the preparation process of the silicon-containing alumina carrier. The first physical pore-expanding agent and the second physical pore-expanding agent are respectively selected from one or more of carbon black powder, charcoal or wood chips in view of improving the specific surface area and pore volume of the obtained siliceous alumina carrier. In view of fully absorbing the silicon-containing solution and facilitating control of the pore structure of the obtained silicon-containing alumina carrier, the first physical pore-enlarging agent and the second physical pore-enlarging agent are preferably both carbon black powder. From the viewpoint of obtaining pores with different sizes, it is preferable that the particle size of the first physical pore-enlarging agent is 200-.
According to the invention, the dosage of the first physical pore-expanding agent and the second physical pore-expanding agent is determined according to the property of the silicon-containing alumina carrier to be obtained. In order to improve the specific surface area, the pore volume and the like of the siliceous alumina carrier and obtain the siliceous alumina carrier with good performance, the weight ratio of the first physical pore-expanding agent to the second physical pore-expanding agent is preferably 2-3: 1, more preferably 2.5 to 3: 1.
in order to adjust the properties of the obtained siliceous alumina carrier according to the present invention, it is preferable that the first physical pore-expanding agent is added in an amount of 10 to 15 wt%, more preferably 12 to 14 wt%, based on the dry weight of alumina; more preferably, the second physical pore-expanding agent is added in an amount of 5 to 10 wt%, and still more preferably 6 to 9 wt% based on the dry weight of alumina.
In the present invention, the alumina dry basis refers to pseudo-boehmite calculated as alumina, which corresponds to alumina in the finally obtained silica-containing alumina carrier.
According to the present invention, the silicate is contacted with the physical pore-enlarging agent in the form of the first silicon-containing solution and the second silicon-containing solution, with the object of uniformly contacting the silicate with the physical pore-enlarging agent and sufficiently immersing the silicate into the interior of the physical pore-enlarging agent. From the aspect of facilitating the contact operation, it is preferable that the solvents of the first silicon-containing solution and the second silicon-containing solution are respectively selected from one or more of ethanol, methanol, and acetone, and ethanol is preferable.
According to the present invention, the silicate is not particularly limited, and preferably, the silicate is a fatty alcohol orthosilicate and/or a fatty alcohol metasilicate. The aliphatic group in the aliphatic orthosilicic acid ester and the aliphatic metasilicate ester may be an aliphatic group having from about C1 to about C6, such as methyl, ethyl, propyl (n-propyl, isopropyl), butyl (n-butyl, t-butyl, sec-butyl, etc.), pentyl (n-pentyl, isopentyl, neopentyl, etc.), hexyl (n-hexyl, 2-methylpentyl, 3-methylpentyl, 2-dimethylbutyl, 2, 3-dimethylbutyl, etc.). Preferably, the silicate is one or more of methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate and butyl orthosilicate.
In the present invention, the mode of the contact is not particularly limited, and may be selected as needed, and for example, immersion, spraying, misting, or the like may be used as long as the silicon-containing solution is absorbed by the physical pore-expanding agent. In order to ensure that the surface of the physical pore-expanding agent is uniformly impregnated with the silicon-containing solution, the silicon-containing solution can be uniformly contacted in the impregnation process in a manner of auxiliary stirring, rotation and the like. Specifically, the solution may be atomized and then sprayed into a physical pore-enlarging agent that continuously rotates, and the atomization may be performed by means of a nozzle, ultrasonic waves, high-speed air flow, and the like, for example, a rotating pan, a sugar-coating machine, and the like.
According to the invention, in the contact process of the silicon-containing solution and the physical pore-enlarging agent, the dosage of the silicon-containing solution can be determined according to the requirement and can be above the saturated water absorption capacity of the physical pore-enlarging agent, namely, the physical pore-enlarging agent fully absorbs the silicon-containing solution to reach saturation (hereinafter also referred to as saturated impregnation); or less than the saturated water absorption of the physical pore-expanding agent, i.e., the silicon-containing solution is impregnated into only a portion of the internal pores of the physical pore-expanding agent (hereinafter also referred to as unsaturated impregnation). In the latter case, in order to uniformly contact the silicon-containing solution with all the physical pore-expanding agent particles, the silicon-containing solution is preferably added to the physical pore-expanding agent under stirring, rotation, or the like, and more preferably, the above contact is performed by spraying, atomizing, or the like, for example. By the contact mode, the silicon-containing solution fully enters the pores of the physical pore-expanding agent; when the usage amount of the silicon-containing solution is less than the saturated water absorption amount of the physical pore-enlarging agent, the silicon-containing solution can only enter the outer layer of the physical pore-enlarging agent and does not enter the inner core part of the physical pore-enlarging agent, so that the silicon dioxide shell is obtained by roasting.
According to a preferred embodiment of the present invention, the first silicon-containing solution and the second silicon-containing solution are used in a ratio of 2 to 12:1, preferably 4 to 10:1, calculated as silica, in order to obtain a silicon-containing alumina catalyst with good pore distribution.
According to a preferred embodiment of the present invention, in order to obtain a siliceous alumina catalyst having good mechanical strength, the first siliceous solution and the second siliceous solution are used in a total amount of 2.5 to 7% by weight, preferably 3 to 6% by weight, based on the silica, of alumina on a dry basis.
According to a preferred embodiment of the present invention, in order to form the silica shell layer by the first physical pore-expanding agent, the first physical pore-expanding agent is preferably subjected to unsaturated impregnation. More preferably, the volume of the first silicon-containing solution is 30-50%, more preferably 30-40% of the saturated water absorption capacity of the first physical pore-enlarging agent.
According to the present invention, the second physical pore-expanding agent may be subjected to unsaturated impregnation or saturated impregnation. In order to sufficiently form pores by the second physical pore-enlarging agent, the volume of the second silicon-containing solution is preferably 80% or more, more preferably 90% or more, and further preferably 100% of the saturated water absorption capacity of the second physical pore-enlarging agent.
According to the present invention, the pseudoboehmite added in the preparation of the silicon-containing alumina carrier is not particularly limited, and may be a pseudoboehmite conventionally used in the preparation of an alumina carrier in the art, a commercially available product, or may be prepared by a conventional method.
According to the invention, extrusion aids may also be added during the mixing in step 2). As the extrusion aid, an extrusion aid used in the preparation of an alumina carrier conventionally used in the art can be used, and can be one or more selected from sesbania powder, starch and methylcellulose, and sesbania powder is preferred. Preferably, the extrusion aid is added in an amount of 3 to 5 wt%, preferably 4 to 5 wt%, of the alumina dry basis.
According to the invention, a peptizing agent may also be added during the mixing in step 2). As the peptizing agent, there may be used a peptizing agent conventionally used in the art for preparing an alumina support, and there may be one or more selected from formic acid, acetic acid, citric acid, and nitric acid. The amount of the peptizing agent added can be determined according to the desired molding effect. Preferably, the peptizing agent is added in an amount of 3 to 10 wt%, more preferably 5 to 7 wt%, of the alumina dry basis. In order to facilitate the mixing of the peptizing agent, the peptizing agent may be diluted with an appropriate solvent and then mixed with other materials, for example, water may be used for dilution.
In the invention, the first physical pore-enlarging agent, the contacted second physical pore-enlarging agent and the pseudo-boehmite can be used for preparing the silicon-containing alumina carrier by the existing method for preparing the alumina carrier, and can be obtained by mixing, molding, drying and roasting in sequence.
The mixing can be carried out by using the existing equipment which can be used for mixing materials, such as a mixer, a stirrer and the like, and the mixing conditions are not particularly limited, so that the aim of uniform mixing can be fulfilled.
The forming can be carried out by adopting the existing equipment which can be used for forming the carrier, such as a bar extruder, a tablet press and the like, and the shape of the carrier can be specifically selected according to the requirement.
The drying conditions are not particularly limited, and the molded material may be dried. For example, the drying conditions may include: the temperature is 100-130 ℃ and the time is 1-10 hours, preferably, the temperature is 110-120 ℃ and the time is 4-6 hours.
As the conditions of the calcination, there may be included: the firing is performed in a nitrogen atmosphere and then in an air atmosphere. Specifically, the roasting temperature under the nitrogen atmosphere is 400-600 ℃, and preferably 450-500 ℃; the calcination time is 4 to 6 hours, preferably 5 to 6 hours. The roasting temperature under the air atmosphere is 600-900 ℃, and preferably 700-800 ℃; the calcination time is 4 to 8 hours, preferably 5 to 7 hours.
The calcination may be carried out in a tube furnace, and the entire tube furnace is filled with the calcination atmosphere before the calcination, but other suitable equipment capable of performing the calcination operation may be selected.
The invention also provides the silicon-containing alumina carrier obtained by the preparation method.
The invention also provides the application of the silicon-containing alumina carrier in the preparation of a hydrodemetallization catalyst.
The present invention will be described in detail below by way of examples. In the following examples, the carbon black powder is activated carbon powder obtained by pulverizing and sieving coconut shell activated carbon produced by Tianjin red dragon water purification material science and technology limited.
Using N2The physical adsorption-desorption method is used for representing the pore structures of the alumina carriers obtained in the following examples and comparative examples, and ASAP-2420 type N is adopted2Physical adsorption-desorption instrument. The specific operation is as follows: a small amount of samples are taken to be treated for 3 to 4 hours in vacuum at the temperature of 300 ℃, and finally, the product is placed under the condition of liquid nitrogen low temperature (-200 ℃) to be subjected to nitrogen absorption-desorption test. Wherein the surface area is obtained according to the BET equation and the pore size distribution and pore volume are obtained according to the BJH model.
The alumina support components obtained in the examples and comparative examples were characterized by X-ray fluorescence spectroscopy (XRF) by the following procedure: the performance index of the ZSX-100e type X-ray fluorescence spectrometer manufactured by RIGAKU company of Japan is as follows: x-ray tube Be window thickness: 30 mu m; power: 4 kW; output voltage: 20-60 kV; output current: 2-150 mA; 2 θ angle reproducibility 0.0001 °; the 2 theta angle accuracy is 0.0002 deg..
Example 1
1) Weighing 15 g of first carbon black powder with the particle size of 400 meshes, placing the first carbon black powder into a spraying rolling pot, and spraying 7.5mL (the using amount is 50 percent of the saturated water absorption amount of the first carbon black powder, wherein the using amount is equivalent to 4 g of silicon dioxide) of ethyl orthosilicate ethanol solution to the first carbon black powder in an unsaturated dipping mode by using a nozzle atomization mode under the rotation state of 90 r/min.
2) 5g of second carbon black powder with the particle size of 1300 meshes is weighed and placed in a spraying rolling pot, and 5mL of ethyl orthosilicate ethanol solution (the amount is the saturated water absorption amount of the second carbon black powder, which is equivalent to 0.5 g of silicon dioxide) is sprayed and soaked in the second carbon black powder in a saturated soaking mode in an atomizing mode under the rotation state of 90 r/min.
3) Fully mixing the first carbon black powder obtained in the step 1) and the second carbon black powder obtained in the step 2) with 150 g of pseudo-boehmite (produced by Wenzhou refined crystal alumina factories, the content of alumina dry basis is 65 wt%) and 2g of sesbania powder, adding 85mL of aqueous solution dissolved with 2g of acetic acid into the materials, uniformly kneading, extruding and forming. The shaped wet mass was dried at 110 ℃ for 8 hours. And (3) placing the dried material in a tubular furnace, introducing nitrogen into the tubular furnace to fill the whole hearth with the nitrogen, roasting for 6 hours at 400 ℃, then discharging the nitrogen, introducing air, and roasting for 6 hours at 600 ℃ to obtain the silicon-containing alumina carrier S1, wherein the carrier properties are shown in Table 1.
Example 2
A silicon-containing alumina support was prepared as in example 1, except that: the particle size of the first carbon black powder was 325 mesh, the addition amount was 12.5 g, and the first carbon black powder was spray-soaked with 3.8mL of an ethanol solution of methyl orthosilicate (the amount used was 30% of the saturated water absorption amount of the first carbon black powder, which is equivalent to 2g of silica-containing powder). The particle size of the second carbon black powder is 1100 meshes, the addition amount is 7.5 g, and 7.5mL of an ethanol solution of methyl orthosilicate (the amount is the saturated water absorption amount of the second carbon black powder, which is equivalent to 1 g of silicon dioxide) is sprayed and soaked with the second carbon black powder. The calcination temperature in a nitrogen atmosphere was 500 ℃ and the calcination temperature in an air atmosphere was 750 ℃. A siliceous alumina support S2 was prepared, the support properties are shown in Table 1.
Example 3
A silicon-containing alumina support was prepared as in example 1, except that: the particle size of the first carbon black powder was 540 mesh, the addition amount was 10 g, and the first carbon black powder was spray-soaked with 4.5mL of an ethanol solution of methyl orthosilicate (the amount was 45% of the saturated water absorption amount of the first carbon black powder, which corresponds to 6 g of silica). The particle size of the second carbon black powder is 1800 meshes, the adding amount is 10 g, and 10mL of ethyl alcohol solution of methyl orthosilicate (the using amount is the saturated water absorption amount of the second carbon black powder, wherein the using amount is equivalent to 0.75 g of silicon dioxide) is used for spray-soaking the second carbon black powder. The calcination temperature under a nitrogen atmosphere was 600 ℃. The calcination temperature was 900 ℃ in an air atmosphere. A siliceous alumina support S3 was prepared, the support properties are shown in Table 1.
Example 4
A silicon-containing alumina support was prepared as in example 1, except that: the dosage of the ethyl orthosilicate ethanol solution in the step 1) is the saturated water absorption capacity of the first carbon black powder (the contained ethyl orthosilicate amount is not changed). A siliceous alumina support S4 was prepared, the support properties are shown in Table 1.
Example 5
A silicon-containing alumina support was prepared as in example 1, except that: the dosage of the ethyl orthosilicate ethanol solution in the step 2) is 50 percent of the saturated water absorption capacity of the second carbon black powder (the contained amount of the ethyl orthosilicate is not changed). A siliceous alumina support S5 was prepared, the support properties are shown in Table 1.
Comparative example 1
A silicon-containing alumina support was prepared as in example 1, except that: the first carbon black powder and the second carbon black powder are not dipped, namely the steps 1) and 2) are not carried out, and the same amount of the first carbon black powder, the second carbon black powder and the ethanol solution of the ethyl orthosilicate used in the steps 1) and 2) are directly carried out to the step 3). Finally, the silicon-containing alumina carrier DS1 is prepared, and the properties of the carrier are shown in Table 1.
Comparative example 2
A silicon-containing alumina support was prepared as in example 1, except that: the first carbon black powder is not impregnated, namely the step 1) is not carried out, and the same amount of the first carbon black powder and the ethanol solution of the ethyl orthosilicate in the step 1) and the impregnated second carbon black powder obtained in the step 2) are directly subjected to the step 3). Finally, the silicon-containing alumina carrier DS2 is prepared, and the properties of the carrier are shown in Table 1.
Comparative example 3
A silicon-containing alumina support was prepared as in example 1, except that: the second carbon black powder is not impregnated, namely the step 2) is not carried out, and the same amount of the second carbon black powder and the ethanol solution of the ethyl orthosilicate in the step 2) and the impregnated first carbon black powder obtained in the step 1) are directly subjected to the step 3). Finally, the silicon-containing alumina carrier DS3 is prepared, and the properties of the carrier are shown in Table 1.
TABLE 1
Figure BDA0001355909660000111
*: pore distribution refers to the percentage of the total pore volume occupied by the pore volume of pores within the corresponding diameter range in the support.
The results in table 1 show that the silica-containing alumina carrier prepared by the method of the present invention has a large pore size, a large pore volume, a concentrated pore distribution, and good mechanical strength. The silicon-containing alumina carrier prepared by the method is suitable for the field of heavy oil and residual oil hydrodemetallization.
Preparation example
Hydrodemetallization catalysts C1-5 and DC1-3 were prepared using the siliceous alumina carriers S1-5 and DS1-3 prepared in the above examples and comparative examples as carriers. The specific process is as follows: weighing 100 g of silicon-containing alumina carrier, and soaking with 100mL of active metal (in MoO)39.5g/100mL of Mo and 1.2g/100mL of Ni in terms of NiO) for 5 hours, filtering the soaked materials to remove filtrate, drying for 5 hours at 110 ℃, and roasting the dried materials for 4 hours at 500 ℃ in an air atmosphere to prepare the hydrodemetallization catalyst.
Test example
This test example was conducted to evaluate the catalytic activity of the hydrodemetallization catalyst prepared in the above preparation example.
Raw oil shown in Table 2 is used as a raw material, the catalytic performance of silicon-containing hydrodemetallization catalysts C1-5 and DC1-3 is evaluated on a 200 ml hydrogenation reaction device, the catalysts are strips with the length of 2-3 mm, the loading amount of the catalysts is 100ml, the reaction temperature is 375 ℃, the hydrogen partial pressure is 15MPa, and the liquid hourly space velocity is 1.0 hour-1The volume ratio of hydrogen to oil was 1000, the content of each impurity in the produced oil was measured after 200 hours of reaction, the relative metal removal rate was calculated, and the evaluation results are shown in table 3.
TABLE 2 Properties of the feed oils
Item Content (wt.)
S,wt% 4.21
Ni,μg/g 21.5
V,μg/g 83.2
TABLE 3 comparison of catalyst hydrogenation performance
C1 C2 C3 C4 C5 DC1 DC2 DC3
Metal removal rate,% 82.4 84.3 83.5 79.4 81.4 59.7 63.5 65.3
As can be seen from the results in table 3, the catalysts prepared using the silica-containing alumina carrier provided by the present invention have higher hydrodemetallization activity as compared to the comparative examples 1 to 3.
By comparing the results of tables 1 and 3 with the results of S1-3 and S4-5 and the hydrodemetallization catalysts C1-3 and C4-5, it can be seen that by making the volume of the first silicon-containing solution 30-50% of the saturated water absorption of the first physical pore-expanding agent and the volume of the second silicon-containing solution 30-50% of the saturated water absorption of the second physical pore-expanding agent, a silicon-containing alumina carrier with better pore distribution can be obtained, which is more suitable for the preparation of the hydrodemetallization catalyst, and the relative metal removal rate of the hydrodemetallization catalyst is further improved.
The preferred embodiments of the present invention have been described above in detail, but the present invention is not limited thereto. Within the scope of the technical idea of the invention, many simple modifications can be made to the technical solution of the invention, including combinations of various technical features in any other suitable way, and these simple modifications and combinations should also be regarded as the disclosure of the invention, and all fall within the scope of the invention.

Claims (24)

1. A method for preparing a silicon-containing alumina carrier is characterized by comprising the following steps,
(1) carrying out first contact on the first silicon-containing solution and a first physical pore-enlarging agent, and carrying out second contact on the second silicon-containing solution and a second physical pore-enlarging agent;
(2) mixing, molding, drying and roasting the contacted first physical pore-enlarging agent and the contacted second physical pore-enlarging agent obtained in the step (1) and pseudo-boehmite to obtain a silicon-containing alumina carrier;
wherein the first and second silicon-containing solutions each contain a silicate ester,
the particle size of the first physical pore-expanding agent is 100-540 meshes, the particle size of the second physical pore-expanding agent is 900-2000 meshes, and the weight ratio of the first physical pore-expanding agent to the second physical pore-expanding agent is 2-3: 1;
the dosage ratio of the first silicon-containing solution to the second silicon-containing solution is 2-12: 1.
2. the production method according to claim 1, wherein the first physical pore-enlarging agent and the second physical pore-enlarging agent are each selected from one or more of carbon black powder, charcoal, or wood chips.
3. The production method according to claim 2, wherein both the first physical pore-enlarging agent and the second physical pore-enlarging agent are carbon black powder.
4. The preparation method according to claim 1, wherein a weight ratio of the first physical pore-enlarging agent to the second physical pore-enlarging agent is 2.5-3: 1.
5. the method of claim 1, wherein the first physical pore-expanding agent is added in an amount of 10-15 wt% on a dry basis of alumina.
6. The production method according to claim 1, wherein the second physical pore-expanding agent is added in an amount of 5 to 10 wt% based on the dry basis of alumina.
7. The method of claim 1, wherein the solvents of the first and second silicon-containing solutions are each selected from one or more of ethanol, methanol, and acetone.
8. The production method according to claim 1, wherein the silicate is a fatty alcohol orthosilicate and/or a fatty alcohol metasilicate.
9. The method according to claim 1, wherein the silicate is one or more of methyl orthosilicate, ethyl orthosilicate, propyl orthosilicate, and butyl orthosilicate.
10. The production method according to any one of claims 1 to 9, wherein the first silicon-containing solution and the second silicon-containing solution are used in a total amount of 2.5 to 7 wt% on a dry basis of alumina, based on silica.
11. The production method according to any one of claims 1 to 9, wherein the volume of the first silicon-containing solution is 30 to 50% of the saturated water absorption capacity of the first physical pore-enlarging agent.
12. The method of claim 11, wherein the volume of the second silicon-containing solution is the saturated water absorption capacity of the second physical pore-enlarging agent.
13. The production method according to any one of claims 1 to 9, wherein an extrusion aid is further added at the time of mixing in step (2).
14. The preparation method according to claim 13, wherein the extrusion aid is one or more selected from sesbania powder, starch and methyl cellulose.
15. The production method according to claim 14, wherein the extrusion aid is sesbania powder.
16. The method of claim 13, wherein the extrusion aid is added in an amount of 3-5 wt% on a dry basis of alumina.
17. The production method according to any one of claims 1 to 9, wherein a peptizing agent is further added at the time of mixing in step (2).
18. The preparation method according to claim 17, wherein the peptizing agent is one or more selected from formic acid, acetic acid, citric acid, and nitric acid.
19. The method of claim 17, wherein the peptizing agent is added in an amount of 3 to 10 wt% of the alumina dry basis.
20. The production method according to any one of claims 1 to 9, wherein the drying conditions include: the temperature is 100 ℃ and 130 ℃, and the time is 1-10 hours.
21. The method of claim 20, wherein the firing comprises: the firing is performed in a nitrogen atmosphere and then in an air atmosphere.
22. The preparation method as claimed in claim 21, wherein the calcination temperature under the nitrogen atmosphere is 400-600 ℃, the calcination time is 4-6 hours, the calcination temperature under the air atmosphere is 600-900 ℃, and the calcination time is 4-8 hours.
23. A siliceous alumina support obtained by the method according to any one of claims 1 to 22.
24. Use of a silica-containing alumina support as claimed in claim 23 in the preparation of a hydrodemetallisation catalyst.
CN201710595986.5A 2017-07-20 2017-07-20 Silicon-containing alumina carrier and preparation method and application thereof Active CN109277095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710595986.5A CN109277095B (en) 2017-07-20 2017-07-20 Silicon-containing alumina carrier and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710595986.5A CN109277095B (en) 2017-07-20 2017-07-20 Silicon-containing alumina carrier and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN109277095A CN109277095A (en) 2019-01-29
CN109277095B true CN109277095B (en) 2021-07-30

Family

ID=65184471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710595986.5A Active CN109277095B (en) 2017-07-20 2017-07-20 Silicon-containing alumina carrier and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN109277095B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116159569B (en) * 2023-01-03 2024-01-26 武汉科林化工集团有限公司 Waste lubricating oil hydrodesilicification agent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2186090C2 (en) * 2000-05-18 2002-07-27 Королева Наталья Владиславовна Method for production of liquid hydrocarbons by hydrogenation and demetallization of heavy oil feedstock
CN102441437A (en) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 Preparation methods for macroporous alumina carrier and hydrodemetallization catalyst
CN102861616A (en) * 2011-07-07 2013-01-09 中国石油化工股份有限公司 Preparation method of alumina supporter with concentrated hole distribution
CN103566926A (en) * 2012-07-30 2014-02-12 中国石油化工股份有限公司 Catalyst with hydrogenating function as well as preparation method and application thereof
CN103769231A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Preparation method of silicon-containing alumina carrier
CN106140181A (en) * 2015-04-23 2016-11-23 中国石油化工股份有限公司 A kind of preparation method of siliceous Hydrodemetalation catalyst
CN106140187A (en) * 2015-04-23 2016-11-23 中国石油化工股份有限公司 A kind of preparation method of Hydrodemetalation catalyst
CN106669707A (en) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 Hydrogenation and metal removing catalyst preparation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2186090C2 (en) * 2000-05-18 2002-07-27 Королева Наталья Владиславовна Method for production of liquid hydrocarbons by hydrogenation and demetallization of heavy oil feedstock
CN102441437A (en) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 Preparation methods for macroporous alumina carrier and hydrodemetallization catalyst
CN102861616A (en) * 2011-07-07 2013-01-09 中国石油化工股份有限公司 Preparation method of alumina supporter with concentrated hole distribution
CN103566926A (en) * 2012-07-30 2014-02-12 中国石油化工股份有限公司 Catalyst with hydrogenating function as well as preparation method and application thereof
CN103769231A (en) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 Preparation method of silicon-containing alumina carrier
CN106140181A (en) * 2015-04-23 2016-11-23 中国石油化工股份有限公司 A kind of preparation method of siliceous Hydrodemetalation catalyst
CN106140187A (en) * 2015-04-23 2016-11-23 中国石油化工股份有限公司 A kind of preparation method of Hydrodemetalation catalyst
CN106669707A (en) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 Hydrogenation and metal removing catalyst preparation method

Also Published As

Publication number Publication date
CN109277095A (en) 2019-01-29

Similar Documents

Publication Publication Date Title
CN106669707B (en) The preparation method of Hydrodemetalation catalyst
CN101590433B (en) Modified aluminium oxide carrier, hydrogenation catalyst prepared thereby and preparation method
CN106140182B (en) A kind of preparation method of heavy oil hydrogenating treatment catalyst
CN107303484B (en) A kind of preparation method and hydrotreating catalyst of siliceous macropore alumina supporter
CN109277108B (en) Silicon-containing hydrodemetallization catalyst and preparation method and application thereof
CN109277095B (en) Silicon-containing alumina carrier and preparation method and application thereof
CN110227481B (en) Heavy oil hydrotreating catalyst and preparation method thereof
CN109833890B (en) Residual oil hydrogenation catalyst and preparation thereof
CN1768946A (en) Method for preparing alumina supporter
CN104646007A (en) Residual oil hydrodemetallization catalyst, preparation and application thereof
CN107983326B (en) Preparation method of hydrogenation catalyst forming carrier
CN109277102B (en) Hydrodemetallization catalyst and preparation method and application thereof
CN111375438A (en) Heavy oil hydrotreating catalyst carrier, catalyst and preparation method thereof
CN111195522A (en) Residual oil hydrodemetallization catalyst and preparation method thereof
CN111821990B (en) Residual oil hydrogenation protective agent carrier, catalyst and preparation method thereof
CN108452849A (en) A kind of diesel oil hydrofining catalyst and its preparation method and application
CN117000276A (en) Hydrodesulfurization catalyst and preparation method thereof
CN106140183B (en) A kind of preparation method of the Hydrodemetalation catalyst containing zirconium
CN111097469B (en) Hydrodemetallization catalyst and preparation method thereof
CN111097458B (en) Hydrodemetallization catalyst and preparation method thereof
CN111195525A (en) Residual oil hydrodesulfurization catalyst and preparation method thereof
CN107297215B (en) Hydrotreating catalyst and preparation method thereof
CN109718750B (en) Carrier and catalyst for hydrodenitrogenation and preparation method thereof
CN116020481B (en) Hydrofining catalyst and preparation method and application thereof
CN113559894B (en) Composite alumina carrier, preparation method thereof and preparation method of hydrogenation catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant