CN109265965A - 一种可生物降解柔性电导线的制备方法 - Google Patents

一种可生物降解柔性电导线的制备方法 Download PDF

Info

Publication number
CN109265965A
CN109265965A CN201810863394.1A CN201810863394A CN109265965A CN 109265965 A CN109265965 A CN 109265965A CN 201810863394 A CN201810863394 A CN 201810863394A CN 109265965 A CN109265965 A CN 109265965A
Authority
CN
China
Prior art keywords
biodegradable
biodegradable flexible
preparation
electrical leads
polyurethane resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810863394.1A
Other languages
English (en)
Inventor
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Wei Polymerization Mstar Technology Ltd
Original Assignee
Anhui Wei Polymerization Mstar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Wei Polymerization Mstar Technology Ltd filed Critical Anhui Wei Polymerization Mstar Technology Ltd
Priority to CN201810863394.1A priority Critical patent/CN109265965A/zh
Publication of CN109265965A publication Critical patent/CN109265965A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/148Selection of the insulating material therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种可生物降解柔性电导线的制备方法,所制备的可生物降解柔性导电线是采用可生物降解聚氨酯树脂为基材,导电材质为功能体,共同共挤出工艺制备。本发明提供的种可生物降解柔性导电线制备方法具有工艺简单、绿色环保,原材料来源广泛等特点。具有高的断裂伸长率,使得导电线在高频率不规则折叠、缠绕和强力拉伸情况下具有良好的导电性,延长导电线的服役时间。同时,本发明制备的可生物降解柔性导电线有良好的生物降解性能,确保因更新换代导致的导电线废弃物在自然环境中可生物降解,极大的降低电子垃圾对人体和环境的危害。

Description

一种可生物降解柔性电导线的制备方法
技术领域
本发明涉及新型电线复合材料技术领域,尤其涉及一种可生物降解柔性电导线的制备方法。
背景技术
随着科技的进步,便捷化、小型化及高性能化是当前电子产品发展的主流趋势,导致电子产品更新换代速度加快,电子产品的重要配件之一的导电线,随着电子产品的升级及更新,成为废弃物;同时,人们在使用电线的过程中,因强力拉伸、不规则折叠等原因造成电线中的导电丝断裂,导致整个电线失去应用功能,使得整个电线成为垃圾而丢掉,这有极大的造成环境污染。
市场上现有的电线主要是铜、铝等金属线作为导电芯,橡胶、塑料作为包覆层,通过共挤出成型加工为导电线,其断裂伸长率一般不超过15%,因高频率不规则折叠、缠绕和强力拉伸等原因,电线断裂导致无法使用的事情经常发生。同时,现用电线的包覆层材料在自然环境中需数十件甚至上千年才能降解。导电线因更新换代或损坏导致无法使用则直接变成电子垃圾,对人体及环境产生恶劣的影响。
为延长导电线高效服役时间,缓解电子垃圾围城的现状,需要一种可生物降解的柔性导线,不仅解决现有导电线因高频率折叠、缠绕、强力拉伸导致的电线断裂现象,而且还避免废弃的导线对人体及环境造成的危害。
发明内容
本发明目的就是为了弥补已有技术的缺陷,提供了一种兼具环保及使用便捷的可生物降解柔性导电线的制备方法。
本发明是通过以下技术方案实现的:
一种可生物降解柔性电导线的制备方法,包括如下具体步骤:
(1)将聚酯二元醇和小分子二元醇的混合物在120-125℃,一定的真空度下脱水2-2.5小时,使得混合物中水含量在0.05%以下,降温至60-65℃,出料备用,为软段A部分;
(2)以二异氰酸酯为硬度B部分,将A、B按照一定的摩尔比进行混合,然后边搅拌边加热至100-110℃,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取0.2-10份的导电功能体,100份的可生物降解聚氨酯树脂基体,0.3-1份的偶联剂混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂基体为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,送入挤出机中通过共挤出即得本发明电导线。
一种可生物降解柔性电导线的制备方法,步骤(1)所述的聚酯二元醇为分子量在1000-4000之间的聚己内酯二元醇(PCL)、聚己二酸乙二醇酯(PEA)、聚己二酸丁二醇指(PBA)中的一种或两种,小分子二元醇为1、4丁二醇,己二醇、乙二醇中的一种。
一种可生物降解柔性电导线的制备方法,步骤(1)所述的一定的真空度是指在-0.97Mpa的真空条件下。
一种可生物降解柔性电导线的制备方法,步骤(2)所述的二异氰酸酯为甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、二环己基甲烷二异氰酸酯(HMDI)、萘二异氰酸酯(NDI)、多亚甲基多苯基二异氰酸酯(PM200)及对苯二异氰酸酯(PPDI)中的一种。
一种可生物降解柔性电导线的制备方法,步骤(2)所述的将A、B按照一定的摩尔比进行混合,是指按照1:1.05的摩尔比进行混合。
一种可生物降解柔性电导线的制备方法,步骤(3)所述的导电功能体为导电石墨、石墨烯、碳纳米管、季铵盐离子液体、纳米金属粒子、纳米金属纤维中的一种或几种混合物。
一种可生物降解柔性电导线的制备方法,步骤(3)所述的偶联剂为:γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、氨基官能团硅烷(KH550)及γ―甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)中的一种。
本发明的优点是:
(1)本发明提供的一种可生物降解柔性导电线具有制备工艺简单、绿色环保,原材料来源广泛等特点。
(2)本发明使用可生物降解柔性聚氨酯作为导线基材,具有优异的断裂伸长率是的导线在高频率不规则折叠、缠绕和强力拉伸情况下具有良好的导电性,延长导电线的服役时间。
(3)本发明制备的导电线所用的可生物降解柔聚氨酯基体,具有良好的生物降解性能,确保因更新换代导致的导电线废弃物在自然环境中可生物降解,极大的降低电子垃圾对人体和环境的危害。
具体实施方式
实施例1
(1)将1摩尔分子量为2000的聚己内酯二元醇(PCL)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以甲苯二异氰酸酯(TDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取1份的导电石墨,100份的可生物降解聚氨酯树脂基体,0.3份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例2
(1)将0.5摩尔分子量为1000的聚己二酸乙二醇酯(PEA)、0.5摩尔分子量为1000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以甲苯二异氰酸酯(TDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取1份的导电石墨,100份的可生物降解聚氨酯树脂基体,0.4份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例3
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为1000的聚己内酯二元醇(PCL)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以甲苯二异氰酸酯(TDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取1份的导电石墨,100份的可生物降解聚氨酯树脂基体,0.3份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例4
(1)将0.5摩尔分子量为1000的聚己二酸丁二醇指(PBA)、0.5摩尔分子量为1000的聚己二酸丁二醇指(PBA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以甲苯二异氰酸酯(TDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取0.2份的导电石墨,100份的可生物降解聚氨酯树脂基体,0.3份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例5
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为1000的聚己二酸丁二醇指(PBA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以异佛尔酮二异氰酸酯(IPDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取2份的碳纳米管,100份的可生物降解聚氨酯树脂基体,0.4份的偶联剂(KH560)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例6
(1)将0.5摩尔分子量为2000的聚己内酯二元醇(PCL)、0.5摩尔分子量为1000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以多亚甲基多苯基二异氰酸酯(PM200)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取3份的离子液体,100份的可生物降解聚氨酯树脂基体,0.4份的偶联剂(KH560)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例7
(1)将0.5摩尔分子量为2000的聚己内酯二元醇(PCL)、0.5摩尔分子量为2000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以异佛尔酮二异氰酸酯(IPDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取2份的纳米银粒子,100份的可生物降解聚氨酯树脂基体,0.4份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例8
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为2000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以异佛尔酮二异氰酸酯(IPDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取10份的纳米铜纤维,100份的可生物降解聚氨酯树脂基体,0.8份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例9
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为1000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以异佛尔酮二异氰酸酯(IPDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取10份的纳米铜纤维,100份的可生物降解聚氨酯树脂基体,0.8份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例10
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为2000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)二苯基甲烷二异氰酸酯(MDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取10份的纳米铝纤维,100份的可生物降解聚氨酯树脂基体,1份的偶联剂(KH560)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例11
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为2000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以六亚甲基二异氰酸酯(HDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取4份的季铵盐离子液体,100份的可生物降解聚氨酯树脂基体,1份的偶联剂(KH560)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。
实施例12
(1)将0.5摩尔分子量为1000的聚己内酯二元醇(PCL)、0.5摩尔分子量为2000的聚己二酸乙二醇酯(PEA)和0.2摩尔的1.4丁二醇混合物在120℃,真空度-0.97Mpa条件下,脱水2小时,使得混合物中含水量在0.05%以下,降温至60℃,出料备用,为软段A部分;
(2)以对苯二异氰酸酯(PPDI)为硬度B部分,将A、B按摩尔比1:1.05混合后加热到100搅拌均匀,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取6份的纳米铝粒子,100份的可生物降解聚氨酯树脂基体,0.8份的偶联剂(KH550)混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,通过共挤出工艺制备可生物降解柔性电导线。制备的可生物降解柔性电导线的断裂伸长率大于200%,电导率大于4.9×10-2S/cm。

Claims (7)

1.一种可生物降解柔性电导线的制备方法,其特征在于,包括如下具体步骤:
(1)将聚酯二元醇和小分子二元醇的混合物在120-125℃,一定的真空度下脱水2-2.5小时,使得混合物中水含量在0.05%以下,降温至60-65℃,出料备用,为软段A部分;
(2)以二异氰酸酯为硬度B部分,将A、B按照一定的摩尔比进行混合,然后边搅拌边加热至100-110℃,制备可生物降解柔性聚氨酯树脂基体;
(3)按质量计,取0.2-10份的导电功能体,100份的可生物降解聚氨酯树脂基体,0.3-1份的偶联剂混合搅拌均匀制备可生物降解柔性聚氨酯树脂电导线内芯;
(4)以可生物降解柔性聚氨酯树脂基体为包覆绝缘层,以可生物降解柔性聚氨酯树脂电导线内芯为内层,送入挤出机中通过共挤出即得本发明电导线。
2.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(1)所述的聚酯二元醇为分子量在1000-4000之间的聚己内酯二元醇(PCL)、聚己二酸乙二醇酯(PEA)、聚己二酸丁二醇指(PBA)中的一种或两种,小分子二元醇为1、4丁二醇,己二醇、乙二醇中的一种。
3.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(1)所述的一定的真空度是指在-0.97Mpa的真空条件下。
4.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(2)所述的二异氰酸酯为甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、二环己基甲烷二异氰酸酯(HMDI)、萘二异氰酸酯(NDI)、多亚甲基多苯基二异氰酸酯(PM200)及对苯二异氰酸酯(PPDI)中的一种。
5.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(2)所述的将A、B按照一定的摩尔比进行混合,是指按照1:1.05的摩尔比进行混合。
6.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(3)所述的导电功能体为导电石墨、石墨烯、碳纳米管、季铵盐离子液体、纳米金属粒子、纳米金属纤维中的一种或几种混合物。
7.根据权利要求1所述的一种可生物降解柔性电导线的制备方法,其特征在于:步骤(3)所述的偶联剂为:γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、氨基官能团硅烷(KH550)及γ―甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)中的一种。
CN201810863394.1A 2018-08-01 2018-08-01 一种可生物降解柔性电导线的制备方法 Pending CN109265965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810863394.1A CN109265965A (zh) 2018-08-01 2018-08-01 一种可生物降解柔性电导线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810863394.1A CN109265965A (zh) 2018-08-01 2018-08-01 一种可生物降解柔性电导线的制备方法

Publications (1)

Publication Number Publication Date
CN109265965A true CN109265965A (zh) 2019-01-25

Family

ID=65152878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810863394.1A Pending CN109265965A (zh) 2018-08-01 2018-08-01 一种可生物降解柔性电导线的制备方法

Country Status (1)

Country Link
CN (1) CN109265965A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186927A (zh) * 2008-08-20 2011-09-14 拜尔材料科学股份公司 抗静电或导电聚氨酯,及其制备方法
CN102212265A (zh) * 2011-05-12 2011-10-12 中国科学院合肥物质科学研究院 一种负离子功能化、导电聚氨酯复合物的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186927A (zh) * 2008-08-20 2011-09-14 拜尔材料科学股份公司 抗静电或导电聚氨酯,及其制备方法
CN102212265A (zh) * 2011-05-12 2011-10-12 中国科学院合肥物质科学研究院 一种负离子功能化、导电聚氨酯复合物的制备方法

Similar Documents

Publication Publication Date Title
WO2012028686A2 (en) Electrically conductive member having expandable wiring
Gurunathan et al. Polyurethane conductive blends and composites: synthesis and applications perspective
US20180222135A1 (en) Rotor blade element with anti-icing surface for wind turbine rotor blades
JP5165293B2 (ja) 炭素繊維強化シート状成形材料及びその製造方法
WO2013041712A1 (en) Conductive composite structure or laminate
CN104946117A (zh) 用于具有铜薄膜的基材的底漆、具有铜薄膜的基材和它的制造方法、导电膜及电极膜
JP2008506830A (ja) 水性ポリウレタンエマルジョン組成物及びこれを用いたポリウレタンフィルム
WO2017170496A1 (ja) 展延性導電ペーストおよび曲面プリント配線板の製造方法
CN112229317A (zh) 具有大变形性能及其监测功能的柔性传感膜及其制备方法
CN110256815B (zh) 一种增韧导电环氧树脂复合材料及其制备方法
CN109265965A (zh) 一种可生物降解柔性电导线的制备方法
JP2018188510A (ja) ポリウレタン樹脂用ポリオール組成物、ポリウレタン樹脂形成性組成物、複合材料
CN111415770A (zh) 一种弹性导体及其制备方法
WO2023151174A1 (zh) 一种环保型柔性导电聚氨酯及其制备方法
EP3604374B1 (en) Polyol composition for polyurethane resin, polyurethane resin-forming composition, and composite material
CN104861396A (zh) 一种耐热性笔记本电脑连接线用聚氯乙烯电缆料及其制备方法
CN110734565B (zh) 一种电晕处理的聚酰亚胺抗粘结复合膜及其制备方法
US11987662B2 (en) Environmentally-friendly flexible conductive polyurethane (PU) and preparation method thereof
JP2010059384A (ja) 導電性を有する繊維強化熱可塑性樹脂組成物および成形体
JP2012022798A (ja) 導電性組成物および太陽電池セル
Kong et al. Fabrication and properties for novel graphene oxide powder with extra large interlayer spacing and high reactivity
Zhang et al. Spider silk-inspired supramolecular polydimethylsiloxane network with prominent mechanical robustness for bifunctional flexible electronics
CN111944452B (zh) 功能化石墨烯改性水性聚氨酯单组分导电胶的制备方法
CN103725170A (zh) 一种不饱和聚酯漆包线漆及其制备方法
JP7280429B2 (ja) カルボキシル基含有ポリエステル樹脂、カルボキシル基含有エステルウレタン樹脂、樹脂組成物、及び接着剤

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190125