CN109261199A - A kind of catalyst of the direct producing light olefins of high stability synthesis gas, preparation method and applications - Google Patents

A kind of catalyst of the direct producing light olefins of high stability synthesis gas, preparation method and applications Download PDF

Info

Publication number
CN109261199A
CN109261199A CN201811128470.0A CN201811128470A CN109261199A CN 109261199 A CN109261199 A CN 109261199A CN 201811128470 A CN201811128470 A CN 201811128470A CN 109261199 A CN109261199 A CN 109261199A
Authority
CN
China
Prior art keywords
catalyst
molecular sieve
synthesis gas
light olefins
producing light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811128470.0A
Other languages
Chinese (zh)
Other versions
CN109261199B (en
Inventor
孟凡会
李小静
李忠
张鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201811128470.0A priority Critical patent/CN109261199B/en
Publication of CN109261199A publication Critical patent/CN109261199A/en
Application granted granted Critical
Publication of CN109261199B publication Critical patent/CN109261199B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

The present invention provides a kind of catalyst, preparation method and applications that producing light olefins are directly converted for synthesis gas.Catalyst of the invention is made of with cladded type molecular sieve catalyst 0.4:1~2:1 in mass ratio through physical mixed grinding metal oxide catalyst, and wherein metal oxide catalyst is the ZrO that Zr/Zn molar ratio is 2:12ZnO catalyst, cladded type molecular sieve catalyst are that pure silicon Silicalite-1 molecular sieve coats cladded type M@Silicalite-1 molecular sieve catalyst made of SAPO-34 or SSZ-13 molecular sieve.The cladded type molecular sieve catalyst acidity is adjustable, pore structure is abundant, large specific surface area, is applied to synthesis gas simultaneously with metal oxide catalyst and directly convert selectivity of light olefin, reduction by-product CO can be improved in reaction for preparing light olefins2Selectivity, and catalyst life can be extended.

Description

A kind of catalyst of the direct producing light olefins of high stability synthesis gas, preparation method and It is applied
Technical field
The present invention relates to a kind of bifunctional catalyst and preparations that producing light olefins are directly converted for one-step method from syngas Method more particularly to a kind of preparation method of cladded type composite molecular sieve catalyst.
Background technique
Low-carbon alkene (ethylene, propylene, butadiene) is important basic chemical industry raw material, is widely used in synthetic rubber, modeling In the organic chemicals such as material, organic solvent.Very important effect is played in industrial production and national economy.
Preparation of low carbon olefines by synthetic gas mainly has FTO (by preparation of low carbon olefines by synthetic gas) and MTO (using methanol as intermediate product two Footwork producing light olefins) two approach.Wherein the path FTO is that synthesis gas is turned at high temperature via iron-based, cobalt-base catalyst Change, reaction product is mostly C5+Hydrocarbon, the selectivity of low-carbon alkene is difficult to break through the Anderson- in F- T synthesis in product Schulz-Flory is distributed (58%), and this method is not the optimal selection of highly selective preparing low-carbon olefins.The path MTO is by two steps Then methanol is introduced second that is, first in first reactor at a lower temperature by CO synthesizing methanol by hydrogenating by tandem reaction It is converted into low-carbon alkene through molecular sieve catalytic at high temperature in a reactor, but two-step reaction temperature is inconsistent, reaction process Energy consumption is high, equipment investment is costly.Based on factors above, catalyst needed for the two-step reaction of the path MTO is combined together, is designed A kind of bifunctional catalyst carries out two-step reaction in the same reactor, and target product selectivity can be significantly higher than FTO Path, at the same compared to the path MTO can it is energy saving, reduce cost.
Chinese patent CN106994366A reports a kind of Fe3C-SiO2The catalyst of@SAPO-34 coreshell type structure, this is urged Agent be applied to Fischer-Tropsch synthesis in when, synthesis gas pass through molecular sieve shell enter catalyst nucleus and with its surface Fe base activity Position interaction generates a series of hydrocarbon products by Fischer-Tropsch synthesis, under the confinement effect of shell molecular sieve pore passage, produces Long-chain hydro carbons is restricted to external diffusion in object, only generates C1-C6Short-chain hydrocarbons effectively increase the selectivity of lower carbon number hydrocarbons.
Chinese patent CN108273548A discloses a kind of ZnO-Al2O3The preparation side of@SAPO-34 catalyst with core-casing structure Method, this catalyst are with meso-porous ZnO-Al2O3For nuclear phase, micropore SAPO-34 is the catalyst with core-casing structure of shell phase, nuclear phase ZnO- Al2O3Suitable L-B acid concerted catalysis center is formed with shell phase SAPO-34, improves the conversion ratio of methanol.The catalyst is used for CO2Add hydrogen through CO can be improved simultaneously in preparing light olefins from methanol two-step process2Conversion ratio and low-carbon alkene selectivity.
Summary of the invention
The purpose of the present invention is to provide a kind of highly selective, high stability synthesis gas directly to convert urging for low-carbon alkene processed The preparation method and application of agent and the catalyst.
The purpose of the present invention is what is realized by following technical concept.
A kind of catalyst of the direct producing light olefins of high stability synthesis gas, which is characterized in that the catalyst is by A, B two Kind of component according to mass ratio 0.4:1~2:1 through physical mixed, grind;Wherein, it is 2 that the component A, which is Zr/Zn molar ratio: 1 ZrO2- ZnO metal composite oxide, the B component are the micropore that pure silicon Silicalite-1 molecular sieve coats CHA structure The M@Silicalite-1 molecular sieve of cladded type structure made of sial system molecular sieve M, the micropore of CHA structure in the B component The quality of sial system molecular sieve M and Silicalite-1 are 5~1:1 than range.
The component A Zr/Zn molar ratio is the ZrO of 2:12- ZnO metal composite oxide can use well known existing Technology, such as the preparation of co-precipitation method;The microporous silicon of the B component pure silicon Silicalite-1 molecular sieve cladding CHA structure Hydrothermal synthesis method preparation, specific skill can be used in the M@Silicalite-1 molecular sieve of cladded type structure made of aluminium system molecular sieve M Art scheme is as follows.
(1) SAPO-34 or SSZ-13 molecular sieve is synthesized using hydro-thermal method first, the molecular sieve of synthesis is washed into Property, drying and spare after 500 DEG C of roasting 6h.Gained SAPO-34 molecular sieve SiO2/Al2O3Molar ratio be 0.05~0.5, SSZ-13 molecular sieve SiO2/Al2O3Molar ratio is 15~40, and the two specific surface area is in 400m2/ g or more, crystallite dimension 0.5 ~2.0 μm.
(2) 4-propyl bromide (TPABr) for 1.0mol/L being added in SAPO-34 the or SSZ-13 molecular sieve after roasting is molten 3h is stirred in liquid at room temperature and carries out function dough.Simultaneously prepare at room temperature a certain proportion of tetraethyl ammonium hydroxide (TEAOH), Ethyl orthosilicate (TEOS), deionized water, 0.5~6h of stirring are allowed to form vitreosol, by the SAPO-34 of function dough or Stirring and 1~8h of aging in vitreosol is added in SSZ-13 molecular sieve, is then transferred in hydrothermal crystallizing kettle at 170~210 DEG C 24~72h of lower crystallization, the product after crystallization are washed to neutral, dry and obtain cladded type in 500~550 DEG C of 3~10h of roasting Molecular sieve.
(3) quality of SAPO-34 or SSZ-13 molecular sieve and Silicalite-1 are 5~1:1 than range.
It is well known that SAPO-34 and SSZ-13 molecular sieve is the micropore sial system molecular sieve of common CHA structure, have Higher selectivity of light olefin is widely used in preparing light olefins from methanol (MTO) technique.But SAPO-34 and SSZ-13 Be easy to produce carbon distribution and inactivate, for example, SAPO-34 molecular sieve outer surface occur carbon distribution be its inactivation a main cause. Silicalite-1 molecular sieve has bigger aperture compared with both the above molecular sieve, is conducive to reactants and products and is being catalyzed It is spread in agent.It is covered on the outer surface SAPO-34 (or SSZ-13) using Silicalite-1 as shell, prepares cladded type structure SAPO-34@Silicalite-1 or SSZ-13@Silicalite-1 molecular sieve, using pure silicon Silicalite-1 molecular sieve It prevents ethylene, propylene in the enterprising single step reaction of acidic site of catalyst external surface, reduces the generation of carbon distribution, improve low-carbon alkene Selectivity.In addition, directly converted by synthesis gas there are a large amount of water gas shift reaction in preparing low carbon olefin hydrocarbon, it is available The good hydrophobicity of Silicalite-1 molecular sieve, weakens the generation of water gas shift reaction, and reaching reduces by-product CO2Selection The purpose of property.
The invention further relates to a kind of application of the catalyst of the direct producing light olefins of synthesis gas in fixed bed reactors, urge The reducing condition of agent are as follows: 360~440 DEG C of reduction temperature, reducing atmosphere H2/N2(molar ratio is 0.4~2.0), recovery time For 1~10h;Catalyst reaction condition is 380~430 DEG C, 5~30bar of reaction pressure, reaction gas H2/ CO molar ratio 1.0~ 2.5,3000~5000mL/ of gas space velocity (gh).
Cladded type molecular sieve catalyst of the present invention has compared to SAPO-34 molecular sieve or SSZ-13 molecular sieve Following substantive distinguishing features and progress:
(1) preparation method of catalyst of the present invention, overall flow is simple, metal oxide catalyst and cladded type molecular sieve It is applied in syngas catalytic conversion reaction after catalyst mixing, it can be achieved that synthesis gas directly converts producing light olefins, reduction energy Consumption reduces equipment investment.
(2) cladded type molecular sieve catalyst of the invention is coated on SAPO-34 using pure silicon Silicalite-1 molecular sieve Or SSZ-13 molecular sieve surface, the highly acid position of molecular sieve surface is covered, thus reaction product can be prevented in catalyst strong acid Property generates carbon distribution on position, extends the service life of catalyst.
(3) in cladded type molecular sieve catalyst of the invention, Silicalite-1 molecular sieve is a kind of good hydrophobicity Substance is covered on SAPO-34 or SSZ-13 molecular sieve surface, can reduce the generation of water gas shift reaction in reaction, effectively drop Low by-product CO2Selectivity.
Specific embodiment
Preparation method disclosed in this patent is further described below by specific embodiment, but the present invention is not by following The limitation of embodiment.
Embodiment 1
ZrO is prepared using co-precipitation method2: ZnO molar ratio is the metal composite oxide of 2:1.Specific method is to press The zirconium nitrate and zinc nitrate that Zr/Zn molar ratio is 2 are configured to the aqueous solution of 1.0mol/L, while preparing the sodium carbonate of 1.0mol/L Solution is as precipitating reagent.Then by above two solution cocurrent be added dropwise in 100mL beaker precipitating and under 70 DEG C of water-baths it is strong Stirring controls rate of addition and pH in precipitation process is made to remain 7.0.Obtained sediment aging 2h at 70 DEG C, then mistake Filter, washing remove Na+, finally at 100 DEG C dry 12h, roasting 5h obtains ZrO at 500 DEG C2- ZnO oxide catalyst.
By SiO2/Al2O3Molar ratio is 0.25, specific surface area 485m2The SAPO-34 molecular sieve of/g and 1.0mol/L's 4h progress is stirred at room temperature in TPABr solution, is then centrifuged for being dried to obtain TPA+Functionalized SAPO-34 molecular sieve.By quality Than 15.6 parts of ethyl orthosilicates to be slowly dropped to 10.0 part 20% of tetraethyl ammonium hydroxide, shape in 135.0 parts of deionized waters At clear solution and continue to stir 2h, weighs 10.0 parts of above-mentioned functionalized SAPO-34 molecular sieves and be added in clear solution, and It is vigorously stirred 2h at room temperature, then the crystallization 72h at 170 DEG C in crystallizing kettle.Product is after centrifugation, washing, drying after crystallization Solid 500 DEG C of roasting 6h in Muffle furnace obtain the cladded type molecular sieve that SAPO-34@Silicalite-1 mass ratio is 2.15 and urge Agent.1 part and 2 parts of cladded type molecular sieve catalyst of above-mentioned metal oxide catalyst is taken, simultaneously tabletting is screened to for grinding after mixing 20~40 mesh are spare.
The reduction of catalyst, activity rating condition and specific step is as follows: the catalyst of a certain amount of 20~40 mesh is taken first It is placed in fixed bed reactors, is 400 DEG C, also Primordial Qi H in reduction temperature2:N2Volume ratio is 1:1, recovery time 4h.Reduction Reduction autogenous cutting is changed to raw material reaction gas, raw material reaction gas H afterwards2: the volume ratio of CO is 1:1, and reaction temperature is 400 DEG C, reacts Pressure 10bar, gas space velocity are 3600mL/ (gh).Sampling analysis after stable reaction, activity rating reaction result see attached list 1.
Embodiment 2
Prepare ZrO2: ZnO molar ratio is the metal composite oxide of 2:1, and specific preparation method and process are the same as embodiment 1.
By SiO2/Al2O3Molar ratio is 0.15, specific surface area 460m2The SAPO-34 molecular sieve of/g and 1.0mol/L's 4h progress is stirred at room temperature in TPABr solution, is then centrifuged for being dried to obtain TPA+Functionalized SAPO-34 molecular sieve.By quality Than 15.6 parts of ethyl orthosilicates to be slowly dropped to 6.4 part 35% of tetraethyl ammonium hydroxide, are formed in 100.0 parts of deionized waters Clear solution simultaneously continues to stir 1h, weighs 15.0 parts of above-mentioned functionalized SAPO-34 molecular sieves and is added in clear solution, and in room 3h is vigorously stirred under temperature, then the crystallization 48h at 180 DEG C in crystallizing kettle.Product consolidating after centrifugation, washing, drying after crystallization Body 550 DEG C of roasting 8h in Muffle furnace obtain the cladded type molecular sieve catalytic that SAPO-34@Silicalite-1 mass ratio is 3.01 Agent.2 parts and 5 parts of cladded type molecular sieve catalyst of above-mentioned metal oxide catalyst are taken, simultaneously tabletting is screened to 20 for grinding after mixing ~40 mesh are spare.
The reduction of catalyst, activity rating condition and specific step is as follows: the catalyst of a certain amount of 20~40 mesh is taken first It is placed in fixed bed reactors, is 380 DEG C, also Primordial Qi H in reduction temperature2:N2Volume ratio is 1.2:1, recovery time 6h.Also Reduction autogenous cutting is changed to raw material reaction gas, raw material reaction gas H after original2: the volume ratio of CO is 2:1, and reaction temperature is 410 DEG C, instead Answering pressure 20bar, gas space velocity is 4800mL/ (gh).Sampling analysis after stable reaction, activity rating reaction result are seen attached list 1。
Embodiment 3
Prepare ZrO2: ZnO molar ratio is the metal composite oxide of 2:1, and specific preparation method and process are the same as embodiment 1.
By SiO2/Al2O3Molar ratio is 0.25, specific surface area 485m2The SAPO-34 molecular sieve of/g and 1.0mol/L's 4h progress is stirred at room temperature in TPABr solution, is then centrifuged for being dried to obtain TPA+Functionalized SAPO-34 molecular sieve.By quality Than 15.6 parts of ethyl orthosilicates to be slowly dropped to 15.0 part 25% of tetraethyl ammonium hydroxide, are formed in 50.0 parts of deionized waters Clear solution simultaneously continues to stir 5h, weighs 20.0 parts of above-mentioned functionalized SAPO-34 molecular sieves and is added in clear solution, and in room 3h is vigorously stirred under temperature, then the crystallization 36h at 180 DEG C in crystallizing kettle.Product consolidating after centrifugation, washing, drying after crystallization Body 500 DEG C of roasting 4h in Muffle furnace obtain the cladded type molecular sieve catalytic that SAPO-34@Silicalite-1 mass ratio is 4.26 Agent.1 part and 1 part of cladded type molecular sieve catalyst of above-mentioned metal oxide catalyst is taken, simultaneously tabletting is screened to 20 for grinding after mixing ~40 mesh are spare.
The reduction of catalyst, activity rating condition and specific step is as follows: the catalyst of a certain amount of 20~40 mesh is taken first It is placed in fixed bed reactors, is 370 DEG C, also Primordial Qi H in reduction temperature2:N2Volume ratio is 0.8:1, recovery time 5h.Also Reduction autogenous cutting is changed to raw material reaction gas, raw material reaction gas H after original2: the volume ratio of CO is 1:1, and reaction temperature is 420 DEG C, instead Answering pressure 15bar, gas space velocity is 3600mL/ (gh).Sampling analysis after stable reaction, activity rating reaction result are seen attached list 1。
Embodiment 4
Prepare ZrO2: ZnO molar ratio is the metal composite oxide of 2:1, and specific preparation method and process are the same as embodiment 1.
By SiO2/Al2O3Molar ratio is 20, specific surface area 610m2The SSZ-13 molecular sieve of/g and 1.0mol/L's 4h progress is stirred at room temperature in TPABr solution, is then centrifuged for being dried to obtain TPA+Functionalized SSZ-13 molecular sieve.In mass ratio By 15.6 parts of ethyl orthosilicates be slowly dropped to 8.2 part 35% of tetraethyl ammonium hydroxide, formed in 80.0 parts of deionized waters it is saturating Bright solution simultaneously continues to stir 3h, weighs 20.0 parts of above-mentioned functionalized SSZ-13 molecular sieves and is added in clear solution, and in room temperature Under be vigorously stirred 6h, then crystallization is for 24 hours at 200 DEG C in crystallizing kettle.Solid of the product after centrifugation, washing, drying after crystallization 520 DEG C of roasting 6h obtain the cladded type molecular sieve catalyst that SSZ-13@Silicalite-1 mass ratio is 4.09 in Muffle furnace. 1 part and 1 part of cladded type molecular sieve catalyst of above-mentioned metal oxide catalyst is taken, simultaneously tabletting is screened to 20~40 for grinding after mixing Mesh is spare.
The reduction of catalyst, activity rating condition and specific step is as follows: the catalyst of a certain amount of 20~40 mesh is taken first It is placed in fixed bed reactors, is 410 DEG C, also Primordial Qi H in reduction temperature2:N2Volume ratio is 0.6:1, recovery time 3h.Also Reduction autogenous cutting is changed to raw material reaction gas, raw material reaction gas H after original2: the volume ratio of CO be 1.5:1, reaction temperature be 390 DEG C, Reaction pressure 25bar, gas space velocity are 3200mL/ (gh).Sampling analysis after stable reaction, activity rating reaction result are shown in attached Table 1.
Comparative example 1
ZrO is prepared using co-precipitation method2: ZnO molar ratio is the metal oxide of 2:1.
1 part and 2 parts of SAPO-34 molecular sieve catalyst of above-mentioned metal oxide catalyst is taken, grinding and tabletting after mixing It is spare to be sieved to 20~40 mesh.
The reduction of catalyst, activity rating condition and specific step is as follows: the catalyst of a certain amount of 20~40 mesh is taken first It is placed in fixed bed reactors, is 400 DEG C, also Primordial Qi H in reduction temperature2:N2Volume ratio is 1:1, recovery time 3h.Reduction Reduction autogenous cutting is changed to raw material reaction gas, raw material reaction gas H afterwards2: the volume ratio of CO is 1:1, and reaction temperature is 400 DEG C, reacts Pressure 10bar, gas space velocity are 3600mL/ (gh).Sampling analysis after stable reaction, activity rating reaction result see attached list 1.
Evaluation results are shown in Table 1 for catalyst activity in embodiment 1 to 4 and comparative example 1.
1 catalyst activity evaluation response result of table
Note: the selective calculation method of all hydro carbons removes CO2It obtains.
By table 1, it is apparent that the catalyst of the direct producing light olefins of the claimed synthesis gas of the application is answered For carrying out the reaction of high―temperature nuclei low-carbon alkene, in addition to embodiment 4, CO in synthesis gas in the remaining embodiments in fixed bed reactors Conversion ratio significantly improves, and CH in all embodiments4Selectivity can be down to 12% or so, C2 =-C4 =Olefine selective can be improved to 72% or more, and ethylenic alkoxy rate can reach 9.0 in product, show that catalyst of the present invention is applied in syngas catalytic conversion reaction, The high efficiency conversion that preparing low-carbon olefin can be achieved, reduces energy consumption of reaction.
It should be noted that catalyst of the present invention is applied to carry out the reaction of high―temperature nuclei low-carbon alkene in fixed bed reactors When, the service life of four embodiments is respectively 30h, 29h, 22h, 28h, and comparative example 1 is only 22h, shows cladded type of the present invention point Sub- sieve catalyst has better stability compared to SAPO-34 molecular sieve, and catalytic life is longer.

Claims (10)

1. the catalyst that a kind of high stability synthesis gas directly converts producing light olefins, which is characterized in that the catalyst is by A, B Two kinds of components according to mass ratio 0.4:1~2:1 through physical mixed, grind;Wherein, the component A is that Zr/Zn molar ratio is The ZrO of 2:12- ZnO metal composite oxide, the B component are that pure silicon Silicalite-1 molecular sieve coats the micro- of CHA structure The M@Silicalite-1 molecular sieve of cladded type structure made of hole sial system molecular sieve M, CHA structure is micro- in the B component The quality of hole sial system molecular sieve M and Silicalite-1 are 5~1:1 than range.
2. the catalyst of the direct producing light olefins of high stability synthesis gas as described in claim 1, which is characterized in that described The specific surface area of the micropore sial system molecular sieve M of CHA structure is 400m2/ g or more, crystallite dimension are 0.5~2.0 μm.
3. the catalyst of the direct producing light olefins of high stability synthesis gas as claimed in claim 1 or 2, which is characterized in that institute The micropore sial system molecular sieve M for stating CHA structure is SAPO-34 molecular sieve or SSZ-13 molecular sieve.
4. the catalyst of the direct producing light olefins of high stability synthesis gas as claimed in claim 3, which is characterized in that described SiO in SAPO-34 molecular sieve2/Al2O3Molar ratio is 0.05~0.5.
5. the catalyst of the direct producing light olefins of high stability synthesis gas as claimed in claim 3, which is characterized in that described SiO in SSZ-13 molecular sieve2/Al2O3Molar ratio is 15~40.
6. a kind of preparation method of the catalyst of the direct producing light olefins of high stability synthesis gas, includes the following steps:
1) ZrO that Zr/Zn molar ratio is 2:1 is prepared2- ZnO metal composite oxide;
2) the M@Silicalite-1 molecular sieve of cladded type structure is prepared, wherein M is SAPO-34 molecular sieve or SSZ-13 molecule Sieve;
3) by ZrO2The M@Silicalite-1 molecular sieve of-ZnO metal composite oxide and cladded type structure, according to mass ratio 0.4:1~2:1, physical mixed, grinding, tabletting sieving, obtains the catalyst of the direct producing light olefins of high stability synthesis gas.
7. the preparation method of the catalyst of the direct producing light olefins of high stability synthesis gas according to claim 6, special Sign is, the detailed process that the M@Silicalite-1 system with molecular sieve for preparing of cladded type structure is standby is,
1) first synthesize M molecular sieve, it is then that the molecular sieve of synthesis is washed to neutral, dry and in 500 DEG C of roasting 6h;
2) the M molecular sieve after roasting is added in the 4-propyl bromide of 1.0mol/L and stirs 3h progress function dough at room temperature, Obtain the M molecular sieve of function dough;
3) a certain proportion of tetraethyl ammonium hydroxide, ethyl orthosilicate, deionized water solution are prepared at room temperature, stirring 0.5~ 6h is allowed to form vitreosol;
4) will the resulting function dough of step 2) M molecular sieve be added the resulting vitreosol of step 3) in, stir and aging 1~ 8h is then transferred in hydrothermal crystallizing kettle 24~72h of crystallization at 170~210 DEG C;
5) product after crystallization obtained by step 4) is washed to neutral, drying, then in 500~550 DEG C of 3~10h of roasting, is obtained Cladded type M@Silicalite-1 molecular sieve.
8. the preparation method of the catalyst of the direct producing light olefins of high stability synthesis gas according to claim 7, special Sign is, tetraethyl ammonium hydroxide in step 3), ethyl orthosilicate, deionized water mass parts ratio be (6~15): 15.6: (50~140).
9. the catalyst of the direct producing light olefins of high stability synthesis gas described in a kind of any one of claims 1 to 5 is solid Application in fixed bed reactor, which is characterized in that the catalyst is restored first, then again by the catalyst after reduction Applied to the direct producing light olefins catalysis reaction of synthesis gas, it is catalyzed the condition of reaction are as follows: 380~430 DEG C of reaction temperature, reaction pressure 5~30bar of power, reaction gas H2/ CO molar ratio 1.0~2.5,3000~5000mL/ of gas space velocity (gh).
10. the catalyst of the direct producing light olefins of high stability synthesis gas as claimed in claim 9 is in fixed bed reactors Application, which is characterized in that the condition that the catalyst is restored are as follows: 360~440 DEG C of reduction temperature, reducing atmosphere is H2/N2=0.4~2.0, the recovery time is 1~10h.
CN201811128470.0A 2018-09-27 2018-09-27 Catalyst for directly preparing low-carbon olefin from high-stability synthesis gas, preparation method and application thereof Active CN109261199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811128470.0A CN109261199B (en) 2018-09-27 2018-09-27 Catalyst for directly preparing low-carbon olefin from high-stability synthesis gas, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811128470.0A CN109261199B (en) 2018-09-27 2018-09-27 Catalyst for directly preparing low-carbon olefin from high-stability synthesis gas, preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN109261199A true CN109261199A (en) 2019-01-25
CN109261199B CN109261199B (en) 2021-03-19

Family

ID=65198508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811128470.0A Active CN109261199B (en) 2018-09-27 2018-09-27 Catalyst for directly preparing low-carbon olefin from high-stability synthesis gas, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN109261199B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327969A (en) * 2019-06-21 2019-10-15 齐利华(武汉)资源环境科技有限公司 A kind of CO2Add catalyst of hydrogen producing light olefins and preparation method thereof, application
CN110479364A (en) * 2019-09-02 2019-11-22 太原理工大学 A kind of method that bifunctional catalyst and CO add hydrogen directly to convert producing light olefins
CN111266131A (en) * 2020-03-02 2020-06-12 正大能源材料(大连)有限公司 Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and use method thereof
WO2020236431A1 (en) * 2019-05-23 2020-11-26 Dow Global Technologies Llc Methods for producing c2 to c5 paraffins using a hybrid catalyst comprising a high acidity microporous component
CN112209404A (en) * 2019-07-12 2021-01-12 中国石油化工股份有限公司 Zn-SSZ-13/SAPO-11 composite structure molecular sieve with high zinc-silicon ratio and synthesis method thereof
CN113731481A (en) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 Catalyst composition for preparing low-carbon olefin by converting synthesis gas and preparation method and application thereof
CN113856748A (en) * 2021-11-04 2021-12-31 中国环境科学研究院 Hollow ZSM-5 catalyst with atom-doped and metal cluster double-modified inner surface, and preparation method and application thereof
CN114433059A (en) * 2022-01-20 2022-05-06 上海工程技术大学 CO2Catalyst for synthesizing low-carbon olefin compound by hydrogenation, preparation and application thereof
CN115178293A (en) * 2022-06-30 2022-10-14 上海应用技术大学 Organic base modified SAPO-34 molecular sieve and preparation and application thereof
CN115814839A (en) * 2022-12-27 2023-03-21 中触媒新材料股份有限公司 Boron or phosphorus doped Silicalite-1 molecular sieve encapsulated metal catalyst and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071528A (en) * 2013-01-21 2013-05-01 浙江大学 Core-shell structure catalyst and method for preparing low-carbon olefin by using synthetic gas one-step method
CN105080587A (en) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 Catalyst for alkene production from synthetic gas and its application method
CN106345514A (en) * 2016-07-29 2017-01-25 厦门大学 Catalyst for preparing low-carbon olefins by one-step conversion of synthetic gas and preparation method thereof
CN107459048A (en) * 2017-07-03 2017-12-12 华东理工大学 The@Silicalite 1 of core shell structure molecular sieve SAPO 34 preparation method
CN108137431A (en) * 2015-10-30 2018-06-08 陶氏环球技术有限责任公司 Synthetic gas is converted into the method for alkene using bifunctional chromium oxide/zinc oxide-SAPO-34 catalyst
CN108144643A (en) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 A kind of method that catalyst and synthesis gas directly convert producing light olefins
CN108246356A (en) * 2018-01-30 2018-07-06 贵州大学 A kind of preparation method of ZnO-ZrO2@Al2O3@SAPO-34 double-core shell catalysts
CN108295895A (en) * 2018-01-30 2018-07-20 贵州大学 A kind of preparation method of ZnO-ZrO2@SAPO-34 catalyst with core-casing structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071528A (en) * 2013-01-21 2013-05-01 浙江大学 Core-shell structure catalyst and method for preparing low-carbon olefin by using synthetic gas one-step method
CN105080587A (en) * 2014-05-14 2015-11-25 中国石油化工股份有限公司 Catalyst for alkene production from synthetic gas and its application method
CN108137431A (en) * 2015-10-30 2018-06-08 陶氏环球技术有限责任公司 Synthetic gas is converted into the method for alkene using bifunctional chromium oxide/zinc oxide-SAPO-34 catalyst
CN106345514A (en) * 2016-07-29 2017-01-25 厦门大学 Catalyst for preparing low-carbon olefins by one-step conversion of synthetic gas and preparation method thereof
CN108144643A (en) * 2016-12-05 2018-06-12 中国科学院大连化学物理研究所 A kind of method that catalyst and synthesis gas directly convert producing light olefins
CN107459048A (en) * 2017-07-03 2017-12-12 华东理工大学 The@Silicalite 1 of core shell structure molecular sieve SAPO 34 preparation method
CN108246356A (en) * 2018-01-30 2018-07-06 贵州大学 A kind of preparation method of ZnO-ZrO2@Al2O3@SAPO-34 double-core shell catalysts
CN108295895A (en) * 2018-01-30 2018-07-20 贵州大学 A kind of preparation method of ZnO-ZrO2@SAPO-34 catalyst with core-casing structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN LI, ET AL.: "Synthesis of SAPO-34@ZSM‑5 and SAPO-34@Silicalite‑1 Core−Shell Zeolite Composites for Ethanol Dehydration", 《IND. ENG. CHEM. RES.》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236431A1 (en) * 2019-05-23 2020-11-26 Dow Global Technologies Llc Methods for producing c2 to c5 paraffins using a hybrid catalyst comprising a high acidity microporous component
CN113993976A (en) * 2019-05-23 2022-01-28 陶氏环球技术有限责任公司 Production of C using hybrid catalyst comprising high acidity microporous component2To C5Process for paraffinic hydrocarbons
CN110327969A (en) * 2019-06-21 2019-10-15 齐利华(武汉)资源环境科技有限公司 A kind of CO2Add catalyst of hydrogen producing light olefins and preparation method thereof, application
CN112209404A (en) * 2019-07-12 2021-01-12 中国石油化工股份有限公司 Zn-SSZ-13/SAPO-11 composite structure molecular sieve with high zinc-silicon ratio and synthesis method thereof
CN110479364A (en) * 2019-09-02 2019-11-22 太原理工大学 A kind of method that bifunctional catalyst and CO add hydrogen directly to convert producing light olefins
CN111266131B (en) * 2020-03-02 2023-04-07 正大能源材料(大连)有限公司 Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and use method thereof
CN111266131A (en) * 2020-03-02 2020-06-12 正大能源材料(大连)有限公司 Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and use method thereof
CN113731481A (en) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 Catalyst composition for preparing low-carbon olefin by converting synthesis gas and preparation method and application thereof
CN113731481B (en) * 2020-05-29 2024-03-26 中国石油化工股份有限公司 Catalyst composition for preparing low-carbon olefin by converting synthesis gas and preparation method and application thereof
CN113856748A (en) * 2021-11-04 2021-12-31 中国环境科学研究院 Hollow ZSM-5 catalyst with atom-doped and metal cluster double-modified inner surface, and preparation method and application thereof
CN113856748B (en) * 2021-11-04 2022-12-16 中国环境科学研究院 Hollow ZSM-5 catalyst with atom-doped and metal cluster double-modified inner surface, and preparation method and application thereof
CN114433059A (en) * 2022-01-20 2022-05-06 上海工程技术大学 CO2Catalyst for synthesizing low-carbon olefin compound by hydrogenation, preparation and application thereof
CN115178293A (en) * 2022-06-30 2022-10-14 上海应用技术大学 Organic base modified SAPO-34 molecular sieve and preparation and application thereof
CN115814839A (en) * 2022-12-27 2023-03-21 中触媒新材料股份有限公司 Boron or phosphorus doped Silicalite-1 molecular sieve encapsulated metal catalyst and preparation method and application thereof
CN115814839B (en) * 2022-12-27 2024-03-22 中触媒新材料股份有限公司 Boron or phosphorus doped Silicalite-1 molecular sieve encapsulated metal catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
CN109261199B (en) 2021-03-19

Similar Documents

Publication Publication Date Title
CN109261199A (en) A kind of catalyst of the direct producing light olefins of high stability synthesis gas, preparation method and applications
CN103100415B (en) Catalyst with active component nano particles embedded in molecular sieve to crystallize, method and application
Yang et al. Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites
CN105728019A (en) Application and preparation method of ZSM-5 molecular sieve with mesopores and micropores
CN109289910A (en) A kind of synthesis gas directly converts catalyst, the preparation method and applications of producing light olefins
CN101199940A (en) Synthetic method of metal oxide-loaded HZSM-5 and MAPO series binary structure molecular sieve
CN108529642A (en) A kind of preparation method of Cu-SSZ-13 molecular sieves
CN109865516A (en) A kind of ferrum-based catalyst and its preparation method and application
CN108067235A (en) A kind of catalyst of synthesis gas alkene coproduction higher alcohols and its preparation and application
CN111889132A (en) Metal oxide-molecular sieve catalyst, and preparation method and application thereof
CN106927474A (en) A kind of SSZ-13 molecular sieves and preparation method and application
CN111375444A (en) Core-shell iron-based catalyst for directly producing aromatic hydrocarbon from synthesis gas and preparation method and application thereof
CN106076402A (en) The preparation method and applications of the grade hole MFI nanometer sheet that a kind of high dispersive nickel surface is modified
CN101508446B (en) Production process of regulating and controlling SAPO-11 molecular sieve bore diameter
CN105921168A (en) Preparation method of hydrodeoxidation isocatalyst, hydrodeoxidation isocatalyst and application thereof
CN107774303A (en) Porous metals/molecular sieve composite catalyst, its preparation method and the purposes in preparing low-carbon olefin
Cui et al. CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification
CN108975349A (en) A kind of compound ZSM-5 molecular sieve of macropore-micropore and its synthesis and application
CN107486226B (en) Catalyst, the preparation method and its usage of preparation of low carbon olefines by synthetic gas
CN108295892A (en) A kind of preparation method of γ-Al2O3@CuO-ZnO@ZSM-5 double-core shell catalysts
CN110548538A (en) Preparation method and application of metal modified SAPO-34 molecular sieve
CN107720773A (en) A kind of method for efficiently synthesizing the molecular sieves of B Al ZSM 5
CN111135862A (en) Symbiotic composite molecular sieve catalyst applied to MTO reaction and preparation method
CN108339565A (en) A kind of preparation method of ZnO-Al2O3@ZSM-5 catalyst with core-casing structure
CN109701604A (en) Core-shell structure multifunction catalyst system and purposes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant