CN109229091B - 基于能量效率最大化的多模混合动力汽车能量管理策略 - Google Patents

基于能量效率最大化的多模混合动力汽车能量管理策略 Download PDF

Info

Publication number
CN109229091B
CN109229091B CN201810992751.4A CN201810992751A CN109229091B CN 109229091 B CN109229091 B CN 109229091B CN 201810992751 A CN201810992751 A CN 201810992751A CN 109229091 B CN109229091 B CN 109229091B
Authority
CN
China
Prior art keywords
mode
efficiency
energy
power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810992751.4A
Other languages
English (en)
Other versions
CN109229091A (zh
Inventor
庄伟超
黄泽豪
殷国栋
耿可可
罗凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810992751.4A priority Critical patent/CN109229091B/zh
Publication of CN109229091A publication Critical patent/CN109229091A/zh
Application granted granted Critical
Publication of CN109229091B publication Critical patent/CN109229091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0666Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于能量效率最大化的多模混合动力汽车能量管理控制策略,共分两层。内层是效率归一化最大化策略,其基于全局归一化效率因的效率分析方法,用于计算最优的能量分配律,能够同时处理混合动力模式与纯电动模式的能量效率优化问题;外层是动态规划,用于处理多模混合动力汽车的模式切换问题,求解最优模式切换命令,其能够在避免频繁换挡与换挡能量损失,提高换挡平顺性的前提下,做出最优模式切换控制命令。外层与内层相互协调,最终形成适用于多模混合动力汽车的近优能量管理控制策略NEMS+,该方法在实现能量管理控制策略优化的同时,能够保证模式切换的平顺性与合理的模式切换频率。

Description

基于能量效率最大化的多模混合动力汽车能量管理策略
技术领域
本发明涉及一种混合动力汽车能量管理控制策略,特别涉及一种兼顾换挡策略的多模混合动力汽车能量管理控制策略。
背景技术
在大幅提高动力电池比能量、寿命,降低燃料电池成本与储氢安全性之前,混合动力汽车被认为是当前最为理想的节能与环保汽车技术。与传统内燃机汽车相比,混合动力汽车具有至少两个能量源,一般的混合动力电动汽车中这两种能源是电能与燃料内能。如何控制与利用这两种能源的特性实现互补,在保证车辆正常驱动的同时,实现能量的最大化利用是混合动力汽车研究工作的重点与难点,即能量管理控制策略。控制策略的核心在于根据汽车实际行驶过程中的能量需求,合理地控制电机与发动机的输出功率,以获得最佳经济性、最低排放与最佳驱动性能。
目前关于混合动力汽车的能量管理策略的相关研究工作很多,如基于动态规划的全局能量管理控制策略。动态规划是一种全局最优化方法,其求解得到的控制律为***最优控制律,但该方法需要巨大的计算量,若应用于拓扑构型优化与动力参数匹配问题时会面临计算效率过低等挑战。除动态规划之外,另外一种被学者所认可的能量管理控制策略是等效燃油最小化方法,其中的等效油电转化因子被证明是极小值原理中的重要组成部分。但该方法的最优特性只在并联式混合动力汽车上得到证明,对于动力学关系较为复杂的功率分流式混合动力汽车并未证明;同时最优等效油电转化因子会随着工况的变化而变化,且其无法处理模式切换问题,使其不适合应用于多模混合动力汽车的能量管理控制优化。
发明内容
本发明为了克服现有技术中存在的问题,提出一种基于能量效率最大化的准确且快速的多模混合动力汽车近优能量管理控制策略,共分两层,外层与内层相互协调,最终形成适用于多模混合动力汽车的近优能量管理控制策略NEMS+,该方法在实现能量管理控制策略优化的同时,能够保证模式切换的平顺性与合理的模式切换频率。
为解决上述技术问题,本发明提供了基于能量效率最大化的多模混合动力汽车能量管理策略,包括内外两层,内层为效率归一化最大化策略,其基于全局归一化效率因子的效率分析方法,用于计算最优的能量分配律,同时处理混合动力模式与纯电动模式的能量效率优化问题;外层为基于动态规划确定最佳模式切换策略,用于处理多模混合动力汽车的模式切换问题,求解最优模式切换命令,做出最优模式切换控制命令。
内层的效率归一化最大化策略具体包括以下步骤:
步骤1.对标准驾驶循环工况以车辆车速与驾驶员需求扭矩两个变量进行离散化,组成一个两维概率表p(vm,Tn),称它为STC,即Speed Torque Cell,如式(1)所示:
Figure GDA0002354653510000021
其中,num(vm,Tn)代表该循环工况中,在某一速度区间与某一扭矩区间的工作点个数,num(vm,Tn)total为总工作点个数;
步骤2.对每一个模式归一化效率分析,得到每一个模式下***的最优效率和对应的控制;
模式归一化效率分析中各模式如下:
(1)纯电动模式:***能量来源电池,***的输出动力元件为驱动电机,根据假设,在每一个时间区间,电池的开路电压与内阻是常数,故***的效率仅取决于电机的效率;
(2)制动能量回收模式:当驾驶员需求扭矩为负时,车辆进入制动能量回收模式,电机做负功,电池处于充电状态,***效率取决于电机效率;
(3)混合动力模式:存在两个动力能量源,能量传递流可分为4个部分:发动机功率通过发电机转化为电能并存入电池的Pe_1,发动机功率通过发电机发电产生电能并提供给电机驱动车辆的Pe_2,发动机功率通过机械传递直接传导到车轮的Pe_3,以及电池提供的驱动车辆的能量Pbatt,对所述四个能量传递过程中的能量流进行归一化处理,得到全局归一化效率因子GNEF,对所有可行发动机转速与扭矩,取最大值,即可得到STC中所有非零单元的最佳效率值与对应的控制命令;
(4)过渡模式:模式与模式切换时存在的模式状态称为过渡模式,发生直接换挡的结构模式之间,当目标动力源转速低于当前动力源转速的时候,一方面使用离合器制动实现调速,另一方面将发动机切换到发电模式实现降速;当目标动力源转速高于当前动力源转速的时候,***需要输出额外的能量用以加速动力源,当动力源转速与目标转速同步时再结合离合器,成功换入下一结构模式;
(5)附属模式:发动机的中间状态,将这种不处于最佳工作转速的模式称为附属模式。
纯电动模式中,***的效率表达式为:
Figure GDA0002354653510000022
式中,PEV in为***的输入功率,即电池功率PBatt,PEV loss为***的损失功率,即为电机损失功率PMotor loss
在一个单自由度双电机模式中,可以任意分配两个电机的输出扭矩以达到需求扭矩;
在双自由度双电机模式中,电机转速可任意调节,故需要遍及两个电机的所有扭矩与转速组合,求解最大值,获得对应的电机的输出角速度ωout和输出扭矩Tout下***的最佳效率
Figure GDA0002354653510000034
如下:
Figure GDA0002354653510000033
式中,ηEV为***效率,ωMG1,ωMG2,TMG1,TMG2分别为两个电机所对应的角速度和输出扭矩;
得到步骤1中的离散化得到的STC中所有非零单元对应的每一个结构模式的最佳***效率,与相应的控制命令;
制动能量回收模式,通过纯电动模式中的公式求解在制动能量回收状态下,最佳***效率与对应的控制命令;
混合动力模式中对四个能量传递过程中的能量流进行归一化处理,得到:
Figure GDA0002354653510000031
式中,ηHybride,Te)为混合动力模式下的***效率,Pe_1、Pe_2、Pe_3为发动机的输出功率,Pfuel为对应于发动机喷射的燃料的功率,ηe_maxMG_max,和ηMG2_max分别是发动机、电机1与电机2的最大效率,μ为与电池是否输出功率有关的判断因子,若电池的输出功率小于0,则μ=0;若电池的输出功率为零或大于零,则μ=1;
遍及所有可行发动机转速与扭矩,并按式(5)求取最大值,即可得到STC中所有非零单元的最佳效率值
Figure GDA0002354653510000035
与对应的控制命令:
Figure GDA0002354653510000032
外层的动态规划以经济性最高为优化目标,提高模式切换平顺性,降低模式切换的频率,将电池荷电状态SOC与模式状态作为状态变量,模式切换命令作为唯一的控制变量。
有益效果:本发明与现有技术相比,本发明具有以下优点:
1、本发明能够处理模式切换问题,能同时处理混合动力模式与纯电动模式的能量效率问题;
2、与纯动态规划的能量管理控制策略相比,本发明的NEMS+在保证经济性优化准确度的基础上,将计算效率提高105倍以上。
附图说明
图1为本发明的思路图。
图2为本发明的能量流传递路径图。
具体实施方式
下面结合附图进一步阐述本发明。
图1为多模混合动力汽车能量管理控制策略NEMS+基本思路图。
整个能量管理控制策略NEMS+分为两层,内层是基于全局归一化效率因子GNEF的效率分析方法NEMS,这里可以只对驾驶循环工况中包含的速度与扭矩需求组进行求解,从而提高计算效率;假设在每一个时间区间里电池的开路电压与内阻是常数;外层是基于动态规划的最优模式确定方法,在避免频繁换挡与换挡能量损失,提高换挡平顺性的前提下,做出最优模式切换控制命令。下面将会详细描述NEMS+的运算过程。
首先,对标准驾驶循环工况以车辆车速与驾驶员需求扭矩两个变量进行离散化,并组成一个两维概率表p(vm,Tn),称它为STC,即Speed Torque Cell,如式:
Figure GDA0002354653510000041
式中,num(vm,Tn)代表该循环工况中,在某一速度区间与某一需求扭矩区间的工作点个数,而num(vm,Tn)total为总工作点个数。使用需求扭矩代替车辆加速度,是为了能够将车辆行驶中的坡道等信息统一起来。如果将坡道信息加入循环工况,则能快速转化为扭矩需求循环工况进行处理,通过离散化循环工况以减少NEMS计算量。
其次,对各模式进行模式归一化效率分析:各模式如下:
1)纯电动模式的能量流相对简单,***的能量来源始终为电池,而***的输出动力元件是驱动电机。根据假设,在每一个时间区间,电池的开路电压与内阻是常数,故***的效率仅取决于电机的效率,其表达式为:
Figure GDA0002354653510000042
式中,PEV in为***的输入功率,即电池功率PBatt,而PEV loss为***的损失功率,即为电机损失功率PMotor loss。由于***中有两个发动机存在,所以上式中电机与电池功率的比值并不一定等于电机效率。如,在一个单自由度双电机模式中,可以任意分配两个电机的输出扭矩以达到需求扭矩;而在双自由度双电机模式中,电机转速可任意调节,故需要遍及两个电机(Motor/Generator)的所有扭矩与转速组合,求解最大值,获得对应的电机的输出角速度ωout和输出扭矩Tout下***的最佳效率
Figure GDA0002354653510000051
如下:
Figure GDA0002354653510000052
式中ηEV是***效率,ωMG1,ωMG,TMG1,TMG2分别为两个电机所对应的角速度和输出扭矩。通过上述分析,可以得到第一步中的离散化得到的STC中所有非零单元对应的每一个结构模式的最佳***效率,与相应的控制命令。
2)当驾驶员需求扭矩为负时,车辆进入制动能量回收模式。此时,***与纯电动模式下类似,不同的是电机做负功,电池处于充电状态,而***的效率仍然取决于电机效率,可以通过纯电动模式中的公式求解在制动能量回收状态下,最佳***效率与对应的控制命令。
3)混合动力模式存在两个动力能量源,如图2所示,能量传递流可分为4个部分:发动机功率通过发电机转化为电能并存入电池的Pe_1,发动机功率通过发电机发电产生电能并提供给电机驱动车辆的Pe_2,发动机功率通过机械传递直接传导到车轮的Pe_3,以及此时电池提供的驱动车辆的能量Pbatt。对上述四个能量传递过程中的能量流进行归一化处理,得到:
Figure GDA0002354653510000053
式中ηHybride,Te)是混合动力模式下的***效率,Pe_1+Pe_2+Pe_3是发动机的输出功率,Pfuel是对应于发动机喷射的燃料的功率,ηe_maxMG1_max,和ηMG2_max分别是发动机、电机1与电机2的最大效率。μ为一个与电池是否输出功率有关的判断因子,若电池的输出功率小于0,则μ=0;若电池的输出功率为零或大于零,则μ=1。
与纯电动模式的分析求解方法类似,遍及所有可行发动机转速与扭矩,并按式(5)求取最大值,即可得到STC中所有非零单元的最佳效率值
Figure GDA0002354653510000054
与对应的控制命令:
Figure GDA0002354653510000061
4)模式与模式切换时存在的模式状态称为过渡模式,这种模式普遍存在于能发生直接换挡的结构模式之间,当目标动力源转速低于当前动力源转速的时候,一方面可以使用离合器制动实现调速,另外一方面则可将发动机切换到发电模式从而实现降速;当目标动力源转速高于当前动力源转速的时候,***需要输出额外的能量用以加速动力源,当动力源转速与目标转速同步时再结合离合器,成功换入下一结构模式。
5)在实际运行过程中,***会经常遇到发动机的中间状态(非最佳工作转速),这种不处于最佳工作转速的模式称为附属模式。以下为各种结构模式类型的附属模式。
对于并联模式,为了避免模式频繁切换问题,同样需加入附属模式,但由于并联模式中发动机与输出轴直接机械连接,转速无法控制,故该模式只具有发动机停机状态,即发动机不喷油。
对于纯电动模式,由于发动机不参与工作,所以不存在附属模式;而仅发动机驱动模式下,发动机的油耗取决于当前车速与需求扭矩,故也不存在附属模式;而对于三自由度复合型功率分流模式、单电机无级变速式与双电机串联无级变速式,当发动机输出扭矩固定时或者不喷油时,***会失稳,故也无附属状态存在。综上所示,所有模式类型的附属模式如表1:
表1:各模式类型的附属模式
Figure GDA0002354653510000062
Figure GDA0002354653510000071
能量管理控制策略NEMS中结构模式的总数量
Figure GDA0002354653510000072
可由式(6)计算得到:
Figure GDA0002354653510000073
其中,NType()代表括号中模式类型的模式数量,NBri代表过渡模式的数量。
最后需要确定模式切换策略。最佳模式切换命令是基于动态规划的方法确定的,与传统基于动态规划的全局能量管理控制策略中的动态规划方法一致,NEMS+中的动态规划也是以经济性最高为优化目标,同时提高模式切换平顺性,降低模式切换的频率,其性能指标如下:
Figure GDA0002354653510000074
式中,JC是性能指标的目标函数,XC(t)是***的控制变量,Λ是某一标准循环工况,gfuel(k)为混合动力汽车在k时刻的燃油消耗量,则
Figure GDA0002354653510000076
为***在给定的循环工况中的燃油消耗量;右式为一个终端状态软约束,即希望电池在循环工况结束时的能量不发生较大的变化,此时才能公平的评价***的经济性,由于很难将电池的终端电量等于理想值,所以相对于使用一个硬约束,可以使用软约束以提高动态规划的运行能力。μ1是该软约束的权重系数,在实际调试过程中,将μ1的值选取为刚刚能使电池的终端电量回到目标值所对应的值。
Figure GDA0002354653510000075
式中,Pshift(k)是模式切换的惩罚项,δ是模式切换惩罚项的判断因子,当δ=0时,***无模式切换惩罚;当δ=1时,***存在模式切换惩罚。该模式切换惩罚项的核心在于计算模式切换前后的动能差值,当差值大时,模式切换前后存在较大能量差异,则***会损失一部分动能,或者需要输出一部分功率加速部件,同时也会造成较大的振动,影响车辆前进平顺性。式中,α1、α2与α3是各动力元件的权重系数。而约束条件为:
Figure GDA0002354653510000081
上述约束包括三个动力源的物理约束,即动力源的输出扭矩与转速需要在可行范围内;对于多模混合动力汽车而言,模式的选择也只能在已知的几个模式中选择,即Modeavailable;由于电池的SOC对电池的寿命有较大的影响,所以电池的SOC不能过高也不能过低。
由于NEMS中已经给出了所有结构模式的最佳工作状态与控制变量,所以这里的动态规划与传统的动态规划相比,仅需将电池SOC与模式状态作为状态变量,而模式切换命令作为唯一的控制变量,这极大地降低了动态规划的维度与复杂程度,它们的离散化如下表所示:
Figure GDA0002354653510000082
综上,提出了一种近优能量管理控制策略,NEMS+,将该优化方法应用在一个多模混合动力汽车上,优化城市工况下的能量分配。

Claims (3)

1.基于能量效率最大化的多模混合动力汽车能量管理策略,其特征在于:包括内外两层,内层为效率归一化最大化策略,其基于全局归一化效率因子的效率分析方法,用于计算最优的能量分配律,同时处理混合动力模式与纯电动模式的能量效率优化问题;外层为基于动态规划确定最佳模式切换策略,用于处理多模混合动力汽车的模式切换问题,求解最优模式切换命令,做出最优模式切换控制命令;
所述内层的效率归一化最大化策略具体包括以下步骤:
步骤1.对标准驾驶循环工况以车辆车速与驾驶员需求扭矩两个变量进行离散化,组成一个两维概率表p(vm,Tn),称它为STC,即Speed Torque Cell,如式(1)所示:
Figure FDA0002354653500000011
其中,num(vm,Tn)代表该循环工况中,在某一速度区间与某一扭矩区间的工作点个数,num(vm,Tn)total为总工作点个数;
步骤2.对每一个模式归一化效率分析,得到每一个模式下***的最优效率和对应的控制;
模式归一化效率分析中各模式如下:
(1)纯电动模式:***能量来源电池,***的输出动力元件为驱动电机,根据假设,在每一个时间区间,电池的开路电压与内阻是常数,故***的效率仅取决于电机的效率;
(2)制动能量回收模式:当驾驶员需求扭矩为负时,车辆进入制动能量回收模式,电机做负功,电池处于充电状态,***效率取决于电机效率;
(3)混合动力模式:存在两个动力能量源,能量传递流可分为4个部分:发动机功率通过发电机转化为电能并存入电池的Pe_1,发动机功率通过发电机发电产生电能并提供给电机驱动车辆的Pe_2,发动机功率通过机械传递直接传导到车轮的Pe_3,以及电池提供的驱动车辆的能量Pbatt,对所述四个能量传递过程中的能量流进行归一化处理,得到全局归一化效率因子GNEF,对所有可行发动机转速与扭矩,取最大值,即可得到STC中所有非零单元的最佳效率值与对应的控制命令;
(4)过渡模式:模式与模式切换时存在的模式状态称为过渡模式,发生直接换挡的结构模式之间,当目标动力源转速低于当前动力源转速的时候,一方面使用离合器制动实现调速,另一方面将发动机切换到发电模式实现降速;当目标动力源转速高于当前动力源转速的时候,***需要输出额外的能量用以加速动力源,当动力源转速与目标转速同步时再结合离合器,成功换入下一结构模式;
(5)附属模式:发动机的中间状态,将这种不处于最佳工作转速的模式称为附属模式。
2.根据权利要求1所述的基于能量效率最大化的多模混合动力汽车能量管理策略,其特征在于:
所述纯电动模式中,***的效率表达式为:
Figure FDA0002354653500000021
式中,PEV in为***的输入功率,即电池功率PBatt ,PEV loss为***的损失功率,即为电机损失功率PMotor loss
在一个单自由度双电机模式中,可以任意分配两个电机的输出扭矩以达到需求扭矩;
在双自由度双电机模式中,电机转速可任意调节,故需要遍及两个电机的所有扭矩与转速组合,求解最大值,获得对应的电机的输出角速度ωout和输出扭矩Tout下***的最佳效率
Figure FDA0002354653500000024
如下:
Figure FDA0002354653500000022
式中,ηEV为***效率,ωMG1,ωMG2,TMG1,TMG2分别为两个电机所对应的角速度和输出扭矩;
得到步骤1中的离散化得到的STC中所有非零单元对应的每一个结构模式的最佳***效率,与相应的控制命令;
所述制动能量回收模式,通过纯电动模式中的公式求解在制动能量回收状态下,最佳***效率与对应的控制命令;
所述混合动力模式中对四个能量传递过程中的能量流进行归一化处理,得到:
Figure FDA0002354653500000023
式中,ηHybride,Te)为混合动力模式下的***效率,Pe_1、Pe_2、Pe_3为发动机的输出功率,Pfuel为对应于发动机喷射的燃料的功率,ηe_maxMG1_max,和ηMG2_max分别是发动机、电机1与电机2的最大效率,μ为与电池是否输出功率有关的判断因子,若电池的输出功率小于0,则μ=0;若电池的输出功率为零或大于零,则μ=1;
遍及所有可行发动机转速与扭矩,并按式(5)求取最大值,即可得到STC中所有非零单元的最佳效率值
Figure FDA0002354653500000032
与对应的控制命令:
Figure FDA0002354653500000031
3.根据权利要求1所述的基于能量效率最大化的多模混合动力汽车能量管理策略,其特征在于:外层的动态规划以经济性最高为优化目标,提高模式切换平顺性,降低模式切换的频率,将电池荷电状态SOC与模式状态作为状态变量,模式切换命令作为唯一的控制变量。
CN201810992751.4A 2018-08-29 2018-08-29 基于能量效率最大化的多模混合动力汽车能量管理策略 Active CN109229091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810992751.4A CN109229091B (zh) 2018-08-29 2018-08-29 基于能量效率最大化的多模混合动力汽车能量管理策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810992751.4A CN109229091B (zh) 2018-08-29 2018-08-29 基于能量效率最大化的多模混合动力汽车能量管理策略

Publications (2)

Publication Number Publication Date
CN109229091A CN109229091A (zh) 2019-01-18
CN109229091B true CN109229091B (zh) 2020-04-24

Family

ID=65069568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810992751.4A Active CN109229091B (zh) 2018-08-29 2018-08-29 基于能量效率最大化的多模混合动力汽车能量管理策略

Country Status (1)

Country Link
CN (1) CN109229091B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109849897B (zh) * 2019-02-28 2020-07-31 江苏大学 一种考虑耦合传动***动态效率的混合动力能量管理方法
CN110103974B (zh) * 2019-05-12 2020-10-02 东南大学 一种多模混合动力汽车模式切换图的正向设计方法
CN110103975A (zh) * 2019-05-12 2019-08-09 东南大学 一种多模混合动力汽车的模式切换图设计方法
CN110979335B (zh) * 2019-12-10 2021-04-27 义乌吉利动力总成有限公司 混合动力***能量效率的计算方法、计算***及车辆
CN112660102B (zh) * 2020-12-31 2022-05-17 吉林大学 一种基于能耗分析理论的行星多挡混合动力***控制方法
CN112959992B (zh) * 2021-04-07 2022-04-19 吉林大学 基于能效分析与效率最优的混合动力汽车能量管理方法
CN114426014B (zh) * 2022-01-28 2024-04-05 重庆青山工业有限责任公司 双电机混合动力汽车串联与并联模式的切换方法
CN117962864B (zh) * 2024-04-01 2024-06-25 吉林大学 一种基于双层优化框架的混联混合动力车辆能量管理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055997A (ja) * 2006-08-30 2008-03-13 Mazda Motor Corp ハイブリッド車両の制御装置
CN101219665A (zh) * 2008-01-30 2008-07-16 北京交通大学 一种基于综合能量流的混合动力电动汽车能量管理方法
CN101492046A (zh) * 2008-11-25 2009-07-29 吉林大学 并联式混合动力车辆整车能量管理与总成协调控制方法
CN103863323B (zh) * 2012-12-11 2016-03-02 重庆长安汽车股份有限公司 一种重度混合动力汽车的能量管理***的控制方法
CN105438170B (zh) * 2015-12-25 2018-01-19 北京新能源汽车股份有限公司 档位切换和工作模式切换的协调控制方法、***及车辆

Also Published As

Publication number Publication date
CN109229091A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN109229091B (zh) 基于能量效率最大化的多模混合动力汽车能量管理策略
US6845305B1 (en) Engine torque control for a hybrid electric vehicle using estimated engine torque
JP3401181B2 (ja) ハイブリッド車の駆動制御装置
CN103260987B (zh) 混合动力车辆的控制装置
CN106080585B (zh) 一种双行星排式混合动力汽车非线性模型预测控制方法
KR101338435B1 (ko) 친환경 자동차의 토크 제어방법 및 그 장치
US20030001391A1 (en) Hybrid electric vehicle control strategy while traveling in reverse
CN103171559B (zh) 分模式最优化混联式混合动力汽车能量管理方法
US20100250042A1 (en) Vehicle and method of controlling the vehicle
CN106394548B (zh) 一种插电式四驱混合动力汽车分层协调能效控制方法
JP5277198B2 (ja) ハイブリッド車両制御装置
CN106240336A (zh) 一种插电式双电机四驱混合动力***及控制方法
CN110304042A (zh) 基于规则的四驱phev转矩分配控制方法
Xiang et al. A study on gear shifting schedule for 2-speed electric vehicle using dynamic programming
CN109263633A (zh) 一种行星混联式汽车能量管理控制方法
CN109177968A (zh) 一种功率分流式混合动力汽车的驱动模式控制方法
CN107499303A (zh) 一种基于双动力源协同的并联phev三参数换挡控制方法
Song et al. Study on the energy management strategy of DCT-based series-parallel PHEV
Song et al. Switching control from motor driving mode to hybrid driving mode for PHEV
CN117465412A (zh) 基于能量流效率最优的混合动力车辆在线能量管理方法
CN111191385B (zh) 一种用于电动汽车动力总成构型的分析方法
Yadav et al. Fuzzy control implementation for energy management in hybrid electric vehicle
Lyati Hybrid Electric Vehicles (HEV): classification, configuration, and vehicle control
Ren et al. Research on the Energy Management Strategy of Hybrid Vehicle Based on Pontryagin's Minimum Principle
Yunlong et al. Neural network and efficiency-based control for dual-mode hybrid electric vehicles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant