CN109216736B - 燃料电池多模式切换阳极压力脉动水冲刷控制*** - Google Patents

燃料电池多模式切换阳极压力脉动水冲刷控制*** Download PDF

Info

Publication number
CN109216736B
CN109216736B CN201811116407.5A CN201811116407A CN109216736B CN 109216736 B CN109216736 B CN 109216736B CN 201811116407 A CN201811116407 A CN 201811116407A CN 109216736 B CN109216736 B CN 109216736B
Authority
CN
China
Prior art keywords
pressure
fuel cell
valve
anode
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811116407.5A
Other languages
English (en)
Other versions
CN109216736A (zh
Inventor
张财志
曾韬
李栋军
刘浩
樊芮嘉
宋雨茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201811116407.5A priority Critical patent/CN109216736B/zh
Publication of CN109216736A publication Critical patent/CN109216736A/zh
Application granted granted Critical
Publication of CN109216736B publication Critical patent/CN109216736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及燃料电池多模式切换阳极压力脉动水冲刷控制***,属于燃料电池技术领域。该方法技术点为:(1)动态调节用于燃料电池电堆阳极冲刷压力差,实现最优的阳极水冲刷效果;(2)动态调整燃料电池阳极冲刷的方向,实现最优的阳极流道水分布;(3)阳极封闭,实现零氢气排放效果的阳极氢循环。本发明可实现最优的燃料电池阳极水冲刷效果,减小燃料电池阳极的压力波动,避免因传统阳极排水控制中的压力骤降导致的电压波动,同时能优化电堆内阳极水分布以提高燃料电池单体工作电压的均匀性。

Description

燃料电池多模式切换阳极压力脉动水冲刷控制***
技术领域
本发明属于燃料电池技术领域,涉及燃料电池多模式切换阳极压力脉动水冲刷控制***。
背景技术
燃料电池工作时,氢气在阳极生成氢离子并通过质子交换膜,进而在阴极与氧气反应生成水,阴极产生的水因浓度差会反向扩散到阳极,这会导致电堆阳极内积水增多和电极水淹,从而阻碍氢气传输,因此电堆阳极水管理显得非常重要。传统的阳极水管理一般采用间歇性开放式单向冲刷方式将阳极积水排出,但传统的方式会导致较多的氢气浪费,降低氢气利用率,也无法有效避免因阳极水分布的不均匀性导致的单体电压不均,同时也会因冲刷时阳极压力波动过大而导致电堆电压的较大波动。本发明设计的阳极全封闭式氢气双向供应***,可根据实际工况的变化和电堆性能表现动态调节两个减压阀的压力差,从而在冲刷时保持电堆阳极流道内具有最佳的氢气余压以维持氢气浓度,减小因冲刷时的氢气压降导致的燃料电池电压骤减,同时以单体工作电压均匀性为指标,动态改变供气方向,以实现氢气供应方向和阳极水冲刷方向的切换,改善阳极水分布,提高电堆单体工作电压的均一性,从而很好地解决了传统阳极水冲刷模式所具有的诸多问题。
发明内容
有鉴于此,本发明的目的在于提供燃料电池多模式切换阳极压力脉动水冲刷控制***,利用燃料电池内部产生的脉动压力对燃料电池电堆进行冲刷,并通过三通阀改变燃料电池氢气供应方向,实现燃料电池电堆的冲刷方向切换。
为达到上述目的,本发明提供如下技术方案:
燃料电池的多模式切换阳极压力脉动水冲刷控制***,包括燃料电池、氢气罐、高压电控减压阀、低压电控减压阀、两位三通阀I、两位三通阀II、电磁阀以及缓冲罐;
其中,高压电控减压阀的输出端压力恒定,低压电控减压阀的输出端压力可在线调节;两位三通阀I的三个端口分别为1、2、3,两位三通阀II的三个端口分别为4、5、6;
所述氢气罐通过管路分别连接至高压电控减压阀和低压电控减压阀,低压电控减压阀通过管路连接至缓冲罐,缓冲罐通过管路分别连接至端口2和端口5;端口3和端口4通过管路同时连接至燃料电池;高压电控减压阀通过管路连接至电磁阀后分别连接至端口1和端口6;端口1和端口6通过管路互通。
进一步,该方法利用燃料电池消耗氢气的方法来产生与高压供气的压力差,达到对燃料电池电堆进行冲刷,主要通过控制电磁阀的开关间隔和持续时长、两位三通阀改变燃料电池氢气供应方向、低压电控减压阀的输出压力,并应用模糊理论实现三种工作模式的切换和氢气压差的控制,实现燃料电池电堆的冲刷方向切换,从而达到最优的阳极水冲刷控制目标。
进一步,在所述方法中,还包括以下依据:
(1)通过采集输出电压变化、输出电压变化率以及单体电压均匀性反馈于模糊控制器,通过调整冲刷持续时间、冲刷间隔、冲刷方向以及冲刷压力差以达到更好的冲刷效果,表现为良好的单体电压均匀性,同时维持冲刷期间更稳定的电堆性能,表现在输出电压变化以及变化率;
(2)根据燃料电池电堆单体电压均匀性分布情况,决定冲刷方向是否改变;
(3)以输出电压变化大小和单体电压均匀性变化为评判指标,在不同的低压电控减压阀设定值下进行燃料电池性能和冲刷效果的标定,以确定不同工况下最佳的低压电控减压阀压力设定值;
(4)在确定上述控制参数后,冲刷时间和冲刷间隔则根据模糊规则确定。
进一步,所述三种工作模式为:
正常工作模式:燃料电池正常工作时,电磁阀保持开启,燃料电池电堆内氢气压力维持高压;
正向冲刷模式:关闭电磁阀,等待一定时间,待燃料电池电堆内氢气压力因消耗而下降至低压阀输出端压力后,再次打开电磁阀,利用此时产生的压差进行正向冲刷,待电堆内氢气压力恢复高压后并进入正常工作模式;
反向冲刷模式:首先改变高压电控减压阀和低压电控减压阀的工作位置,从而改变氢气流动方向,然后关闭电磁阀,待燃料电池电堆内氢气压力降低至低压电控减压阀设定值后,再次打开电磁阀,利用此时的压差进行反向冲刷,随后恢复两位三通阀I和两位三通阀II的工作位置,使气体流动方向恢复至反向冲刷之前的方向,然后进入正常工作模式。
进一步,所述三种工作模式具体为:
正常工作模式:电磁阀保持开启状态,两位三通阀I和两位三通阀II的开启工位分别为1-3和4-5,即ModeⅠ,管路压力为Phigh
正向冲刷模式:关闭电磁阀,燃料电池持续消耗氢气,此时管路压力逐渐下降为Plow,再次打开电磁阀,管路内将产生一定的压力差,大小为Phigh-Plow,从而对燃料电池电堆内的阳极积水进行冲刷,然后回到正常工作模式ModeⅠ;
反向冲刷模式:分别改变两位三通阀I和两位三通阀II的开启工位为2-3和4-6,关闭电磁阀,持续消耗氢气,使管路压力逐渐下降为Plow,再次打开电磁阀,利用压差Phigh-Plow对电堆内的积水进行冲刷,之后分别将两位三通阀I和两位三通阀II切换回1-3和4-5,然后回到正常工作模式。
本发明的有益效果在于:
1、两位三通阀的应用极大简化了氢气供应管路的连接,通过模式切换能够实现对燃料电池电堆内阳极积水的双向冲刷,改善燃料电池的水分布均匀情况,提高单体电压均匀性;
2、通过动态调节低压减压阀压力设定值,减小因冲刷期间氢气压降而导致的电压下降;
3、模糊控制***的鲁棒性强,干扰和参数变化对控制效果的影响很小,尤其适合于非线性、时变及纯滞后***的控制。
4、完全封闭的氢气供应管路提高了氢气的利用率,真正实现氢气的零排放和高效利用。
5、缓冲罐用于排出的阳极积水的收集,既可以清除多余的阳极积水,又可以对氢气起到一定的加湿效果。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明的***的工作模式;
图2为本发明的管路氢气压力变化图;
图3为本发明的模糊控制思路框图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
本发明是针对封闭式燃料电池水管理***的多模式冲刷控制的新方法,利用燃料电池内部产生的脉动压力对燃料电池电堆进行冲刷,并通过三通阀改变燃料电池氢气供应方向,实现燃料电池电堆的冲刷方向切换。
本发明主要由燃料电池的多模式切换阳极压力脉动水冲刷控制***,该***主要包括燃料电池、氢气罐、高压电控减压阀、低压电控减压阀、两位三通阀I、两位三通阀II、电磁阀缓冲罐以及冷却风扇;如图1所示。设计中采用的两个电控减压阀:一个为恒定输出端压力值的高压阀和一个输出端压力可在线调节的低压阀。两组两位三通阀、电磁阀和一个缓冲罐,通过适当的管路连接完成该发明的硬件搭建。通过优化控制电磁阀的开关间隔和持续时长、氢气冲刷方向以及低压端电控减压阀的输出压力,并应用模糊理论实现三种工作模式的切换和氢气压差的控制,从而实现最优的阳极水冲刷控制。
正常工作模式:燃料电池正常工作时,电磁阀保持开启,电堆内氢气压力维持高压;
正向冲刷模式:关闭电磁阀,等待一小段时间,待电堆内氢气压力因消耗而下降至低压阀输出端压力后,再次打开电磁阀,利用此时产生的压差进行正向冲刷,待电堆内氢气压力恢复高压后并进入正常工作模式;
反向冲刷模式:首先改变两个三通阀的工作位置,从而改变氢气流动方向,然后关闭电磁阀,待电堆内氢气压力降低至低压减压阀设定值后,再次打开电磁阀,利用此时的压差进行反向冲刷,随后恢复三通阀工作位置,使气体流动方向恢复至反向冲刷之前的方向,然后进入正常工作模式。
图2为本发明的管路氢气压力变化图。
为实现以上冲刷效果,如图3所示,本发明的控制思路如下:
1、本阳极水管理多模式冲刷控制***,通过采集输出电压变化、输出电压变化率以及单体电压均匀性反馈于模糊控制器,通过调整冲刷持续时间、冲刷间隔、冲刷方向以及冲刷压力差以达到更好的冲刷效果(表现为良好的单体电压均匀性),同时维持冲刷期间更稳定的电堆性能(表现在输出电压变化以及变化率);
2、根据电堆单体电压均匀性情况,决定冲刷方向是否改变;
3、以输出电压变化大小和单体电压均匀性变化为评判指标,在不同的低压减压阀设定值下进行燃料电池性能和冲刷效果的标定,以确定不同工况下最佳的低压减压阀压力设定值;
4、在确定上述控制参数后,冲刷时间和冲刷间隔则是根据模糊规则确定。
本发明的工作模式为:
(1)正常工作模式:电磁阀保持开启状态,两个三通阀的开启工位分别为1-3和4-5,即ModeⅠ,管路压力为Phigh
(2)正向冲刷模式:关闭电磁阀,燃料电池持续消耗氢气,此时管路压力逐渐下降为Plow,再次打开电磁阀,管路内将产生一定的压力差,大小为Phigh-Plow,从而对电堆内的阳极积水进行冲刷,然后回到正常工作模式ModeⅠ;
(3)反向冲刷模式:分别改变两位三通阀的开启工位为2-3和4-6,关闭电磁阀,持续消耗氢气,使管路压力逐渐下降为Plow,再次打开电磁阀,利用压差Phigh-Plow对电堆内的积水进行冲刷,之后分别将两个两位三通阀切换回1-3和4-5,然后回到正常工作模式。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (5)

1.燃料电池多模式切换阳极压力脉动水冲刷控制***,其特征在于:该***包括燃料电池、氢气罐、高压电控减压阀、低压电控减压阀、两位三通阀I、两位三通阀II、电磁阀以及缓冲罐;
其中,高压电控减压阀的输出端压力恒定,低压电控减压阀的输出端压力可在线调节;两位三通阀I的三个端口分别为1、2、3,两位三通阀II的三个端口分别为4、5、6;
所述氢气罐通过管路分别连接至高压电控减压阀和低压电控减压阀,低压电控减压阀通过管路连接至缓冲罐,缓冲罐通过管路分别连接至端口2和端口5;端口3和端口4通过管路同时连接至燃料电池;高压电控减压阀通过管路连接至电磁阀后分别连接至端口1和端口6;端口1和端口6通过管路互通。
2.基于权利要求1所述***的燃料电池多模式切换阳极压力脉动水冲刷控制方法,其特征在于:该方法利用燃料电池消耗氢气的方法来产生与高压供气的压力差,达到对燃料电池电堆进行冲刷,主要通过控制电磁阀的开关间隔和持续时长、两位三通阀改变燃料电池氢气供应方向、低压电控减压阀的输出压力,并应用模糊理论实现三种工作模式的切换和氢气压差的控制,实现燃料电池电堆的冲刷方向切换,从而达到最优的阳极水冲刷控制目标。
3.根据权利要求2所述的燃料电池多模式切换阳极压力脉动水冲刷控制方法,其特征在于:在所述方法中,还包括以下依据:
(1)通过采集输出电压变化、输出电压变化率以及单体电压均匀性反馈于模糊控制器,通过调整冲刷持续时间、冲刷间隔、冲刷方向以及冲刷压力差以达到更好的冲刷效果,表现为良好的单体电压均匀性,同时维持冲刷期间更稳定的电堆性能,表现在输出电压变化以及变化率;
(2)根据燃料电池电堆单体电压均匀性分布情况,决定冲刷方向是否改变;
(3)以输出电压变化大小和单体电压均匀性变化为评判指标,在不同的低压电控减压阀设定值下进行燃料电池性能和冲刷效果的标定,以确定不同工况下最佳的低压电控减压阀压力设定值;
(4)在确定上述控制参数后,冲刷时间和冲刷间隔则根据模糊规则确定。
4.根据权利要求2所述的燃料电池多模式切换阳极压力脉动水冲刷控制方法,其特征在于:所述三种工作模式为:
正常工作模式:燃料电池正常工作时,电磁阀保持开启,燃料电池电堆内氢气压力维持高压;
正向冲刷模式:关闭电磁阀,等待一定时间,待燃料电池电堆内氢气压力因消耗而下降至低压阀输出端压力后,再次打开电磁阀,利用此时产生的压差进行正向冲刷,待电堆内氢气压力恢复高压后并进入正常工作模式;
反向冲刷模式:首先改变高压电控减压阀和低压电控减压阀的工作位置,从而改变氢气流动方向,然后关闭电磁阀,待燃料电池电堆内氢气压力降低至低压电控减压阀设定值后,再次打开电磁阀,利用此时的压差进行反向冲刷,随后恢复两位三通阀I和两位三通阀II的工作位置,使气体流动方向恢复至反向冲刷之前的方向,然后进入正常工作模式。
5.根据权利要求4所述的燃料电池多模式切换阳极压力脉动水冲刷控制方法,其特征在于:所述三种工作模式具体为:
正常工作模式:电磁阀保持开启状态,两位三通阀I和两位三通阀II的开启工位分别为1-3和4-5,即ModeⅠ,管路压力为Phigh
正向冲刷模式:关闭电磁阀,燃料电池持续消耗氢气,此时管路压力逐渐下降为Plow,再次打开电磁阀,管路内将产生一定的压力差,大小为Phigh-Plow,从而对燃料电池电堆内的阳极积水进行冲刷,然后回到正常工作模式ModeⅠ;
反向冲刷模式:分别改变两位三通阀I和两位三通阀II的开启工位为2-3和4-6,关闭电磁阀,持续消耗氢气,使管路压力逐渐下降为Plow,再次打开电磁阀,利用压差Phigh-Plow对电堆内的积水进行冲刷,之后分别将两位三通阀I和两位三通阀II切换回1-3和4-5,然后回到正常工作模式。
CN201811116407.5A 2018-09-25 2018-09-25 燃料电池多模式切换阳极压力脉动水冲刷控制*** Active CN109216736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811116407.5A CN109216736B (zh) 2018-09-25 2018-09-25 燃料电池多模式切换阳极压力脉动水冲刷控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811116407.5A CN109216736B (zh) 2018-09-25 2018-09-25 燃料电池多模式切换阳极压力脉动水冲刷控制***

Publications (2)

Publication Number Publication Date
CN109216736A CN109216736A (zh) 2019-01-15
CN109216736B true CN109216736B (zh) 2021-05-11

Family

ID=64984866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811116407.5A Active CN109216736B (zh) 2018-09-25 2018-09-25 燃料电池多模式切换阳极压力脉动水冲刷控制***

Country Status (1)

Country Link
CN (1) CN109216736B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950580B (zh) * 2019-04-22 2022-02-11 重庆大学 低成本燃料电池堆阳极工作压力快速调节***
CN111430750B (zh) * 2020-04-02 2023-02-17 重庆大学 一种预测式燃料电池汽车电堆阳极压力智能控制***
CN112349930A (zh) * 2020-11-27 2021-02-09 福建亚南电机有限公司 一种燃料电池***及阳极控制方法
CN112820901B (zh) * 2020-12-31 2022-04-12 华中科技大学 一种解决封闭环境中氢氧燃料电池水淹问题的方法
CN113594493B (zh) * 2021-06-18 2022-06-03 东风汽车集团股份有限公司 一种燃料电池冷却***控制方法、装置及存储介质
CN116646556B (zh) * 2023-06-08 2024-04-30 昆明理工大学 一种风冷型阴极开放式质子交换膜燃料电池的进排气***及控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066531A1 (ja) * 2005-12-05 2007-06-14 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及び移動体
CN100444449C (zh) * 2004-02-10 2008-12-17 丰田自动车株式会社 燃料电池***
CN101512817A (zh) * 2006-12-01 2009-08-19 丰田自动车株式会社 燃料电池***
WO2015118161A1 (fr) * 2014-02-10 2015-08-13 Symbiofcell Circuit de purge d'une pile a combustible
CN105531857A (zh) * 2013-07-11 2016-04-27 日产自动车株式会社 燃料电池***以及燃料电池***的控制方法
CN105609821A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池***及其控制方法
CN106252689A (zh) * 2016-09-08 2016-12-21 双登集团股份有限公司 燃料电池可充装式供气汇流***
CN107004887A (zh) * 2014-12-09 2017-08-01 祖迪雅克航空技术公司 自主飞行器燃料电池***
EP3252858A1 (en) * 2016-05-30 2017-12-06 LG Electronics Inc. Fuel cell and method for operating the same
CN108475796A (zh) * 2016-01-28 2018-08-31 奥迪股份公司 用于确定在通过燃料电池再循环输送的气体混合物中的气体组分含量的方法
CN108539228A (zh) * 2018-05-29 2018-09-14 吉林大学 一种燃料电池***及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010394A1 (de) * 2000-02-28 2001-09-06 Mannesmann Ag Brennstoffzelle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444449C (zh) * 2004-02-10 2008-12-17 丰田自动车株式会社 燃料电池***
WO2007066531A1 (ja) * 2005-12-05 2007-06-14 Toyota Jidosha Kabushiki Kaisha 燃料電池システム及び移動体
CN101512817A (zh) * 2006-12-01 2009-08-19 丰田自动车株式会社 燃料电池***
CN105531857A (zh) * 2013-07-11 2016-04-27 日产自动车株式会社 燃料电池***以及燃料电池***的控制方法
WO2015118161A1 (fr) * 2014-02-10 2015-08-13 Symbiofcell Circuit de purge d'une pile a combustible
CN105609821A (zh) * 2014-11-14 2016-05-25 丰田自动车株式会社 燃料电池***及其控制方法
CN107004887A (zh) * 2014-12-09 2017-08-01 祖迪雅克航空技术公司 自主飞行器燃料电池***
CN108475796A (zh) * 2016-01-28 2018-08-31 奥迪股份公司 用于确定在通过燃料电池再循环输送的气体混合物中的气体组分含量的方法
EP3252858A1 (en) * 2016-05-30 2017-12-06 LG Electronics Inc. Fuel cell and method for operating the same
CN106252689A (zh) * 2016-09-08 2016-12-21 双登集团股份有限公司 燃料电池可充装式供气汇流***
CN108539228A (zh) * 2018-05-29 2018-09-14 吉林大学 一种燃料电池***及其控制方法

Also Published As

Publication number Publication date
CN109216736A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN109216736B (zh) 燃料电池多模式切换阳极压力脉动水冲刷控制***
WO2021164172A1 (zh) 一种质子交换膜燃料电池阳极气体净化控制方法
CN108539222A (zh) 一种车载燃料电池多模块并联氢气循环***及其控制方法
JP2019019386A (ja) 水電解システム及びその運転停止方法
CN102906921A (zh) 燃料电池***
KR20160078590A (ko) 연료전지 시스템 및 그 제어 방법
CN115842142B (zh) 一种燃料电池电堆阳极排水控制方法及装置
CN114883614B (zh) 一种燃料电池***的自适应排气方法
CN110048147A (zh) 一种具备混液功能的全钒液流电池管路***
CN113130945A (zh) 一种燃料电池堆性能恢复方法及***
CN102230184B (zh) 一种保持电解臭氧发生器活性的方法
CN208478474U (zh) 一种车载燃料电池多模块并联氢气循环***
CN112856233B (zh) 一种质子交换膜燃料电池的脉冲氢气供应***
CN107195932B (zh) 液流电池容量稳定调控方法、***及液流电池
CN103741161B (zh) 一种保持电解臭氧发生器性能及延长使用寿命的方法
CN115911460B (zh) 氢燃料电池***的停机方法及***
CN115224310A (zh) 一种燃料电池阳极侧分水控制***与方法
CN114361517B (zh) 一种燃料电池电堆阳极水管理控制***及控制方法
CN115472874A (zh) 一种面向多目标性能优化的氢燃料电池阳极吹扫控制方法
JP5410766B2 (ja) 燃料電池システムおよび燃料電池システムのカソード圧制御方法
CN113782790B (zh) 一种基于燃料电池阳极压力变频喷射的叠加喷射控制方法
CN220604723U (zh) 一种氢燃料电池氢气循环***
CN214580474U (zh) 一种质子交换膜燃料电池的脉冲氢气供应***
CN215053531U (zh) 一种高位水箱串接用户管网双向给水***
CN221176278U (zh) 一种集成电解水制氧和燃料电池的综合应用装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant