CN109214292A - 一种基于bp神经网络的人体屈体角度识别方法及设备 - Google Patents

一种基于bp神经网络的人体屈体角度识别方法及设备 Download PDF

Info

Publication number
CN109214292A
CN109214292A CN201810884113.0A CN201810884113A CN109214292A CN 109214292 A CN109214292 A CN 109214292A CN 201810884113 A CN201810884113 A CN 201810884113A CN 109214292 A CN109214292 A CN 109214292A
Authority
CN
China
Prior art keywords
sitting body
body anteflexion
angle
signature
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810884113.0A
Other languages
English (en)
Inventor
卢旭
杨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Polytechnic Normal University
Original Assignee
Guangdong Polytechnic Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Polytechnic Normal University filed Critical Guangdong Polytechnic Normal University
Priority to CN201810884113.0A priority Critical patent/CN109214292A/zh
Publication of CN109214292A publication Critical patent/CN109214292A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于BP神经网络的人体屈体角度识别方法及设备,其中,该方法包括:建立BP神经网络模型;提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;将所述坐位体前屈侧面图像输入至所述BP神经网络模型中进行体前屈角度识别;输出待测试者的体前屈角度。通过本发明,能够克服因肢体长度不同而产生的测量误差,使得测量结果更加精确,进而提高了检测效率。

Description

一种基于BP神经网络的人体屈体角度识别方法及设备
技术领域
本发明涉及人体柔韧性检测领域,特别涉及一种基于BP神经网络的人体屈体角度识别方法及设备。
背景技术
目前我国测试人体的柔韧性通常都是采用坐位体前屈和立位体前屈的方法,评价指标是手指前伸可达到的最大距离,用屈体时手指或头部前伸的距离代替关节活动的角度进行测量。但是,在实践中发现,这种测量方式存在着严重缺陷,因为不同的人会因为肢体长度不同而对手指前伸的距离产生影响,这样就增大了测量误差,进而影响检测的效率。
发明内容
本发明提供一种基于BP神经网络的人体屈体角度识别方法及设备,能够克服因肢体长度不同而产生的测量误差,使得测量结果更加精确,进而提高了检测效率。
根据本发明的一个方面,提供了一种基于BP神经网络的人体屈体角度识别方法,包括以下步骤:建立BP神经网络模型;提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别;输出待测试者的体前屈角度。
优选地,建立BP神经网络模型,包括以下步骤:获取多个测试者的坐位体前屈侧面图像;通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;调取BP神经网络;将多个测试者的体前屈角度与多个预处理后的坐位体前屈图像输入至BP神经网络中;根据多个测试者的体前屈角度与多个预处理后的坐位体前屈图像,对BP神经网络进行训练,以建立BP神经网络模型。
优选地,通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度,包括以下步骤:对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;上述特征点为肩部、髋部和踝关节;测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;上述夹角的顶点为髋部;将测量的多个角度值作为多个测试者的体前屈角度进行记录。
优选地,对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像,包括以下步骤:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;通过逐像素法在多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
优选地,对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取,包括以下步骤:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;通过背景差分法获取多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵,具体为:将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
根据本发明的另一个方面,还提供了一种基于BP神经网络的人体屈体角度识别设备,包括:模型建立单元,用于建立BP神经网络模型;提取单元,用于提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;输入单元,用于将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别;输出单元,用于输出待测试者的体前屈角度。
优选地,模型建立单元包括:获取子单元,用于获取多个测试者的坐位体前屈侧面图像;标记子单元,用于通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;预处理子单元,用于对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;调取子单元,用于调取BP神经网络;输入子单元,用于将多个测试者的体前屈角度与多个预处理后的坐位体前屈图像输入至BP神经网络中;训练子单元,用于根据多个测试者的体前屈角度与多个预处理后的坐位体前屈图像,对BP神经网络进行训练,以建立BP神经网络模型。
优选地,标记子单元包括:特征点标记模块,用于对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;上述特征点为肩部、髋部和踝关节;角度测量模块,用于测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;上述夹角的顶点为髋部;角度记录模块,用于将测量的多个角度值作为多个测试者的体前屈角度进行记录。
优选地,预处理子单元包括:提取模块,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;归一化处理模块,用于将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;像素特征提取模块,用于通过逐像素法在多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;标记模块,用于对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
优选地,提取模块包括:提取子模块,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;获取子模块,用于通过背景差分法获取多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
归一化处理模块,具体用于将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
与现有技术相比较,本发明的有益效果如下:
通过本发明,首先以大量的测试者的坐位体前屈侧面图像作为样本图像对BP神经网络进行训练以建立BP神经网络模型,当通过上述BP神经网络模型识别测试者的体前屈角度时需要先提取待测试者的坐位体前屈侧面图像的前景目标,以得到提取前景目标之后的坐位体前屈侧面图像,再将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别,最后会输出待测试者的体前屈角度。通过对坐位体前屈侧面图像的分析得到测试者的体前屈角度,使得体前屈角度的测量更加准确,有效的克服了因肢体长度不同而产生的测量误差,同时通过BP神经网络模型识别坐位体前屈侧面图像中的体前屈角度,有效的提高了体前屈角度的测量效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。附图中:
图1是根据本发明实施例的一种基于BP神经网络的人体屈体角度识别方法的流程图;
图2是根据本发明实施例的一种基于BP神经网络的人体屈体角度识别设备的结构框图;
图3是根据本发明实施例一的一种基于BP神经网络的人体屈体角度识别方法的流程图。
具体实施方式
下面将结合本发明附图,对本发明技术方案进行描述,但所描述的实施例仅仅是本发明一部分实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种基于BP神经网络的人体屈体角度识别方法,图1是根据本发明实施例的一种基于BP神经网络的人体屈体角度识别方法的流程图,如图1所示,包括以下步骤:
步骤S101:建立BP神经网络模型;
步骤S102:提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;
步骤S103:将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别;
步骤S104:输出待测试者的体前屈角度。
在实施过程中,在步骤S101中,首先需要获取多个测试者的坐位体前屈侧面图像;通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;调取BP神经网络;将多个测试者的体前屈角度与多个预处理后的坐位体前屈图像输入至BP神经网络中;根据多个测试者的体前屈角度与多个预处理后的坐位体前屈图像,对BP神经网络进行训练,以建立BP神经网络模型。
进一步的,通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度的具体实施方式为:对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;上述特征点为肩部、髋部和踝关节;测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;上述夹角的顶点为髋部;将测量的多个角度值作为多个测试者的体前屈角度进行记录。
对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像的具体实施方式为:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;通过逐像素法在多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
再进一步的,对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取的具体实施方式为:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;通过背景差分法获取多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵,具体为:将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
通过上述步骤,通过BP神经网络模型来识别坐位体前屈侧面图像中的体前屈角度,克服了因肢体长度不同而产生的测量误差,提高了体前屈角度测量的精确度,同时也有效的提高了体前屈角度的测量效率。
本发明实施例还提供了一种基于BP神经网络的人体屈体角度识别设备20,用于实现上述一种基于BP神经网络的人体屈体角度识别方法。
图2是根据本发明实施例的一种基于BP神经网络的人体屈体角度识别设备20的结构框图,如图2所示,该设备20包括:模型建立单元21,用于建立BP神经网络模型;提取单元22,用于提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;输入单元23,用于将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别;输出单元24,用于输出待测试者的体前屈角度。
对于一种基于BP神经网络的人体屈体角度识别设备20,模型建立单元21包括:获取子单元211,用于获取多个测试者的坐位体前屈侧面图像;标记子单元212,用于通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;预处理子单元213,用于对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;调取子单元214,用于调取BP神经网络;输入子单元215,用于将多个测试者的体前屈角度与多个预处理后的坐位体前屈图像输入至BP神经网络中;训练子单元216,用于根据多个测试者的体前屈角度与多个预处理后的坐位体前屈图像,对BP神经网络进行训练,以建立BP神经网络模型。
对于一种基于BP神经网络的人体屈体角度识别设备20,标记子单元212包括:特征点标记模块2121,用于对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;上述特征点为肩部、髋部和踝关节;角度测量模块2122,用于测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;上述夹角的顶点为髋部;角度记录模块2123,用于将测量的多个角度值作为多个测试者的体前屈角度进行记录。
对于一种基于BP神经网络的人体屈体角度识别设备20,预处理子单元213包括:提取模块2131,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;归一化处理模块2132,用于将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;像素特征提取模块2133,用于通过逐像素法在多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;标记模块2134,用于对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
对于一种基于BP神经网络的人体屈体角度识别设备20,提取模块2131包括:提取子模块21311,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;获取子模块21312,用于通过背景差分法获取多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
归一化处理模块2132,具体用于将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
需要说明的是,装置实施例中描述的一种基于BP神经网络的人体屈体角度识别设备对应于上述的方法实施例,其具体的实现过程在方法实施例中已经进行过详细说明,在此不再赘述。
为了使本发明的技术方案和实现方法更加清楚,下面将结合优选的实施例对其实现过程进行详细描述。
实施例一
本实施例提供一种基于BP神经网络的人体屈体角度识别方法,如图3所示,图3是根据本发明实施例一的基于BP神经网络的人体屈体角度识别方法的流程图,包括以下步骤:
步骤S301:获取多个测试者的坐位体前屈侧面图像;
本发明实施例中,通过拍摄多个测试者在做坐位体前屈项目时的侧面图像来获取大量的样本图像,在拍摄测试者的坐位体前屈侧面图像时需要保证多个测试者在做坐位体前屈项目时的侧面背景相同,这样才能保证多个样本图像具有统一性;
步骤S302:通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;
本发明实施例中,该步骤S302的具体实施方式为:对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;特征点为肩部、髋部和踝关节;测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;夹角的顶点为髋部;将所述测量的多个角度值作为多个测试者的体前屈角度进行记录;
作为一种可选的实施方式,上述在坐位体前屈侧面图像中标定特征点是由工作人员根据实际经验进行标定的,当标定好特征点之后,测量肩部、髋部和踝关节三点组成的夹角的角度值,该夹角的顶点为髋部,该夹角的角度值即为坐位体前屈侧面图像中的体前屈角度;
步骤S303:对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;
本发明实施例中,该步骤S303的具体实施方式为:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;通过逐像素法在多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
可选的,上述对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取的步骤的具体实施方式为:对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;通过背景差分法获取多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵,具体为:将多个二值图像进行归一化处理,得到多个28*28的像素矩阵;
具体的,将多个二值图像进行归一化处理,得到多个28*28的像素矩阵,这样可以使多个输入至BP神经网络***中的图像具有相同的分辨率,在将图像输入至BP神经网络***中时是将代表该图像的28*28个像素作为该图像输入至BP神经网络***中的;
进一步可选的,对带特征标记的坐位体前屈侧面图像的前景目标提取采用背景差分法,具体的,利用高斯混合模型对背景建模,对于图像中任一像素点随时间变化的序列{X1,X2,...,Xt},当前观测点像素值的概率为:
上述公式中,k为高斯模型的数量,通常为3~5;ωi,t为t时刻第i个高斯模型的权值,满足μi,t和Σi,t分别是t时刻第i个高斯模型的均值和方差。其中,η为高斯概率密度函数,表示为:
步骤S304:调取BP神经网络;
作为一种可选的实施方式,上述BP神经网络为单层隐含层结构的BP神经网络,该单层隐含层结构的BP神经网络可以分为三层结构,分别是输入层、隐含层以及输出层,本发明采用sigmoid函数作为神经元激活函数,该函数公式为:
本发明实施例对上述单层隐含层结构的BP神经网络各层的设置如下:
对于输入层:在本发明实施例中使用逐像素法提取像素特征,即784个像素全部作为BP神经网络***的输入,输入层对输入的数据的权重为1,即对输入的数据不做任何处理,直接将输入的数据又作为隐含层的输入数据;
对于隐含层:本发明实施例中对隐含层采用单层结构,根据输入层和输出层的神经元个数,权衡识别率与计算量,可以将隐含层的神经元个数设为200;
对于输出层:由于正常的人体屈体角度在20~79度之间,共60个整数等级,因此将BP神经网络输出层的神经元个数设为60,将这60个神经元分别编号为0~60,坐位体前屈图像作为输入激励后,输出层的60个神经元会有不同输出,最大输出值的神经元的编号即为BP神经网络***所识别到的人体屈体角度;
步骤S305:将多个测试者的体前屈角度与多个预处理后的坐位体前屈图像输入至BP神经网络中;
步骤S306:根据多个测试者的体前屈角度与多个预处理后的坐位体前屈图像,对BP神经网络进行训练,以建立BP神经网络模型;
步骤S307:提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;
本发明实施例中,在该步骤S307之前,需要先获取待测试者的坐位体前屈侧面图像,可以在坐位体前屈项目测试仪器侧面安装摄像头,用于拍摄待测试者的坐位体前屈侧面图像,将摄像头与体前屈角度识别设备连接在一起,这样体前屈角度识别设备就会在摄像头拍到待测试者的坐位体前屈侧面图像的瞬间接收到待测试者的坐位体前屈侧面图像,并通过BP神经网络模型识别体前屈角度,极大地提高了体前屈角度的识别速度,从而提高了坐位体前屈项目的测试效率;
步骤S308:将坐位体前屈侧面图像输入至BP神经网络模型中进行体前屈角度识别;
本发明实施例中,通过BP神经网络模型来识别测试者的坐位体前屈图像中的体前屈角度,有效的克服了因肢体长度不同而产生的测量误差,同时通过BP神经网络模型识别坐位体前屈侧面图像中的体前屈角度,有效的提高了体前屈角度的测量效率;
步骤S309:输出待测试者的体前屈角度。
可选的,当BP神经网络模型识别出测试者的体前屈角度时,可以通过识别设备自带的显示屏将体前屈角度值显示出来,也可以将测试者的体前屈角度值进行保存,并通过表格的形式导出,方便工作人员记录测试者的坐位体前屈项目成绩。
综合上述,通过上述实施例,通过对坐位体前屈侧面图像的分析得到测试者的体前屈角度,使得体前屈角度的测量更加准确,有效的克服了因肢体长度不同而产生的测量误差,同时通过BP神经网络模型识别坐位体前屈侧面图像中的体前屈角度,有效的提高了体前屈角度的测量效率。

Claims (10)

1.一种基于BP神经网络的人体屈体角度识别方法,其特征在于,包括以下步骤:
建立BP神经网络模型;
提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;
将所述坐位体前屈侧面图像输入至所述BP神经网络模型中进行体前屈角度识别;
输出待测试者的体前屈角度。
2.根据权利要求1所述的方法,其特征在于,所述建立BP神经网络模型,包括以下步骤:
获取多个测试者的坐位体前屈侧面图像;
通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;
对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;
调取BP神经网络;
将多个测试者的体前屈角度与所述多个预处理后的坐位体前屈图像输入至所述BP神经网络中;
根据多个测试者的体前屈角度与所述多个预处理后的坐位体前屈图像,对所述BP神经网络进行训练,以建立BP神经网络模型。
3.根据权利要求2所述的方法,其特征在于,所述通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度,包括以下步骤:
对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;所述特征点为肩部、髋部和踝关节;
测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;所述夹角的顶点为髋部;
将所述测量的多个角度值作为多个测试者的体前屈角度进行记录。
4.根据权利要求2所述的方法,其特征在于,所述对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像,包括以下步骤:
对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;
将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;
通过逐像素法在所述多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;
对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
5.根据权利要求4所述的方法,其特征在于,所述对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取,包括以下步骤:
对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;
通过背景差分法获取所述多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵,具体为:
将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
6.一种基于BP神经网络的人体屈体角度识别设备,其特征在于,包括:
模型建立单元,用于建立BP神经网络模型;
提取单元,用于提取待测试者的坐位体前屈侧面图像的前景目标,得到提取前景目标之后的坐位体前屈侧面图像;
输入单元,用于将所述坐位体前屈侧面图像输入至所述BP神经网络模型中进行体前屈角度识别;
输出单元,用于输出待测试者的体前屈角度。
7.根据权利要求6所述的设备,其特征在于,所述模型建立单元包括:
获取子单元,用于获取多个测试者的坐位体前屈侧面图像;
标记子单元,用于通过对多个测试者的坐位体前屈侧面图像进行特征标记,得到多个测试者的体前屈角度;
预处理子单元,用于对多个带特征标记的坐位体前屈侧面图像进行预处理,得到多个预处理后的坐位体前屈图像;
调取子单元,用于调取BP神经网络;
输入子单元,用于将多个测试者的体前屈角度与所述多个预处理后的坐位体前屈图像输入至所述BP神经网络中;
训练子单元,用于根据多个测试者的体前屈角度与所述多个预处理后的坐位体前屈图像,对所述BP神经网络进行训练,以建立BP神经网络模型。
8.根据权利要求7所述的设备,其特征在于,所述标记子单元包括:
特征点标记模块,用于对多个坐位体前屈侧面图像中的每一个坐位体前屈侧面图像都进行特征点标记;所述特征点为肩部、髋部和踝关节;
角度测量模块,用于测量每一个坐位体前屈侧面图像上标记的特征点形成的夹角的角度值;所述夹角的顶点为髋部;
角度记录模块,用于将所述测量的多个角度值作为多个测试者的体前屈角度进行记录。
9.根据权利要求8所述的设备,其特征在于,所述预处理子单元包括:
提取模块,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;
归一化处理模块,用于将提取过前景目标的多个带特征标记的坐位体前屈侧面图像进行归一化处理,得到多个28*28的像素矩阵;
像素特征提取模块,用于通过逐像素法在所述多个28*28的像素矩阵的每一个28*28的像素矩阵中提取像素特征;
标记模块,用于对每一个28*28的像素矩阵中的像素特征进行标记,并将多个带标记的28*28的像素矩阵作为多个预处理后的坐位体前屈图像。
10.根据权利要求9所述的设备,其特征在于,所述提取模块包括:
提取子模块,用于对多个带特征标记的坐位体前屈侧面图像中的每一个带特征标记的坐位体前屈侧面图像进行前景目标提取;
获取子模块,用于通过背景差分法获取所述多个带特征标记的坐位体前屈侧面图像的前景目标的二值图像;
所述归一化处理模块,具体用于将多个二值图像进行归一化处理,得到多个28*28的像素矩阵。
CN201810884113.0A 2018-08-06 2018-08-06 一种基于bp神经网络的人体屈体角度识别方法及设备 Pending CN109214292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810884113.0A CN109214292A (zh) 2018-08-06 2018-08-06 一种基于bp神经网络的人体屈体角度识别方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810884113.0A CN109214292A (zh) 2018-08-06 2018-08-06 一种基于bp神经网络的人体屈体角度识别方法及设备

Publications (1)

Publication Number Publication Date
CN109214292A true CN109214292A (zh) 2019-01-15

Family

ID=64988092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810884113.0A Pending CN109214292A (zh) 2018-08-06 2018-08-06 一种基于bp神经网络的人体屈体角度识别方法及设备

Country Status (1)

Country Link
CN (1) CN109214292A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084101A (zh) * 2019-03-14 2019-08-02 广东技术师范大学 一种人体体前屈图像的检测方法及设备
CN111012357A (zh) * 2019-12-06 2020-04-17 西南交通大学 一种基于图像识别的坐位体前屈检测设备及方法
CN113569828A (zh) * 2021-09-27 2021-10-29 南昌嘉研科技有限公司 一种人体姿态识别方法、***、存储介质及设备
CN113693590A (zh) * 2021-09-27 2021-11-26 江苏凤凰智慧教育研究院有限公司 坐位体前屈监测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681428A (zh) * 2007-05-30 2010-03-24 伊斯曼柯达公司 来自图像集合的合成人物模型
US8562403B2 (en) * 2010-06-11 2013-10-22 Harmonix Music Systems, Inc. Prompting a player of a dance game
CN104766038A (zh) * 2014-01-02 2015-07-08 株式会社理光 手掌开合动作识别方法和装置
CN105046281A (zh) * 2015-08-14 2015-11-11 安徽创世科技有限公司 一种基于Kinect的人体行为检测方法
CN105718857A (zh) * 2016-01-13 2016-06-29 兴唐通信科技有限公司 一种人体异常行为检测方法及***
CN107153829A (zh) * 2017-06-09 2017-09-12 南昌大学 基于深度图像的不良坐姿提醒方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101681428A (zh) * 2007-05-30 2010-03-24 伊斯曼柯达公司 来自图像集合的合成人物模型
US8562403B2 (en) * 2010-06-11 2013-10-22 Harmonix Music Systems, Inc. Prompting a player of a dance game
CN104766038A (zh) * 2014-01-02 2015-07-08 株式会社理光 手掌开合动作识别方法和装置
CN105046281A (zh) * 2015-08-14 2015-11-11 安徽创世科技有限公司 一种基于Kinect的人体行为检测方法
CN105718857A (zh) * 2016-01-13 2016-06-29 兴唐通信科技有限公司 一种人体异常行为检测方法及***
CN107153829A (zh) * 2017-06-09 2017-09-12 南昌大学 基于深度图像的不良坐姿提醒方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110084101A (zh) * 2019-03-14 2019-08-02 广东技术师范大学 一种人体体前屈图像的检测方法及设备
CN111012357A (zh) * 2019-12-06 2020-04-17 西南交通大学 一种基于图像识别的坐位体前屈检测设备及方法
CN113569828A (zh) * 2021-09-27 2021-10-29 南昌嘉研科技有限公司 一种人体姿态识别方法、***、存储介质及设备
CN113693590A (zh) * 2021-09-27 2021-11-26 江苏凤凰智慧教育研究院有限公司 坐位体前屈监测装置和方法

Similar Documents

Publication Publication Date Title
CN109214292A (zh) 一种基于bp神经网络的人体屈体角度识别方法及设备
CN107103298A (zh) 基于图像处理的引体向上计数***及计数方法
CN103996192B (zh) 基于高质量自然图像统计量模型的无参考图像质量评价方法
CN108537191B (zh) 一种基于结构光摄像头的三维人脸识别方法
CN104851099B (zh) 一种基于表示学习的图像融合方法
CN109446925A (zh) 一种基于卷积神经网络的电力设备检测算法
CN106469302A (zh) 一种基于人工神经网络的人脸肤质检测方法
CN102421007A (zh) 基于多尺度结构相似度加权综合的图像质量评价方法
CN110378232A (zh) 改进的ssd双网络的考场考生位置快速检测方法
CN109636927B (zh) 一种飞行器姿态测量算法训练与鉴定的***及方法
CN104572538A (zh) 一种基于k-pls回归模型的中医舌图像颜色校正方法
CN109872305A (zh) 一种基于质量图生成网络的无参考立体图像质量评价方法
CN108492298A (zh) 基于生成对抗网络的多光谱图像变化检测方法
CN103984964B (zh) 一种试纸条图像识别方法及***
CN112257741B (zh) 一种基于复数神经网络的生成性对抗虚假图片的检测方法
CN108354578A (zh) 一种胶囊内镜定位***
CN106355195A (zh) 用于测量图像清晰度值的***及其方法
CN110503623A (zh) 一种基于卷积神经网络的识别输电线路上鸟巢缺陷的方法
CN110427943A (zh) 一种基于r-cnn的智能电表数值识别方法
CN116071424A (zh) 基于单目视觉的果实空间坐标定位方法
CN111950457A (zh) 油田安全生产图像识别方法及***
CN102254185B (zh) 基于对比度敏感函数的背景杂波量化方法
CN117076928A (zh) 一种桥梁健康状态监测方法、装置、***及电子设备
CN103310191A (zh) 运动信息图像化的人体动作识别方法
CN111460947A (zh) 基于bp神经网络对显微镜下金属矿物的识别方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190115