CN109168203A - A kind of Far-infrared Heating set and preparation method thereof - Google Patents

A kind of Far-infrared Heating set and preparation method thereof Download PDF

Info

Publication number
CN109168203A
CN109168203A CN201811051108.8A CN201811051108A CN109168203A CN 109168203 A CN109168203 A CN 109168203A CN 201811051108 A CN201811051108 A CN 201811051108A CN 109168203 A CN109168203 A CN 109168203A
Authority
CN
China
Prior art keywords
far
carbon nanotube
present
infrared heating
heating mantle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811051108.8A
Other languages
Chinese (zh)
Inventor
孙晓刚
郑典模
蔡满园
聂艳艳
陈珑
潘鹤政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Kelaiwei Carbon Nano Materials Co Ltd
Original Assignee
Jiangxi Kelaiwei Carbon Nano Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Kelaiwei Carbon Nano Materials Co Ltd filed Critical Jiangxi Kelaiwei Carbon Nano Materials Co Ltd
Priority to CN201811051108.8A priority Critical patent/CN109168203A/en
Publication of CN109168203A publication Critical patent/CN109168203A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention provides a kind of Far-infrared Heating sets, including heating mantle main body, electrode and tab, wherein the opposite both ends of the heating mantle main body wall are provided with the electrode, are provided with the tab on the electrodes;The heating mantle material of main part for forming the heating mantle main body successively includes insulating thermal conductor, carbon nanotube-aramid paper and the heat reflection insulator of lamination setting from inside to outside;Carbon nanotube-the aramid paper is by including that the raw material of carbon nanotube, aramid short fiber and ppta-pulp fibre is prepared.The present invention is using carbon nanotube-aramid paper as far infrared transmission body, it emits a length of 3~20 μm of far infrared wave, electric energy emission conversion efficiency transfer efficiency when being applied to lithium ion battery heating mantle, is greatly improved heating speed and heat transference efficiency up to 90% or more.Meanwhile coordinated insulation heat carrier and heat reflection insulator use, and have both heat preservation and heat-conducting effect.The present invention also provides the preparation method of Far-infrared Heating set, the method is convenient and efficient.

Description

A kind of Far-infrared Heating set and preparation method thereof
Technical field
Covered the present invention relates to battery technical field of heating more particularly to a kind of Far-infrared Heating and preparation method thereof.
Background technique
Lithium ion battery due to its high energy density, power density and cycle performance, the fields such as automobile, electronics by Be widely applied, however lithium ion battery will receive the influence of many environmental factors in practical applications, wherein temperature to lithium from The charge-discharge performance of sub- battery influences maximum.First, at low ambient temperatures, the activity of lithium ion reduces, and migration rate slows down, shadow Ring charge and discharge and the high rate performance of battery;Second, at low ambient temperatures, the viscosity of electrolyte reduces, electric conductivity decline, active matter The activity of matter can also reduce, and reduce so as to cause the capacity of battery;Third, lithium ion battery for a long time at low ambient temperatures, Negative terminal surface will form Li dendrite, do not only result in the loss of lithium ion, the reduction of battery capacity, and Li dendrite can pierce through every Film, to influence security performance.
In cold districts such as north of China, temperature is most as cold as subzero tens degree, in this environment mostly at -10~-20 DEG C Under, the working efficiency of the dynamical systems such as vehicle-mounted lithium ion battery can be greatly reduced.Heating and heat-insulating device used at present makes more With the form of the resistance heatings such as electric hot plate, however this heating method heat transference efficiency is low, and safety is low, and limit it makes extensively With.
Summary of the invention
The purpose of the present invention is to provide a kind of efficient, safety Far-infrared Heating sets and preparation method thereof.
In order to achieve the above-mentioned object of the invention, the present invention the following technical schemes are provided:
The present invention provides a kind of Far-infrared Heating sets, including heating mantle main body, electrode and tab, wherein adds described The opposite both ends of hot jacket main body wall are provided with the electrode, are provided with the tab on the electrodes;Form the heating Cover main body heating mantle material of main part from inside to outside successively include lamination setting insulating thermal conductor, carbon nanotube-aramid paper and Heat reflection insulator;Carbon nanotube-the aramid paper is by including carbon nanotube, the original of aramid short fiber and ppta-pulp fibre Material is prepared.
Preferably, carbon nanotube, the quality of aramid short fiber and ppta-pulp fibre in the carbon nanotube-aramid paper Than for (1.5~21): (3~7): (3~7).
Preferably, the preparation method of the carbon nanotube-aramid paper, comprising the following steps:
Carbon nanotube, aramid short fiber, ppta-pulp fibre, dispersing agent, solvent and anionic polyacrylamide are mixed It closes, obtains slurry;
The slurry is coated in the single side of substrate, solidification forms cured layer in the single side of the substrate;Stripping group bottom, The progress of gained cured layer is hot-forming, obtain carbon nanotube-aramid paper.
Preferably, the dispersing agent is one of lauryl sodium sulfate, dodecyl sodium sulfate and polyethylene glycol oxide Or it is several.
Preferably, the dispersing agent and the mass ratio of carbon nanotube are 1:(7~10).
Preferably, the anionic polyacrylamide and carbon nanotube, aramid short fiber and ppta-pulp fibre are total Mass ratio is (0.5~3): 100.
Preferably, described applied to spraying, the pressure of the spraying is 15~20MPa.
Preferably, the hot-forming temperature is 180~250 DEG C, and the hot-forming pressure is 10~16MPa, The hot-forming time is 3~10min.
Preferably, the insulating thermal conductor is thermally conductive silica gel cloth and/or polyimides heat conducting film.
The present invention also provides the preparation methods of Far-infrared Heating set, comprising the following steps:
Heating mantle main body is provided;
Electrode is set at the heating mantle main body wall opposite both ends, tab is set on the electrodes, is obtained remote red Additional hot jacket.
The present invention provides a kind of Far-infrared Heating sets, including heating mantle main body, electrode and tab, wherein adds described The opposite both ends of hot jacket main body wall are provided with the electrode, are provided with the tab on the electrodes;Form the heating Cover main body heating mantle material of main part from inside to outside successively include lamination setting insulating thermal conductor, carbon nanotube-aramid paper and Heat reflection insulator;Carbon nanotube-the aramid paper is by including carbon nanotube, the original of aramid short fiber and ppta-pulp fibre Material is prepared.The present invention emits a length of 3~20 μm of far infrared wave using carbon nanotube-aramid paper as far infrared transmission body, Electric energy emission conversion efficiency is up to 90% or more, when being applied to lithium ion battery heating mantle, by Far-infrared radiation heating, temperature Degree increases as the increase of power is almost without slow, and temperature transmitting uniformly, is greatly improved heating speed and heat transference efficiency. Meanwhile coordinated insulation heat carrier and heat reflection insulator use, and have both heat preservation and heat-conducting effect.
The present invention also provides the preparation methods of Far-infrared Heating set, set at the opposite both ends of heating mantle main body wall It sets electrode and tab is set on the electrode, can directly connect with the mains the two poles of the earth, convenient and efficient.
Detailed description of the invention
Fig. 1 is the overall structure diagram of mid and far infrared heating mantle of the present invention;
Fig. 2 is the deployed configuration schematic diagram of mid and far infrared heating mantle of the present invention, and 1- Far-infrared Heating covers main body, 2- maos of patch hairs Face, 3- maos of patch hook surfaces, 4- copper net electrode, 5- tab;
Fig. 3 is mid and far infrared heating mantle body sections structural schematic diagram of the present invention, 6- insulating thermal conductor, 7- carbon nanotube- Aramid paper, 8- heat reflection insulator.
Specific embodiment
The present invention provides a kind of Far-infrared Heating sets, including heating mantle main body, electrode and tab, wherein adds described The opposite both ends of hot jacket main body wall are provided with the electrode, are provided with the tab on the electrodes;Form the heating Cover main body heating mantle material of main part from inside to outside successively include lamination setting insulating thermal conductor, carbon nanotube-aramid paper and Heat reflection insulator;Carbon nanotube-the aramid paper is by including carbon nanotube, the original of aramid short fiber and ppta-pulp fibre Material is prepared.
In the present invention, if without specified otherwise, be well known to the skilled person commercially available group of all raw material components Point.
In the present invention, the Far-infrared Heating set includes heating mantle main body.In the present invention, the heating mantle master is formed The heating mantle material of main part of body successively includes that the insulating thermal conductor, carbon nanotube-aramid paper and heat of lamination setting are anti-from inside to outside Penetrate insulator.In the present invention, the thickness of the insulating thermal conductor is preferably 0.05~0.5mm, more preferably 0.1~0.4mm, Most preferably 0.2~0.3mm;The thickness of the carbon nanotube-aramid paper is preferably 0.1~1mm, more preferably 0.2~ 0.8mm, most preferably 0.4~0.6mm;The thickness of the heat reflection insulator is preferably 0.01~0.2mm, and more preferably 0.08 ~0.15mm, most preferably 0.1~0.12mm.In the present invention, the insulating thermal conductor is preferably thermally conductive silica gel cloth and/or gathers Acid imide heat conducting film;When the insulating thermal conductor is thermally conductive silica gel cloth and polyimides heat conducting film, the present invention is to described thermally conductive The amount ratio of silica gel cloth and polyimides heat conducting film does not have any special restriction, using dosage well known to those skilled in the art Than.
In the present invention, the heat reflection insulator is preferably heat-reflecting heat-insulating film, and the heat-reflecting heat-insulating film is preferably The heat-reflecting heat-insulating film of the model PVS759 and/or PVS7095 of the production of Chongqing Pu Weisi commerce and trade Co., Ltd;It is used when simultaneously When the heat-reflecting heat-insulating film of model PVS759 and PVS7095, the present invention does not appoint the amount ratio of two kinds of heat-reflecting heat-insulating films What special restriction, using amount ratio well known to those skilled in the art.
In the present invention, carbon nanotube in the carbon nanotube-aramid paper, aramid short fiber and ppta-pulp fibre Mass ratio is preferably (1.5~21): (3~7): (3~7), more preferably (3~18): (4~6): (4~6).
In the present invention, the preparation method of the carbon nanotube-aramid paper, preferably includes following steps:
Carbon nanotube, aramid short fiber, ppta-pulp fibre, dispersing agent, solvent and anionic polyacrylamide are mixed It closes, obtains slurry;
The slurry is coated in the single side of substrate, solidification forms cured layer in the single side of the substrate;Stripping group bottom, The progress of gained cured layer is hot-forming, obtain carbon nanotube-aramid paper.
The present invention is by carbon nanotube, aramid short fiber, ppta-pulp fibre, dispersing agent, solvent and anion pp Amide mixing, obtains slurry.In the present invention, the mixing preferably includes following steps:
Carbon nanotube, dispersing agent I and solvent I are mixed, carbon nano tube dispersion liquid is obtained;
Aramid short fiber, dispersing agent II and solvent II are mixed, aramid short fiber slurry is obtained;
Ppta-pulp fibre, dispersing agent III and solvent III are mixed, ppta-pulp fibre slurry is obtained;
By the carbon nano tube dispersion liquid, aramid short fiber slurry, ppta-pulp fibre slurry and anion pp Amide mixing, obtains slurry.
In the present invention, the dispersing agent I, dispersing agent II and dispersing agent III it is independent preferably lauryl sodium sulfate, One or more of dodecyl sodium sulfate and polyethylene glycol oxide.In the present invention, when the dispersing agent I, II and of dispersing agent When dispersing agent III is independently two or more in above-mentioned specific choice, the present invention does not have the proportion of the specific substance There is any special restriction, using any proportion well known to those skilled in the art.
The present invention mixes carbon nanotube, dispersing agent I and solvent I, obtains carbon nano tube dispersion liquid.The present invention is to the carbon Nanotube does not have any special restriction, using carbon nanotube well known to those skilled in the art.In the present invention, described Solvent I is preferably dehydrated alcohol, N,N-dimethylformamide or tetrahydrofuran.In the present invention, the carbon nanotube and solvent I Mass ratio be preferably 1:(20~100), more preferably 1:(40~80), most preferably 1:(50~60).In the present invention, institute The mass ratio for stating dispersing agent I and carbon nanotube is preferably (3~7): 100, more preferably (5~6): 100.
In the present invention, the carbon nanotube, dispersing agent I and the mixing of solvent I preferably first mix carbon nanotube and solvent I It closes, then obtained mixture is mixed with dispersing agent I.In the present invention, the mixture mixed with dispersing agent I preferably by according to Secondary progress ultrasound and stirring are realized.In the present invention, the time of the ultrasound is preferably 20~60min, more preferably 30~ 40min, most preferably 30min;The present invention does not have any special restriction to the frequency of the ultrasound, using those skilled in the art Supersonic frequency known to member carries out ultrasound.In the present invention, the time of the stirring is preferably 20~60min, more preferably For 30~50min, most preferably 34~45min;The present invention does not have any special restriction to the mode of the stirring, using this Agitating mode known to the technical staff of field is stirred.In the present invention, the stirring can be selected specifically to cutting Machine stirring is cut, and does not have any special restriction to the revolving speed of cutter stirring, use is well known to those skilled in the art Revolving speed smashes carbon nanotube and forms suspension in a solvent.
The present invention mixes aramid short fiber, dispersing agent II and solvent II, obtains aramid short fiber slurry.The present invention There is no any special restriction to the aramid short fiber, is using aramid short fiber well known to those skilled in the art It can.In the present invention, the solvent II is preferably water.In the present invention, the mass ratio of the aramid short fiber and solvent II Preferably 1:(100~200), more preferably 1:(120~180), most preferably 1:(140~160).In the present invention, described The mass ratio of dispersing agent II and aramid short fiber is preferably (0.02~0.05): 1, more preferably (0.03~0.04): 1.
In the present invention, aramid fiber is preferably first chopped fine by the aramid short fiber, dispersing agent II and the mixing of solvent II Dimension is mixed with solvent II, then obtained mixture is mixed with dispersing agent II.In the present invention, the aramid short fiber with it is molten The mixed temperature of agent II is preferably 30~60 DEG C, and more preferably 40~650 DEG C;The aramid short fiber is mixed with solvent II Time is preferably 10~20min, more preferably 12~18min, most preferably 14~16min.In the present invention, the mixture Mixing with dispersing agent II, which preferably passes through, is successively stirred and is beaten realization.In the present invention, the time of the stirring is preferred For 20~60min, more preferably 30~40min, most preferably 33~36min;The present invention does not appoint the revolving speed of the stirring What special restriction, is stirred using stirring rate well known to those skilled in the art, and is reached aramid short fiber point Dissipate into filamentary fibers one by one.After the completion of stirring, the present invention is preferably successively filtered and cleans to the filamentary fibers, The present invention carries out the no any special restriction of filtering using filter process well known to those skilled in the art; The present invention carries out the no any special restriction of cleaning by the way of cleaning fiber well known to those skilled in the art Cleaning.
In the present invention, the time of the mashing is preferably 5~10min, more preferably 6~9min, most preferably 7~ 8min;The present invention does not have any special restriction to the mode of the mashing, using mashing side well known to those skilled in the art Formula is beaten.
The present invention mixes ppta-pulp fibre, dispersing agent III and solvent III, obtains ppta-pulp fibre slurry.The present invention There is no any special restriction to the ppta-pulp fibre, is using ppta-pulp fibre well known to those skilled in the art It can.In the present invention, the solvent III is preferably dehydrated alcohol.In the present invention, the ppta-pulp fibre and solvent III Mass ratio is preferably 1:(30~100), more preferably 1:(40~80), most preferably 1:(50~70).In the present invention, described The mass ratio of dispersing agent III and ppta-pulp fibre is preferably (2~4): 100, more preferably (2.5~3.5): 100.
In the present invention, the ppta-pulp fibre, dispersing agent III and the mixing of solvent III are preferably first by Fanglun slurry cake fibre Dimension is mixed with solvent III, then obtained mixture is mixed with dispersing agent III.In the present invention, the mixture and dispersing agent III Mixing preferably pass through mashing realize.In the present invention, the time of the mashing is preferably 5~10min, more preferably 6~ 9min, most preferably 7~8min;The present invention does not have any special restriction to the mode of the mashing, using art technology Mashing mode known to personnel is beaten.
After obtaining carbon nano tube dispersion liquid, aramid short fiber slurry and ppta-pulp fibre slurry, the present invention will be described Carbon nano tube dispersion liquid, aramid short fiber slurry, ppta-pulp fibre slurry and anionic polyacrylamide mixing, are starched Material.In the present invention, the mixing is preferably realized by stirring.In the present invention, the time of the stirring be preferably 30~ 60min, more preferably 35~55min, most preferably 40~50min;It is any special that the present invention does not have the mode of the stirring Restriction, be stirred using agitating mode well known to those skilled in the art.In the present invention, the stirring can have Body is selected as to be stirred with cutter, and does not have any special restriction to the revolving speed of cutter stirring, using this field skill Revolving speed known to art personnel makes mixed liquor form suspension.
In the present invention, the mass ratio of the aramid short fiber and ppta-pulp fibre is preferably (3~7): (3~7), More preferably (4~6): (4~6);The quality of the carbon nanotube and the gross mass of aramid short fiber and ppta-pulp fibre The ratio between preferably (1~3): (2~4), more preferably (1.5~2.5): (2.5~3.5);The anionic polyacrylamide with Carbon nanotube, the mass ratio that aramid fiber is chopped and pulp fibers are total are preferably (0.5~3): 100, more preferably (, 1~2);100.
After obtaining slurry, the slurry is coated in the single side of substrate by the present invention, and solidification is formed in the single side of the substrate Cured layer;Stripping group bottom, the progress of gained cured layer is hot-forming, obtain carbon nanotube-aramid paper.In the present invention, described Coating preferably sprays, and the pressure of the spraying is preferably 15~20MPa, more preferably 16~19MPa, most preferably 17~ 18MPa;The present invention solidifies no any special restriction to described, is using solidification process well known to those skilled in the art It can;The present invention does not have any special restriction to the process at the stripping group bottom, using removing well known to those skilled in the art Process carries out.
In the present invention, the hot-forming temperature is preferably 180~250 DEG C, more preferably 190~240 DEG C, optimal It is selected as 210~220 DEG C;The hot-forming pressure is preferably 10~16MPa, more preferably 11~15MPa, most preferably 12 ~14MPa;The hot-forming time is preferably 3~10min, more preferably 4~9min, most preferably 6~7min.
In the present invention, described hot-forming to be carried out preferably in vulcanizing press.
In the present invention, the preparation of the heating mantle material of main part of the Far-infrared Heating set main body is formed preferably using hot melt Glue suppresses the insulating thermal conductor being cascading from inside to outside, carbon nanotube-aramid paper and heat reflection insulator, obtains To heating mantle material of main part.The present invention does not have any special restriction to the type of the hot melt adhesive, using those skilled in the art It can be by the type of the insulating thermal conductor, carbon nanotube-aramid paper and heat reflection insulator gluing known to member;This hair The bright condition to the compacting does not have any special restriction, will be described remote using pressing conditions well known to those skilled in the art Infrared heating set material of main part is pressed.
Far-infrared Heating set of the present invention includes electrode.In the present invention, the electrode is preferably copper mesh.
Far-infrared Heating set of the present invention includes tab.The present invention does not have any special requirement to the tab, adopts With tab well known to those skilled in the art.
The present invention also provides the preparation methods of Far-infrared Heating set, comprising the following steps:
Heating mantle main body is provided;
Electrode is set at the heating mantle main body wall opposite both ends, tab is set on the electrodes, is obtained remote red Additional hot jacket.
In the present invention, Far-infrared Heating set main body is preferably shaped to cuboid;The present invention is to the cuboid Size there is no any special restriction, using size well known to those skilled in the art.In the present invention, described remote red Additional hot jacket main body preferably by the way that Far-infrared Heating set material of main part is cut into uncovered cuboid expanded view, utilizes hair exchange premium row Bonding.In the present invention, the hair patch preferably includes hair patch hair side and hair patch hook surface.In the present invention, the hair pastes preferred position At cuboid incline.
In the present invention, it is described setting electrode mode be preferably by electrode sewing heating mantle main body wall it is opposite two End;The electrode is preferably copper mesh, and the copper mesh is preferably shaped to bar shaped;In the present invention, the tab preferably passes through weldering The mode connect is arranged on the electrodes;The present invention is to the no any special restriction of welding, using those skilled in the art Welding process known to member;The present invention does not have any special restriction to the tab, ripe using those skilled in the art The tab known.
A kind of Far-infrared Heating set provided by the invention and preparation method thereof is carried out specifically below with reference to embodiment It is bright, but they cannot be interpreted as limiting the scope of the present invention.
Embodiment 1
The anhydrous ethanol solvent of 10g carbon nanotube and 500g are mixed, then is mixed with 0.5gSDS, ultrasonic 30min, shearing 30min obtains carbon nano tube dispersion liquid.
10g aramid short fiber and 1000g water are mixed at 40 DEG C, impregnate 20min, then with 0.3g dodecyl sodium sulfonate 30min is stirred in sodium mixing, and filtering cleaning 3 times, beater is beaten 10min, obtains aramid short fiber slurry.
10g ppta-pulp fibre and 500g dehydrated alcohol are mixed, then is mixed with 0.2g polyethylene glycol oxide, beater mashing 10min obtains ppta-pulp fibre slurry.
After evenly mixing by the carbon nano tube dispersion liquid, aramid short fiber slurry and aramid short fiber slurry, then It is mixed with 0.5g anionic polyacrylamide, 60min is sheared with high-speed shearing machine, using high pressure airless spray equipment, 15MPa's Under the conditions of, gained slurry is equably sprayed in substrate, is dried in drying box, stripping group bottom, using vulcanizing press, 180 DEG C, hot pressing 10min under conditions of 10MPa, obtain carbon nanotube-aramid paper.
According to structure shown in Fig. 3, wherein the thermally conductive silica gel cloth of 6-, 7- carbon nanotube-aramid paper, 8- heat-reflecting heat-insulating film PVS759, using hot melt adhesive by the thermally conductive silica gel cloth, carbon nanotube-aramid paper and the heat reflection that are cascading from inside to outside every Hotting mask PVS759 is suppressed, and heating mantle main body is obtained.
According to structure shown in Fig. 2, wherein 1- Far-infrared Heating covers main body, 2- maos of patch hair sides, 3- maos of patch hook surfaces, 4- copper Heating mantle main body obtained above is cut into uncovered cuboid expanded view shape by net electrode, 5- tab, and cuboid incline utilizes Velcro hair patch hair side 2 and hair patch hook surface 3 are bonded, and are sewed bar shaped copper net electrode 4 at side both ends, are welded on copper net electrode Tab 5 is connect, rectangular-shape Far-infrared Heating set (as shown in Figure 1) is made, wherein the length of Far-infrared Heating set is 300mm, wide Degree is 200mm, is highly 150mm.
This Far-infrared Heating is covered using constant voltage dc source and is powered, temperature in infrared thermometer detection heating mantle is utilized Degree, test data are as shown in table 1:
Table 1: the mean temperature in the output power and heating mantle of the Far-infrared Heating set
Constant voltage dc source output power (W) Mean temperature (°) in heating mantle
1.9 28
4.32 35
7.69 43
12 56
Embodiment 2
4g carbon nanotube and 100g dehydrated alcohol are mixed, then is mixed with 0.15gSDS, ultrasonic 30min, shear 30min, Obtain carbon nano tube dispersion liquid.
8g aramid short fiber and 1000g water are mixed at 50 DEG C, impregnate 20min, then with 0.2g dodecyl sodium sulfonate 30min is stirred in sodium mixing, and filtering cleaning 3 times, beater is beaten 10min, obtains aramid short fiber slurry.
8g ppta-pulp fibre and 450g dehydrated alcohol are mixed, then is mixed with 0.2g polyethylene glycol oxide, beater mashing 10min obtains ppta-pulp fibre slurry.
After evenly mixing by the carbon nano tube dispersion liquid, aramid short fiber slurry and aramid short fiber slurry, then It is mixed with 0.2g anionic polyacrylamide, 60min is sheared with high-speed shearing machine, using high pressure airless spray equipment, 20MPa's Under the conditions of, gained slurry is equably sprayed in substrate, is dried in drying box, stripping group bottom, using vulcanizing press, 200 DEG C, hot pressing 8min under conditions of 16MPa, obtain carbon nanotube-aramid paper.
According to structure shown in Fig. 3, wherein the thermally conductive silica gel cloth of 6-, 7- carbon nanotube-aramid paper, 8- heat-reflecting heat-insulating film PVS7095, using hot melt adhesive will be cascading from inside to outside thermally conductive silica gel cloth, carbon nanotube-aramid paper and heat reflection every Hotting mask PVS7095, is suppressed, and heating mantle main body is obtained.
According to structure shown in Fig. 2, wherein 1- Far-infrared Heating covers main body, 2- maos of patch hair sides, 3- maos of patch hook surfaces, 4- copper Heating mantle main body obtained above is cut into uncovered cuboid expanded view shape by net electrode, 5- tab, and cuboid incline utilizes Velcro hair patch hair side 2 and hair patch hook surface 3 are bonded, and are sewed bar shaped copper net electrode 4 at side both ends, are welded on copper net electrode Tab 5 is connect, rectangular-shape lithium ion battery Far-infrared Heating set (as shown in Figure 1) is made, wherein the length of Far-infrared Heating set It is highly 150mm for 250mm, width 150mm.
This Far-infrared Heating is covered using constant voltage dc source and is powered, temperature in infrared thermometer detection heating mantle is utilized Degree, test data are as shown in table 2:
Table 2: the mean temperature in the output power and heating mantle of the Far-infrared Heating set
Constant voltage dc source output power (W) Mean temperature (°) in heating mantle
1.6 27.8
6.0 38.3
9.17 47.6
12 63
Embodiment 3
8g carbon nanotube and 600g dehydrated alcohol are mixed, then is mixed with 0.3gSDS, ultrasonic 30min, shears 30min, obtain To carbon nano tube dispersion liquid.
10g aramid short fiber and 1000g water are mixed at 60 DEG C, impregnate 20min, then with 0.3g dodecyl sodium sulfonate 30min is stirred in sodium mixing, and filtering cleaning 3 times, beater is beaten 10min, obtains aramid short fiber slurry.
15g ppta-pulp fibre and 500g dehydrated alcohol are mixed, then is mixed with 0.5g polyethylene glycol oxide, beater mashing 20min obtains ppta-pulp fibre slurry.
After evenly mixing by the carbon nano tube dispersion liquid, aramid short fiber slurry and aramid short fiber slurry, then It is mixed with 0.2g anionic polyacrylamide, 60min is sheared with high-speed shearing machine, using high pressure airless spray equipment, 18MPa's Under the conditions of, gained slurry is equably sprayed in substrate, is dried in drying box, stripping group bottom, using vulcanizing press, 250 DEG C, hot pressing 3min under conditions of 12MPa, obtain carbon nanotube-aramid paper.
According to structure shown in Fig. 3, wherein the thermally conductive silica gel cloth of 6-, 7- carbon nanotube-aramid paper, 8- heat-reflecting heat-insulating film PVS7095, using hot melt adhesive will be cascading from inside to outside thermally conductive silica gel cloth, carbon nanotube-aramid paper and heat reflection every Hotting mask PVS7095, is suppressed, and heating mantle main body is obtained.
According to structure shown in Fig. 2, wherein 1- Far-infrared Heating covers main body, 2- maos of patch hair sides, 3- maos of patch hook surfaces, 4- copper Heating mantle main body obtained above is cut into uncovered cuboid expanded view shape by net electrode, 5- tab, and cuboid incline utilizes Velcro hair patch hair side 2 and hair patch hook surface 3 are bonded, and are sewed bar shaped copper net electrode 4 at side both ends, are welded on copper net electrode Tab 5 is connect, rectangular-shape lithium ion battery Far-infrared Heating set (as shown in Figure 1) is made, wherein the length of Far-infrared Heating set It is highly 150mm for 400mm, width 250mm.
This Far-infrared Heating is covered using constant voltage dc source and is powered, temperature in infrared thermometer detection heating mantle is utilized Degree, test data are as shown in table 3:
Table 3: the mean temperature in the output power and heating mantle of the Far-infrared Heating set
Constant voltage dc source output power (W) Mean temperature (°) in heating mantle
1.9 28.1
4.32 35
7.69 42
12 59
As seen from the above embodiment, the present invention emits far infrared using carbon nanotube-aramid paper as far infrared transmission body Wavelength is 3~20 μm, and electric energy emission conversion efficiency, can be significantly when being applied to lithium ion battery heating mantle up to 90% or more Improve heating speed and heat transference efficiency.Meanwhile coordinated insulation heat carrier and heat reflection insulator use, and have both heat preservation and thermally conductive Effect.
The above is only a preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, various improvements and modifications may be made without departing from the principle of the present invention, these improvements and modifications are also answered It is considered as protection scope of the present invention.

Claims (10)

1. a kind of Far-infrared Heating set, including heating mantle main body, electrode and tab, wherein in the heating mantle main body wall phase Pair both ends be provided with the electrode, be provided with the tab on the electrodes;Form the heating mantle of the heating mantle main body Material of main part successively includes insulating thermal conductor, carbon nanotube-aramid paper and the heat reflection insulator of lamination setting from inside to outside;Institute Carbon nanotube-aramid paper is stated by including that the raw material of carbon nanotube, aramid short fiber and ppta-pulp fibre is prepared.
2. Far-infrared Heating set as described in claim 1, which is characterized in that carbon nanotube in the carbon nanotube-aramid paper, The mass ratio of aramid short fiber and ppta-pulp fibre is (1.5~21): (3~7): (3~7).
3. Far-infrared Heating set as claimed in claim 1 or 2, which is characterized in that the preparation side of the carbon nanotube-aramid paper Method, comprising the following steps:
Carbon nanotube, aramid short fiber, ppta-pulp fibre, dispersing agent, solvent and anionic polyacrylamide are mixed, obtained To slurry;
The slurry is coated in the single side of substrate, solidification forms cured layer in the single side of the substrate;Stripping group bottom, by institute It is hot-forming to obtain cured layer progress, obtains carbon nanotube-aramid paper.
4. Far-infrared Heating set as claimed in claim 3, which is characterized in that the dispersing agent is lauryl sodium sulfate, ten One or more of dialkyl sulfonates and polyethylene glycol oxide.
5. Far-infrared Heating set as claimed in claim 3, which is characterized in that the dispersing agent and the mass ratio of carbon nanotube are 1:(7~10).
6. Far-infrared Heating set as claimed in claim 3, which is characterized in that the anionic polyacrylamide and carbon nanometer It manages, the mass ratio that aramid short fiber and ppta-pulp fibre are total is (0.5~3): 100.
7. Far-infrared Heating set as claimed in claim 3, which is characterized in that described applied to spraying, the pressure of the spraying For 15~20MPa.
8. Far-infrared Heating set as claimed in claim 4, which is characterized in that the hot-forming temperature is 180~250 DEG C, the hot-forming pressure is 10~16MPa, and the hot-forming time is 3~10min.
9. Far-infrared Heating set as described in claim 1, which is characterized in that the insulating thermal conductor be thermally conductive silica gel cloth and/ Or polyimides heat conducting film.
10. the preparation method of any one of the claim 1~9 Far-infrared Heating set, comprising the following steps:
Heating mantle main body is provided;
Electrode is set at the heating mantle main body wall opposite both ends, tab is set on the electrodes, obtains far infrared and adds Hot jacket.
CN201811051108.8A 2018-09-10 2018-09-10 A kind of Far-infrared Heating set and preparation method thereof Pending CN109168203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811051108.8A CN109168203A (en) 2018-09-10 2018-09-10 A kind of Far-infrared Heating set and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811051108.8A CN109168203A (en) 2018-09-10 2018-09-10 A kind of Far-infrared Heating set and preparation method thereof

Publications (1)

Publication Number Publication Date
CN109168203A true CN109168203A (en) 2019-01-08

Family

ID=64894628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811051108.8A Pending CN109168203A (en) 2018-09-10 2018-09-10 A kind of Far-infrared Heating set and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109168203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974295A (en) * 2019-04-18 2019-07-05 江西克莱威纳米碳材料有限公司 A kind of air heat exchanger and its preparation method and application
CN110492202A (en) * 2019-09-16 2019-11-22 江西克莱威纳米碳材料有限公司 A kind of low temperature self-heating lithium-ion battery systems and preparation method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870802A (en) * 2010-05-14 2010-10-27 周焕民 Conductive master batch and preparation method thereof
CN102877367A (en) * 2012-10-26 2013-01-16 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nanotube/short-fiber composited nano-carbon paper and continuous preparation method thereof
CN103151574A (en) * 2013-03-20 2013-06-12 安徽江淮汽车股份有限公司 Battery module heating equipment for electric vehicle
CN103904385A (en) * 2012-12-26 2014-07-02 何良智 Electrombile battery constant-temperature thermal-insulation sleeve
CN104393200A (en) * 2014-10-22 2015-03-04 苏州市莱赛电车技术有限公司 Battery box
CN104558650A (en) * 2014-12-17 2015-04-29 天津大学 Preparation method of carbon nano-tube/chopped carbon fiber/epoxy resin composite material
CN204424409U (en) * 2015-01-05 2015-06-24 河南三丽电源股份有限公司 Heating apparatus in battery charging process
CN206301849U (en) * 2016-11-21 2017-07-04 山东魔方新能源科技有限公司 A kind of battery system interstitital texture
CN107059461A (en) * 2017-04-18 2017-08-18 华南理工大学 A kind of high-strength conductive aramid paper and preparation method thereof
CN107190510A (en) * 2017-06-22 2017-09-22 西安工程大学 The preparation method of the flexible heating wire of high heat conduction based on CNT
CN206574824U (en) * 2017-03-28 2017-10-20 韦达 A kind of electromobile battery automatic heat insulation device
CN206602144U (en) * 2017-03-30 2017-10-31 天津润和绿能科技有限公司 A kind of battery rack heater
CN207282674U (en) * 2017-10-09 2018-04-27 河南森源重工有限公司 A kind of battery modules with heating film
CN108183272A (en) * 2017-01-06 2018-06-19 苏州汉纳材料科技有限公司 The thermal management algorithm and heat management device of power lithium-ion battery system
CN207515370U (en) * 2017-08-08 2018-06-19 河南鼎能电子科技有限公司 Constant temperature lithium battery fixture oven
CN207558989U (en) * 2017-12-20 2018-06-29 深圳市大别山新能源有限公司 A kind of heat safe Ni-MH battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870802A (en) * 2010-05-14 2010-10-27 周焕民 Conductive master batch and preparation method thereof
CN102877367A (en) * 2012-10-26 2013-01-16 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nanotube/short-fiber composited nano-carbon paper and continuous preparation method thereof
CN103904385A (en) * 2012-12-26 2014-07-02 何良智 Electrombile battery constant-temperature thermal-insulation sleeve
CN103151574A (en) * 2013-03-20 2013-06-12 安徽江淮汽车股份有限公司 Battery module heating equipment for electric vehicle
CN104393200A (en) * 2014-10-22 2015-03-04 苏州市莱赛电车技术有限公司 Battery box
CN104558650A (en) * 2014-12-17 2015-04-29 天津大学 Preparation method of carbon nano-tube/chopped carbon fiber/epoxy resin composite material
CN204424409U (en) * 2015-01-05 2015-06-24 河南三丽电源股份有限公司 Heating apparatus in battery charging process
CN206301849U (en) * 2016-11-21 2017-07-04 山东魔方新能源科技有限公司 A kind of battery system interstitital texture
CN108183272A (en) * 2017-01-06 2018-06-19 苏州汉纳材料科技有限公司 The thermal management algorithm and heat management device of power lithium-ion battery system
CN206574824U (en) * 2017-03-28 2017-10-20 韦达 A kind of electromobile battery automatic heat insulation device
CN206602144U (en) * 2017-03-30 2017-10-31 天津润和绿能科技有限公司 A kind of battery rack heater
CN107059461A (en) * 2017-04-18 2017-08-18 华南理工大学 A kind of high-strength conductive aramid paper and preparation method thereof
CN107190510A (en) * 2017-06-22 2017-09-22 西安工程大学 The preparation method of the flexible heating wire of high heat conduction based on CNT
CN207515370U (en) * 2017-08-08 2018-06-19 河南鼎能电子科技有限公司 Constant temperature lithium battery fixture oven
CN207282674U (en) * 2017-10-09 2018-04-27 河南森源重工有限公司 A kind of battery modules with heating film
CN207558989U (en) * 2017-12-20 2018-06-29 深圳市大别山新能源有限公司 A kind of heat safe Ni-MH battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974295A (en) * 2019-04-18 2019-07-05 江西克莱威纳米碳材料有限公司 A kind of air heat exchanger and its preparation method and application
WO2020211412A1 (en) * 2019-04-18 2020-10-22 江西克莱威纳米碳材料有限公司 Air heat exchanger, manufacturing method for same, and applications thereof
CN110492202A (en) * 2019-09-16 2019-11-22 江西克莱威纳米碳材料有限公司 A kind of low temperature self-heating lithium-ion battery systems and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109168203A (en) A kind of Far-infrared Heating set and preparation method thereof
CN107046140B (en) A kind of fluorine-containing bipolar plates and preparation method thereof
CN104446465B (en) A kind of ceramic material and preparation method thereof, polytetrafluoroethylene (PTFE) ceramic composite and preparation method thereof and substrate
CN102619128A (en) Graphene-containing multi-functional composite paper and preparation method as well application thereof
CN108630338A (en) A kind of method, apparatus for producing graphene conductive slurry in batches and graphene conductive slurry prepared therefrom
CN104362297B (en) The coating mechanism of lithium ion battery coating machine and the preparation method of laminated cell
CN105932288B (en) A kind of graphene composite conductive agent and preparation method thereof
CN107312535A (en) Excitation-emission wavelength relies on the preparation method of the water-soluble nitrogen phosphor codoping carbon quantum dot of concentration
CN108039591A (en) Dual-linear polarization RECTIFYING ANTENNA with harmonic inhibition capability
CN108962629A (en) A kind of preparation method of flexible super capacitor
CN112038688A (en) Preparation method of one-dimensional nano-morphology LLZO-based solid electrolyte material
CN110492202A (en) A kind of low temperature self-heating lithium-ion battery systems and preparation method thereof
CN109714842A (en) A kind of Portable far-infrared heating device and its application
CN113699824B (en) Carbon fiber composite conductive paper and preparation method thereof
CN107527749A (en) A kind of fine and close low-resistance diaphragm of supercapacitor material and preparation method thereof
CN110283462A (en) A kind of mesolow flame resistant cable is with can Ceramic silicon rubber insulating materials and preparation method thereof
CN110311110A (en) A kind of flexible lithium ion battery negative electrode material and its test method based on graphene
CN106356522A (en) Low-temperature microwave synthesis method of Li3VO4 hollow nanocube with electrochemical stability for efficiently storing lithium
CN103400981A (en) Hexagonal walnut iron lithium silicate aggregation and preparation method thereof
CN109449433A (en) A kind of preparation method of rear-earth-doped metatitanic acid lithium ultrathin nanometer piece negative electrode material
CN109183513A (en) A kind of polyimide fiber far infrared transmission paper and preparation method thereof
CN105958074B (en) A kind of graphene composite conductive agent and its lithium ion battery
CN101794671A (en) Super capacitor and manufacture method thereof
CN110518216A (en) A kind of sodium-ion battery anode material and preparation method thereof
CN105070523A (en) A preparation method of a mutually-connected porous carbon nano-sheet/nickel foam composite electrode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108