CN109161231B - Hydrophobic composite material - Google Patents

Hydrophobic composite material Download PDF

Info

Publication number
CN109161231B
CN109161231B CN201810971222.6A CN201810971222A CN109161231B CN 109161231 B CN109161231 B CN 109161231B CN 201810971222 A CN201810971222 A CN 201810971222A CN 109161231 B CN109161231 B CN 109161231B
Authority
CN
China
Prior art keywords
powder
rare earth
percent
earth modified
hydrophobic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810971222.6A
Other languages
Chinese (zh)
Other versions
CN109161231A (en
Inventor
赵浩峰
于鹏
张椿英
郑建华
柴知章
李子嫣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Institute of Information Engineering
Original Assignee
Anhui Institute of Information Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Institute of Information Engineering filed Critical Anhui Institute of Information Engineering
Priority to CN201810971222.6A priority Critical patent/CN109161231B/en
Publication of CN109161231A publication Critical patent/CN109161231A/en
Application granted granted Critical
Publication of CN109161231B publication Critical patent/CN109161231B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The invention discloses a hydrophobic composite material, and a hydrophobic composite coating prepared from the hydrophobic composite material has a larger water drop contact angle and better hydrophobicity and corrosion resistance. And the preparation method has simple process and low production cost, and is suitable for industrial production. The hydrophobic composite material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.

Description

Hydrophobic composite material
Technical Field
The invention relates to the technical field of steel, in particular to a hydrophobic composite material.
Background
CN201510552308.1 discloses a hydrophobic anticorrosion Dacromet coating and a preparation method thereof, belonging to the technical field of metal anticorrosion. The paint consists of surface modified flaky zinc and aluminum powder, an organic solvent, a film forming assistant, hydrophobic nano sol and hydrophobic nano powder; in the total weight of 100%, the zinc powder accounts for 18-23%, the aluminum powder accounts for 2-4.5%, the hydrophobic nano sol accounts for 34-42%, the hydrophobic nano powder accounts for 0.8-3.5%, the film-forming assistant accounts for 0.4-0.9%, and the solvent accounts for 33-40%. According to the invention, the hydrophobic nano sol and the nano powder are adopted, so that the surface of the Dacromet coating presents hydrophobicity, and the corrosion resistance is improved. The technical scheme is that the zinc-aluminum powder modified by organic silicon is dispersed into an organic solvent, and hydrophobic nano sol and a film-forming auxiliary agent are added to obtain the hydrophobic anticorrosive chromium-free Dacromet coating. But the hydrophobicity is not yet ideal.
Disclosure of Invention
Aiming at the technical defects, the invention aims to provide the hydrophobic composite material, and the hydrophobic composite coating prepared from the hydrophobic composite material has a larger water drop contact angle and has better hydrophobicity and corrosion resistance. The invention also aims to provide a preparation method of the hydrophobic composite material, which has the advantages of simple process and low production cost and is suitable for industrial production. The invention also provides application of the coating material with strong adhesive force on metal materials, the coating material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.
In order to achieve the above object, the present invention provides a hydrophobic composite material, which contains, in mass percent: 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecylbenzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
The invention also provides a preparation method of the hydrophobic composite coating, which comprises the following steps: immersing the cleaned metal material into the hydrophobic composite material for 10-20 min, taking out, standing for 1-2 h, preserving heat at 70-120 ℃ for 20-35 min, and preserving heat at high temperature of 250-350 ℃ for 40-55 min to obtain a hydrophobic composite coating; wherein the hydrophobic composite comprises: 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecylbenzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
Furthermore, the present invention provides a method for preparing the hydrophobic composite material, which comprises the following steps: weighing the following raw materials according to the proportion and uniformly mixing: by mass percent, 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecyl benzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
Through the technical scheme, the hydrophobic composite coating prepared from the hydrophobic composite material has a large water drop contact angle and has good hydrophobicity and corrosion resistance. And the preparation method has simple process and low production cost, and is suitable for industrial production. The invention also provides application of the coating material with strong adhesive force on metal materials, the coating material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.
Additional features and advantages of the invention will be set forth in the detailed description which follows.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention. In the drawings:
FIG. 1 is a texture map of a composite coating obtained from the hydrophobic composite of example 1.
Detailed Description
The following describes in detail specific embodiments of the present invention. It should be understood that the detailed description and specific examples, while indicating the present invention, are given by way of illustration and explanation only, not limitation.
The endpoints of the ranges and any values disclosed herein are not limited to the precise range or value, and such ranges or values should be understood to encompass values close to those ranges or values. For ranges of values, between the endpoints of each of the ranges and the individual points, and between the individual points may be combined with each other to give one or more new ranges of values, and these ranges of values should be considered as specifically disclosed herein.
The invention provides a hydrophobic composite material, which comprises the following components in percentage by mass: 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecylbenzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
Through the technical scheme, the hydrophobic composite coating prepared from the hydrophobic composite material has a large water drop contact angle and has good hydrophobicity and corrosion resistance. And the preparation method has simple process and low production cost, and is suitable for industrial production. The invention also provides application of the coating material with strong adhesive force on metal materials, the coating material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.
In the above technical solution, the content of each component in the first rare earth modified alloy powder can be adjusted in a wide range, and in order to obtain a hydrophobic composite material with a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the first rare earth modified alloy powder comprises the following components in percentage by weight: 36 to 39 percent of zinc powder, 0.04 to 0.08 percent of neodymium powder, 0.03 to 0.06 percent of yttrium powder and the balance of copper powder.
In the above technical solution, the contents of the components in the second rare earth modified alloy powder can be adjusted within a wide range, and in order to obtain a hydrophobic composite material with a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the second rare earth modified alloy powder contains the following components in percentage by weight: 10 to 13 percent of silicon powder, 0.05 to 0.09 percent of erbium powder, 0.03 to 0.06 percent of yttrium powder and the balance of aluminum powder.
In the above technical solution, the rare earth modified inorganic material powder may be ceramic powder or modified ceramic powder, and in order to obtain a hydrophobic composite material having a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the rare earth modified inorganic material powder comprises the following components in percentage by weight: the rare earth modified inorganic material powder comprises the following components in percentage by weight: al (Al)2O3 23%~28%,CaO 0.3%~0.8%,ZnO 0.3%~0.5%,BaO 3%~5%,MnO 5%~9%,Yb2O3 3%~6%,Fe2O3 0.5%~0.9%,TiO2 1%~3%,Er2O3 0.03%~0.08%,K2O 0.4%~0.9%,B2O30.3-0.5%, and the balance of SiO2
In the technical scheme, the particle size of the zinc powder can be adjusted in a wide range, and in order to obtain the hydrophobic composite material with a large water drop contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the invention, the average particle size of the aluminum powder is 6-10 micrometers.
In the technical scheme, the particle size of the first rare earth modified alloy powder can be adjusted in a wide range, and in order to obtain the hydrophobic composite material with a large water drop contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the invention, the average particle size of the first rare earth modified alloy powder is 6-10 micrometers.
In the technical scheme, the particle size of the second rare earth modified alloy powder can be adjusted in a wide range, and in order to obtain the hydrophobic composite material with a large water drop contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the invention, the average particle size of the second rare earth modified alloy powder is 10-16 micrometers.
In the above technical scheme, the average particle size of the rare earth modified inorganic material powder can be adjusted within a wide range, and in order to obtain a hydrophobic composite material with a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the average particle size of the rare earth modified inorganic material powder is 10 to 16 micrometers.
The invention also provides a preparation method of the hydrophobic composite coating, which comprises the following steps: immersing the cleaned metal material into the hydrophobic composite material for 10-20 min, taking out, standing for 1-2 h, preserving heat at 70-120 ℃ for 20-35 min, and preserving heat at high temperature of 250-350 ℃ for 40-55 min to obtain a hydrophobic composite coating; wherein the hydrophobic composite comprises: 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecylbenzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
Through the technical scheme, the hydrophobic composite coating prepared from the hydrophobic composite material has a large water drop contact angle and has good hydrophobicity and corrosion resistance. And the preparation method has simple process and low production cost, and is suitable for industrial production. The invention also provides application of the coating material with strong adhesive force on metal materials, the coating material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.
Among them, the cleaning method of the metal material can be selected from a wide range as long as the metal surface can be cleaned without contamination. In a preferred embodiment of the present invention, in order to provide the cleaning efficiency of the metal material and obtain the composite coating with larger water drop contact angle, better hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the cleaning method of the metal material comprises:
taking the metal material after polishing and derusting, polishing by using sand paper, cleaning by using acetone, and drying; and then, the metal material is placed at the temperature of 130-150 ℃ for heat preservation for 20-40 min and then air-cooled.
In the above technical solution, in a more preferred embodiment of the present invention, the thickness of the composite coating layer is 8 to 11 μm.
Furthermore, the present invention provides a method for preparing the hydrophobic composite material, which comprises the following steps: weighing the following raw materials according to the proportion and uniformly mixing: by mass percent, 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecyl benzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water; wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; and the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder.
Through the technical scheme, the hydrophobic composite coating prepared from the hydrophobic composite material has a large water drop contact angle and has good hydrophobicity and corrosion resistance. And the preparation method has simple process and low production cost, and is suitable for industrial production. The invention also provides application of the coating material with strong adhesive force on metal materials, the coating material can be coated on various metal materials, and the obtained metal materials are suitable for the fields of petrochemical industry, automobiles, ships, engineering machinery, electric power industry and the like.
In the above technical solution, the content of each component in the first rare earth modified alloy powder can be adjusted in a wide range, and in order to obtain a hydrophobic composite material with a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the first rare earth modified alloy powder comprises the following components in percentage by weight: 36 to 39 percent of zinc powder, 0.04 to 0.08 percent of neodymium powder, 0.03 to 0.06 percent of yttrium powder and the balance of copper powder.
In the above technical solution, the contents of the components in the second rare earth modified alloy powder can be adjusted within a wide range, and in order to obtain a hydrophobic composite material with a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the second rare earth modified alloy powder contains the following components in percentage by weight: 10 to 13 percent of silicon powder, 0.05 to 0.09 percent of erbium powder, 0.03 to 0.06 percent of yttrium powder and the balance of aluminum powder.
In the above technical solution, the rare earth modified inorganic material powder may be ceramic powder or modified ceramic powder, and in order to obtain a hydrophobic composite material having a large water droplet contact angle and good hydrophobicity and corrosion resistance, in a preferred embodiment of the present invention, the rare earth modified inorganic material powder comprises the following components in percentage by weight: al (Al)2O3 23%~28%,CaO 0.3%~0.8%,ZnO 0.3%~0.5%,BaO 3%~5%,MnO 5%~9%,Yb2O3 3%~6%,Fe2O3 0.5%~0.9%,TiO2 1%~3%,Er2O3 0.03%~0.08%,K2O 0.4%~0.9%,B2O30.3-0.5%, and the balance of SiO2
In the above technical solution, the first rare earth modified alloy powder can be obtained through a variety of ways, and in order to obtain the first rare earth modified alloy powder with an ideal particle size range, in a preferred embodiment of the present invention, the first rare earth modified alloy powder is prepared by the following method: weighing zinc powder, neodymium powder, yttrium powder and copper powder according to the mass ratio, and smelting at 1230-1270 ℃ to obtain alloy liquid; alloy liquid is injected into a tundish above an atomizing nozzle, the alloy liquid flows out from a bottom hole of the tundish, meets high-speed airflow when passing through the nozzle and is atomized into fine droplets, and the atomized droplets are rapidly solidified into alloy powder in a closed atomizing cylinder.
In a more preferred embodiment of the present invention, in order to improve the preparation efficiency, the pressure of the atomizing gas is preferably 5 to 8 MPa; the flow rate of the alloy liquid is 2-4 kg/min; the injection temperature of the alloy liquid is 1200-1230 ℃; the atomization angle is 31-33 degrees.
In the technical scheme, the required rare earth modified alloy powder I can be obtained only by combining the preparation process and the process parameter range according to the specified raw material proportion. The specific change of parameters such as the atomizing gas pressure, the alloy liquid flow, the alloy liquid injection temperature, the atomizing angle, the smelting temperature and the like only affects the preparation efficiency or the average particle size, and even if so, the average particle size of the obtained rare earth modified alloy powder is within the particle size range.
In the above technical solution, the second rare earth modified alloy powder can be obtained through a variety of ways, and in order to obtain the second rare earth modified alloy powder with an ideal particle size range, in a preferred embodiment of the present invention, the second rare earth modified alloy powder is prepared by the following method: weighing silicon powder, erbium powder, yttrium powder and aluminum powder according to the mass ratio, and smelting at 730-780 ℃ to obtain alloy liquid; alloy liquid is injected into a tundish above an atomizing nozzle, the alloy liquid flows out from a bottom hole of the tundish, meets high-speed airflow when passing through the nozzle and is atomized into fine droplets, and the atomized droplets are rapidly solidified into alloy powder in a closed atomizing cylinder.
In a more preferred embodiment of the present invention, the atomizing gas pressure is 3 to 5 MPa; the flow rate of the alloy liquid is 2-5 kg/min; the injection temperature of the alloy liquid is 730-780 ℃; the atomization angle is 29-31 degrees.
In the technical scheme, the required rare earth modified alloy powder I can be obtained only by combining the preparation process and the process parameter range according to the specified raw material proportion. The specific change of parameters such as the atomizing gas pressure, the alloy liquid flow, the alloy liquid injection temperature, the atomizing angle, the smelting temperature and the like only affects the preparation efficiency or the average particle size, and even if so, the average particle size of the obtained rare earth modified alloy powder is within the particle size range.
In the above technical solution, the rare earth modified inorganic material powder can be obtained through various ways, and in order to obtain the rare earth modified inorganic material powder with an ideal particle size range, in a preferred embodiment of the present invention, Al is weighed according to a mass ratio2O3、CaO、ZnO、BaO、MnO、Yb2O3、Fe2O3、TiO2、Er2O3、K2O、B2O3And SiO2Mixing and crushing the raw materials in a sand mill to obtain powder; and then drying the powder at 120-130 ℃, sieving the dried powder with a screen of 190-210 meshes, sintering the powder in a sintering furnace, and finally crushing the sintered product into powder in a grinding machine.
In a more preferred embodiment of the present invention, the sintering temperature is 1180 to 1220 ℃.
The present invention will be described in detail below by way of examples.
Example 1
A hydrophobic composite material comprises the following components in percentage by weight: 12% of aluminum powder, 5% of rare earth modified alloy powder, 0.6% of rare earth modified alloy powder, 2% of chromate, 2% of molybdate, 18% of cyclohexanol, 2% of calcium dodecylbenzene sulfonate, 2% of phenethyl polyoxyethylene ether, 4% of rare earth modified inorganic material powder and the balance of water. The rare earth modified alloy powder I comprises the following components in percentage by weight: 36% of Zn, 0.04% of Nd, 0.03% of Yb and the balance of copper. The rare earth modified alloy powder II comprises the following components in percentage by weight: 10% of Si, E r 0.05.05% of Yb, 0.03% of Yb and the balance of aluminum. Rare earth modified inorganic material powder: al (Al)2O3 23%,CaO 0.3%,ZnO 0.3%,BaO 3%,MnO 5%,Yb2O3 3%,Fe2O3 0.5%,TiO21%,Er2O3 0.03%,K2O 0.4%,B2O30.3 percent and the balance of SiO 2.
Example 2
A hydrophobic composite material comprises the following components in percentage by weight: 14% of aluminum powder, 7% of rare earth modified alloy powder, 0.9% of rare earth modified alloy powder, 4% of chromate, 4% of molybdate, 20% of cyclohexanol, 4% of calcium dodecylbenzene sulfonate, 3% of phenethyl polyoxyethylene ether, 6% of rare earth modified inorganic material powder and the balance of water. Rare earth modified alloy powderThe weight percentage of the components is as follows: 38% of Zn, 0.06% of Nd, 0.05% of Yb and the balance of copper. The rare earth modified alloy powder II comprises the following components in percentage by weight: 11% of Si, 0.07% of Er, 0.05% of Yb and the balance of aluminum. Rare earth modified inorganic material powder: al (Al)2O3 25%,CaO 0.5%,ZnO 0.4%,BaO 4%,MnO 7%,Yb2O3 5%,Fe2O3 0.7%,TiO22%,Er2O3 0.06%,K2O 0.7%,B2O30.4 percent, and the balance of SiO 2.
Example 3
A hydrophobic composite material comprises the following components in percentage by weight: 18% of aluminum powder, 9% of rare earth modified alloy powder, 1.2% of rare earth modified alloy powder, 6% of chromate, 6% of molybdate, 22% of cyclohexanol, 5% of calcium dodecylbenzene sulfonate, 4% of phenethyl polyoxyethylene ether, 8% of rare earth modified inorganic material powder and the balance of water. The rare earth modified alloy powder I comprises the following components in percentage by weight: 39% of Zn, 0.08% of Nd, 0.06% of Yb and the balance of copper. The rare earth modified alloy powder II comprises the following components in percentage by weight: 13% of Si, 0.09% of Er, 0.06% of Yb and the balance of aluminum. Rare earth modified inorganic material powder: al (Al)2O3 28%,CaO 0.8%,ZnO 0.5%,BaO 5%,MnO 9%,Yb2O3 6%,Fe2O3 0.9%,TiO23%,Er2O3 0.08%,K2O 0.9%,B2O30.5% of SiO in balance2
Example 4
A hydrophobic composite material comprises the following components in percentage by weight: 11% of aluminum powder, 4% of rare earth modified alloy powder, 0.4% of rare earth modified alloy powder, 16% of chromate, 1% of molybdate, 16% of cyclohexanol, 1% of calcium dodecylbenzene sulfonate, 1% of phenethyl polyoxyethylene ether, 3% of rare earth modified inorganic material powder and the balance of water. The rare earth modified alloy powder I comprises the following components in percentage by weight: 34% of Zn, 0.03% of Nd, 0.02% of Yb and the balance of copper. Rare earth modified alloy powder II, its componentThe weight percentage content of the components is as follows: 7% of Si, 0.04% of Er, 0.02% of Yb and the balance of aluminum. Rare earth modified inorganic material powder: al (Al)2O3 21%,CaO 0.2%,ZnO 0.2%,BaO 2%,MnO 4%,Yb2O3 2%,Fe2O3 0.4%,TiO20.8%,Er2O3 0.02%,K2O 0.3%,B2O30.2% of SiO in balance2
Example 5
A hydrophobic composite material comprises the following components in percentage by weight: 20% of aluminum powder, 10% of rare earth modified alloy powder, 1.3% of rare earth modified alloy powder, 8% of chromate, 7% of molybdate, 23% of cyclohexanol, 6% of calcium dodecyl benzene sulfonate, 6% of phenethyl polyoxyethylene ether, 9% of rare earth modified inorganic material powder and the balance of water. The rare earth modified alloy powder I comprises the following components in percentage by weight: 42% of Zn, 0.09% of Nd, 0.07% of Yb and the balance of copper. The rare earth modified alloy powder II comprises the following components in percentage by weight: 15% of Si, 0.11% of Er, 0.07% of Yb and the balance of aluminum. Rare earth modified inorganic material powder: al (Al)2O3 30%,CaO 0.9%,ZnO 0.7%,BaO 7%,MnO 11%,Yb2O3 7%,Fe2O3 1%,TiO24%,Er2O3 0.09%,K2O 1%,B2O30.7% of SiO in balance2
Comparative example 1
The hydrophobic composite material was prepared according to the technical scheme described in chinese patent application CN 201510552308.1.
Application example
Taking the steel plate after polishing and derusting, polishing by using sand paper, cleaning by using acetone, and drying; then, the metal material is placed at 145 ℃ for heat preservation for 30min and then air-cooled;
and (3) respectively soaking the cleaned metal materials into the hydrophobic composite materials in the examples 1-5 and the comparative example 1 for 15min, taking out, standing for 1-2 h, preserving heat at 100 ℃ for 28min, and preserving heat at 300 ℃ for 45min to obtain the composite coating with the dry film thickness of 8-11 mu m.
And (3) detecting the contact angle of water drops of the composite coatings obtained in the application examples 1-5 and the comparative example 1.
The composite coatings obtained in application examples 1 to 5 and comparative example 1 were subjected to a salt spray resistance test: the content of sodium chloride in the used solution is (5 +/-0.1)%, the pH value is 6.5-7.2, and the temperature is (35 +/-2) ° C. The steel plate coated with the composite coating was placed in a salt spray test box for a test time standard for red rust generation.
The results are shown in Table 1.
TABLE 1
Item The contact angle of water drop is greater than DEG Salt spray resistance time/h
Example 1 145 1050
Example 2 149 1150
Example 3 147 1100
Example 4 142 950
Example 5 143 1000
Comparative example 1 142.6 900
FIG. 1 shows the structure of a composite coating obtained by using the hydrophobic composite material of example 1. Uniform and dense tissue can be seen.
The properties of a coated composite of the invention are shown in table 1. The hydrophobic composite material has good corrosion resistance, good stability and practicability, and can be widely applied to the field of steel products and the like. The preparation method is simple, low in production cost and suitable for industrial production.
The materials comprise aluminum powder and rare earth modified alloy powder, particularly rare earth modified alloy powder I, rare earth modified alloy powder II and rare earth modified inorganic materials, and the materials are subjected to rare earth modification, so that the coating has multi-metal protection capability and enhanced protection capability, and meanwhile, the hydrophobicity of the coating is also improved. The rare earth modified inorganic material is modified by rare earth, so that the hydrophobicity of the material is improved. The rare earth modified inorganic material has good wear resistance, so that the hardness of the coating is ensured. Meanwhile, the rare earth modified inorganic material has good corrosion resistance. The inorganic material is modified by rare earth, so that the brittleness of the material is reduced. The material is added with calcium dodecyl benzene sulfonate, phenethyl polyoxyethylene ether and the like, so that the bonding strength of the material is improved, and the corrosion resistance of the coating is improved. The aluminum powder, the rare earth modified alloy powder and the rare earth modified inorganic material are uniformly distributed in the solution, so that the compactness of the coating is improved, and the salt spray resistance time of the coating is prolonged. The aluminum powder, the rare earth modified brass alloy powder, the rare earth modified aluminum alloy powder and the rare earth modified inorganic material in the coating are mutually overlapped to form a coating, so that the corrosion route is zigzag and prolonged, and the corrosion resistance of the material is improved.
The preferred embodiments of the present invention have been described in detail, however, the present invention is not limited to the specific details of the above embodiments, and various simple modifications may be made to the technical solution of the present invention within the technical idea of the present invention, and these simple modifications are within the protective scope of the present invention.
It should be noted that the various technical features described in the above embodiments can be combined in any suitable manner without contradiction, and the invention is not described in any way for the possible combinations in order to avoid unnecessary repetition.
In addition, any combination of the various embodiments of the present invention is also possible, and the same should be considered as the disclosure of the present invention as long as it does not depart from the spirit of the present invention.

Claims (5)

1. A hydrophobic composite, characterized in that the hydrophobic composite comprises, in mass percent: 12 to 18 percent of aluminum powder, 5 to 9 percent of rare earth modified alloy powder I, 0.6 to 1.2 percent of rare earth modified alloy powder II, 2 to 6 percent of chromate, 2 to 6 percent of molybdate, 18 to 22 percent of cyclohexanol, 2 to 5 percent of calcium dodecylbenzene sulfonate, 2 to 4 percent of phenethyl polyoxyethylene ether, 4 to 8 percent of rare earth modified inorganic material powder and the balance of water;
wherein, the first rare earth modified alloy powder is a mixture of zinc powder, neodymium powder, yttrium powder and copper powder; the second rare earth modified alloy powder is a mixture of silicon powder, erbium powder, yttrium powder and aluminum powder; wherein, the weight percentage of each component in the rare earth modified alloy powder I is as follows: 36 to 39 percent of zinc powder, 0.04 to 0.08 percent of neodymium powder, 0.03 to 0.06 percent of yttrium powder and the balance of copper powder; wherein the rare earth modified alloy powder II comprises the following components in percentage by weight: 10 to 13 percent of silicon powder, 0.05 to 0.09 percent of erbium powder, 0.03 to 0.06 percent of yttrium powder and the balance of aluminum powder; the rare earth modified inorganic material powder comprises the following components in percentage by weight: al (Al)2O323%~28%,CaO 0.3%~0.8%,ZnO 0.3%~0.5%,BaO 3%~5%,MnO 5%~9%,Yb2O33%~6%,Fe2O3 0.5%~0.9%, TiO2 1%~3%,Er2O30.03%~0.08%, K2O 0.4%~0.9%,B2O30.3-0.5%, and the balance of SiO2
2. The hydrophobic composite of claim 1, wherein the aluminum powder has an average particle size of 6 to 10 microns.
3. The hydrophobic composite material as claimed in claim 1, wherein the average particle size of the first rare earth modified alloy powder is 6-10 μm.
4. The hydrophobic composite material according to claim 1, wherein the average particle size of the second rare earth modified alloy powder is 10-16 microns.
5. The hydrophobic composite material according to claim 1, wherein the average particle size of the rare earth modified inorganic material powder is 10-16 μm.
CN201810971222.6A 2018-08-24 2018-08-24 Hydrophobic composite material Active CN109161231B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810971222.6A CN109161231B (en) 2018-08-24 2018-08-24 Hydrophobic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810971222.6A CN109161231B (en) 2018-08-24 2018-08-24 Hydrophobic composite material

Publications (2)

Publication Number Publication Date
CN109161231A CN109161231A (en) 2019-01-08
CN109161231B true CN109161231B (en) 2021-02-19

Family

ID=64896626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810971222.6A Active CN109161231B (en) 2018-08-24 2018-08-24 Hydrophobic composite material

Country Status (1)

Country Link
CN (1) CN109161231B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599892B1 (en) * 1998-11-10 2006-07-13 유티씨 퓨얼 셀즈, 엘엘씨 Inhibition of carbon deposition on fuel gas steam reformer walls
JP4195936B2 (en) * 2004-03-17 2008-12-17 独立行政法人産業技術総合研究所 Reflective dimmer with a diffusive reflective surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101045828A (en) * 2006-07-03 2007-10-03 张义纲 Phosphate film-coated powder and preparation method thereof
CN101880485B (en) * 2010-07-09 2012-02-29 重庆航利实业有限责任公司 Rare-earth sol modified composite zinc-aluminum low-temperature sintered coating slurry
CN102464902B (en) * 2010-11-16 2015-11-25 北京中科三环高技术股份有限公司 A kind of surface treatment method of chromium spelter coating of Nd-Fe-Bo permanent magnet material
CN102604448A (en) * 2012-01-20 2012-07-25 北京北矿锌业有限责任公司 Material used for metal anti-corrosion coating
CN104250462A (en) * 2014-08-21 2014-12-31 王广波 Dacromet coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599892B1 (en) * 1998-11-10 2006-07-13 유티씨 퓨얼 셀즈, 엘엘씨 Inhibition of carbon deposition on fuel gas steam reformer walls
JP4195936B2 (en) * 2004-03-17 2008-12-17 独立行政法人産業技術総合研究所 Reflective dimmer with a diffusive reflective surface

Also Published As

Publication number Publication date
CN109161231A (en) 2019-01-08

Similar Documents

Publication Publication Date Title
KR102232758B1 (en) Chromium-free silicate-based ceramic compositions
US8114527B2 (en) Highly corrosion-resistant, rust-prevention coating material, highly corrosion-resistant steel, and steel structure
US11407006B2 (en) Aqueous coating composition and method for forming metallic coating film using same
CN106833287A (en) Magnesium alloy AZ31B anticorrosive paints, its preparation method and application
CN109161231B (en) Hydrophobic composite material
CN108997800B (en) Preparation method of hydrophobic composite coating
CN109233374B (en) Preparation method of hydrophobic composite material
CN107556909A (en) High temperature resistant zinc-rich anti-corrosion primer composition
CN110437696A (en) Single-component water-based graphene anticorrosive paint, preparation method and application
CN109135525B (en) Preparation method of coating composite material
CN105462454A (en) Special powder coating for antibacterial and mould-proof pump valve
JP5981636B2 (en) Zinc-based composite materials and use thereof
CN111073358A (en) Phosphate water-based heavy-duty anticorrosive coating and preparation method and construction method thereof
CN109181508B (en) Coating composite material and application
JP6155006B2 (en) Aqueous chromium-free treatment solution
CN109111825A (en) A kind of preparation method and application of graphene film zinc composite heavy corrosion protection coating
CN105462456A (en) Antistatic powder coating for pump valve
KR20200117437A (en) A coating method using a chrome free coating liquid, a coating steel product comprising the coating layer formed therefrom, Composite coating solution and the manufacturing method thereof
KR102031906B1 (en) A coating method using a chrome free coating liquid and a coating steel product comprising the coating layer formed therefrom
CN105440901A (en) Powder coating having excellent antirust effect and used for pump valve
CN106433404A (en) Waterborne automobile wheel hub paint
CN108485322A (en) A kind of corrosion-resistant composite material and preparation method
CN115537791A (en) Technological method for phosphating and coating oil tank
CN108912783A (en) A kind of high attachment shear strength material and the preparation method and application thereof
CN106041056A (en) Fe-TiO2-Al2O3-Cu nanometer material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190108

Assignee: ANQING RUITAI CHEMICAL Co.,Ltd.

Assignor: ANHUI INSTITUTE OF INFORMATION TECHNOLOGY

Contract record no.: X2023980033033

Denomination of invention: A hydrophobic composite material

Granted publication date: 20210219

License type: Common License

Record date: 20230301

EE01 Entry into force of recordation of patent licensing contract