CN109161187A - A kind of high-wearing feature graphene nylon 6 composite material preparation method - Google Patents

A kind of high-wearing feature graphene nylon 6 composite material preparation method Download PDF

Info

Publication number
CN109161187A
CN109161187A CN201810813059.0A CN201810813059A CN109161187A CN 109161187 A CN109161187 A CN 109161187A CN 201810813059 A CN201810813059 A CN 201810813059A CN 109161187 A CN109161187 A CN 109161187A
Authority
CN
China
Prior art keywords
nylon
graphene
composite material
wearing feature
material preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810813059.0A
Other languages
Chinese (zh)
Inventor
潘凯
张文政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810813059.0A priority Critical patent/CN109161187A/en
Publication of CN109161187A publication Critical patent/CN109161187A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/223Packed additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Abstract

A kind of high-wearing feature graphene nylon 6 composite material preparation method, belongs to field of polymer composite material.Using in-situ copolymerization method, the graphene oxide of high level is added in caprolactam, then the ring-opening polymerisation of caprolactam is carried out, pass through the graft reaction between surface functional group, nylon is grafted on graphene oxide, and graphene oxide is reduced to graphene, to prepare 6 master batch of graphene nylon.Then the method squeezed out using melt blending, which is blended with pure nylon 6 according to a certain percentage, to prepare the graphene nylon 6 composite material of high-wearing feature.The graphene nylon 6 composite material involved in the present invention arrived has high-wearing feature, and production technology of the invention only needs to carry out simple modifications to present technique, is suitble to industrial production.

Description

A kind of high-wearing feature graphene nylon 6 composite material preparation method
Technical field
The invention belongs to field of polymer composite material, are related to a kind of high-wearing feature graphene nylon 6 composite material preparation Method, prepared graphene nylon 6 composite material have excellent scratch-resistant performance.
Background technique
Nylon 6 (PA6) relies on its excellent performance, becomes one of the engineering plastics kind being most widely used, and it is big to occupy five First of engineering plastics.But its strong alkali-acid resistance is poor, and dry state toughness is insufficient, and low temperature impact strength is low, is easy the big days of one's doom such as burning The application of PA6 is made.Advantage possessed by PA6 itself has been far from satisfying desired requirement, in order to acquired Can be more excellent, and meet the material of particular/special requirement, the research of modified nylon is increasingly paid attention to by people.
Nano modified material is an importance of Development of Nanometer Material application, and the nano modified material of formation both had The toughness and workability of high molecular material, and rigidity and property with nano material.Graphene is after carbon nanotube Afterwards, the another nanoscale functional material of carbon material family has become materialogy, physics, the world heat of chemical field at present Point project.Graphene has the advantages that high mechanical strength, electric conductivity is high, and stability is good, and raw material sources enrich, this is graphene Buddhist nun The research of imperial nanocomposite provides possibility.
With this nano-material modified nylon of graphene, the traditional material that modification of nylon is limited to is breached.Modification mode Do not use traditional physical blending yet, and be changed to caprolactam in-situ polymerization, very good solution physical blending institute with The bad problem of dispersion, the functional group of surface of graphene oxide and the highly polar effect of nylon amido bond, so that the two interface In conjunction with greatly enhancing, the nylon molecules chain of grafting is also improved the compatibility of the two.And in the course of the polymerization process, aoxidize stone Black alkene is reduced to graphene, and electric conductivity restores.On graphene although a large amount of carboxyl functional group is conducive to the grafting of nylon, But since carboxyl is the end-capping reagent of nylon, will limit the growth of nylon chain in the course of the polymerization process, cause finally with oxidation stone The molecular weight of the increase of black alkene content, nylon can gradually lower, and finally will affect the performance of nylon instead in this way.
Graphene nylon master batch is generally prepared using graphene and nylon monomer elder generation reaction in-situ in the prior art, then again With nylon is compound can overcome the above problem, but still not can be further improved in graphene nylon agglomerate material in the prior art The molecular weight problem of nylon.In patent 201610475005.9, the graphene of high thermal conductivity described in Qiu et al./nylon composite materials In, using two sections of heatings, high pressure is kept to react the obtained composite material of in-situ polymerization, can there is that molecular weight is lower to ask Topic.
Summary of the invention
It is an object of the invention to overcome the above problem to provide a kind of high-wearing feature graphene nylon 6 composite material preparation side Method is added the graphene oxide of high level in caprolactam, is then carried out specific caprolactam using in-situ copolymerization method Ring-opening polymerisation and pass through the graft reaction between surface functional group, nylon is grafted on graphene oxide, and is aoxidized Graphene is reduced to graphene in the course of the polymerization process, so that preparing nylon molecular weight is distributed narrower, the higher stone of molecular weight Black 6 master batch of alkene nylon.Then the method squeezed out using melt blending, which is total to pure nylon 6 according to a certain percentage It is mixed, it is had excellent performance to prepare, high patience graphene nylon 6 composite material.
To solve the above problems, the scheme that the present invention takes is as follows:
A kind of high-wearing feature graphene nylon 6 composite material preparation method, which is characterized in that comprise the following steps that
(1) the carboxylic graphene oxide water solution in surface is mixed with caprolactam, sonic oscillation is uniformly mixed Liquid;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operation is more It is secondary, air in kettle is discharged, high-speed stirred is reacted by certain polymerization technique;
(3) after reaction, product takes out step (2) by water cooling, is extracted in boiling water after crushing;
(4) step (3) products therefrom is taken out, vacuum and heating drying processing is carried out in vacuum drying oven, stone can be obtained Black 6 master batch of alkene nylon;
(5) step (4) master batch is blended according to certain proportion using double screw extruder with 6 pellet of nylon, i.e., It can be had excellent performance, high-wearing feature graphene nylon 6 composite material.
Further, the concentration of step (1) graphene oxide water solution is 0.5-7mg/mL, graphene oxide carbon-to-oxygen ratio 3- Between 6,200nm-100 μm of lamella single side size, the number of plies is between 1-10 layers;In 6 master batch of graphene nylon, graphene quality Score is 1-20%, and nylon mass fraction is 99-80%, and ultrasonic temperature is 80-100 DEG C, time 0.5-3h.
Further, polymerization technique described in step (2) are as follows: be warming up to 80-100 DEG C of stirring 1-2h, fill during this process There is also aqueous solutions in setting;150-190 DEG C of stirring 0.5-1.5h is then heated to, 200-230 DEG C of stirring 0.5-2h is warming up to, In the above process, the water in aqueous solution all switchs to vapor, and keeping pressure is 2-4MPa;Then steam is drained, is vacuumized, It is warming up to 250-300 DEG C, reacts 1-4h, pressure release to normal pressure, then vacuumize, keeps 1-8h.
Further, extraction time described in step (3) is preferably 12-96h, changes water and repeats 2-5 times.
Further, preferred 50-100 DEG C of vacuum and heating drying treatment temperature described in step (4), time 12-96h.
Further, water when step (2) is reacted in system causes caprolactam open loop as ring opening agent, then occurs poly- Reaction is closed, and during nylon chain polymerization, reacts with the carboxyl of surface of graphene oxide, is grafted on graphene oxide Surface.
Further, the high-wearing feature graphene nylon 6 obtained after master batch described in step (5) and pure nylon 6 mixing is multiple The mass percentage of final graphene is 0.1-5% in condensation material.
Further, extruder temperature described in step (5) is arranged: an area is 180 DEG C -250 DEG C, and-six area of 2nd areas is 200 DEG C -260 DEG C, seven areas-No.12 District is 210 DEG C -300 DEG C, 220 DEG C -300 DEG C of head temperature, screw speed 200-400r/min.
The beneficial effects of the present invention are:
Master batch preparation process of the present invention uses multistage gradient increased temperature: low temperature melts mixing, medium temperature hydrolyzation open loop, stabilising system Oligomer is generated, high temperature polymerization extends nylon chain.And accurately the pressure in control reaction, when hydrolysis, keep higher Pressure promotes the generation of hydrolysis reaction and oligomer;But nylon 6/poly can generate water during closing, water is to nylon 6 Further reaction has inhibition, so moisture in kettle is discharged, pressure release to normal pressure, vacuumizes by we in subsequent reaction, Reaction later is always maintained at negative pressure state, and system is sufficiently discharged in the moisture that reaction generates, promotes the life of 6 strand of nylon It is long.Then, we have also carried out extraction processing, eliminate unreacted monomer and reduce the oligomer of molecular weight.So comparing In the method for forefathers, the masterbatch composite material that we prepare molecular weight distribution in identical graphene content is narrower, molecular weight more Height, viscosity average molecular weigh are maintained between 6000-19000 according to the difference of graphene content.
The agglomerate preparation method that the present invention uses, the graphene nylon 6 for preparing high-content using the above method first are compound Material master batch, although the molecular weight of master batch and various aspects of performance are improved, in subsequent blending process, increase with The compatibility of nylon matrix keeps graphene evenly dispersed in nylon matrix, prepares 6 composite wood of High-performance graphene nylon Material.The addition of graphene and the evenly dispersed scratch-resistant performance that nylon material can be greatly improved, to obtain high abrasion wiping Property graphene nylon 6 composite material.
The high graphene content master batch of high quality is prepared by in-situ polymerization, in the method squeezed out by melt blending, not only Thoroughly solve the problems, such as nanometer particle-modified bad dispersibility in the process, it is ingenious that the characteristics of nylon 6/poly closes reaction is utilized, in oxygen Fixed 6 strand of nylon is grafted in graphite alkene nanometer sheet, and graphene oxide is reduced to graphene, by the excellent of graphene It is benign to be introduced into nylon 6 material;And the negative effect drop that 6 molecular weight of nylon caused by adding graphene oxide into reduces It is low, to prepare high abrasion wiping property graphene nylon 6 composite material.Meanwhile the process that uses of the present invention does not need pair The equipment of original industrialized production nylon 6 is improved on a large scale, is very suitable for industrialized production.
Specific implementation method
Below according to specific embodiment, the present invention will be further described, but the present invention is not limited to following embodiments.
Embodiment 1
(1) by lamella single side size 200nm, the carboxylic graphite oxide in the surface that carbon-to-oxygen ratio 3, concentration are 0.5mg/mL Alkene solution 6L is mixed with 297g caprolactam, and 80 DEG C of sonic oscillation 1h, be uniformly mixed liquid;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operates 3 times, Air in kettle, high-speed stirred is discharged, polymerization technique is to be warming up to 80 DEG C of stirring 1h;150 DEG C of stirring 0.5h are warming up to, are warming up to 200 DEG C of stirrings 0.5h, steam pressure 3MPa;Then it drains, vacuumizes, be warming up to 250 DEG C, react 1h, pressure release to normal pressure is taken out Vacuum keeps 1h;
(3) after reaction, product takes out by water cooling, extracts for 24 hours after crushing in boiling water, changes water and be repeated 3 times;
(4) product is taken out, 50 DEG C of vacuum heating treatment 72h in vacuum drying oven;Viscosity average molecular weigh is maintained at 17000 left sides It is right.
(5) product is blended with a certain amount of pure nylon using double screw extruder, extruder temperature setting: one Area be 200 DEG C ,-six area of 2nd areas be 220 DEG C, seven areas-No.12 District be 230 DEG C, 240 DEG C of head temperature, screw speed 300r/ min.The graphene nylon 6 composite material that final obtained graphene content is 0.1%.
Products therefrom sample preparation abrasion resistance test result is as shown in table 1.
Embodiment 2
(1) by 1 μm of lamella single side size, the carboxylic graphene oxide in the surface that carbon-to-oxygen ratio 4, concentration are 3mg/mL is molten Liquid 2L is mixed with 294g caprolactam, and 90 DEG C of sonic oscillation 0.5h, be uniformly mixed liquid;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operates 3 times, Air in kettle, high-speed stirred is discharged, polymerization technique is to be warming up to 85 DEG C of stirring 1.5h;190 DEG C of stirring 1.5h are warming up to, are warming up to 230 DEG C of stirrings 2h, steam pressure 3MPa;Then it drains, vacuumizes, be warming up to 270 DEG C, react 2h, pressure release to normal pressure is taken out true Sky keeps 6h;
(3) after reaction, product takes out by water cooling, extracts 48h in boiling water after crushing, changes water and be repeated 3 times;
(4) product is taken out, 70 DEG C of vacuum heating treatment 48h in vacuum drying oven;Viscosity average molecular weigh is maintained at 15000 left sides It is right.
(5) product is blended with a certain amount of pure nylon using double screw extruder, extruder temperature setting: one Area be 180 DEG C ,-six area of 2nd areas be 200 DEG C, seven areas-No.12 District be 210 DEG C, 220 DEG C of head temperature, screw speed 200r/ min.The graphene nylon 6 composite material that final obtained graphene content is 0.3%.
Products therefrom sample preparation abrasion resistance test result is as shown in table 1:
Embodiment 3
(1) by 10 μm of lamella single side size, the carboxylic graphene oxide in the surface that carbon-to-oxygen ratio 5, concentration are 5mg/mL Solution 3L is mixed with 285g caprolactam, and 100 DEG C of sonic oscillation 3h, be uniformly mixed liquid;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operates 3 times, Air in kettle, high-speed stirred is discharged, polymerization technique is to be warming up to 100 DEG C of stirring 2h;160 DEG C of stirring 1h are warming up to, are warming up to 210 DEG C stirring 1h, steam pressure 3MPa;Then it draining, vacuumizes, be warming up to 300 DEG C, react 4h, pressure release to normal pressure vacuumizes, Keep 8h;
(3) after reaction, product takes out by water cooling, extracts 95h in boiling water after crushing, changes water and be repeated 2 times;
(4) product is taken out, 100 DEG C of vacuum heating treatment 96h in vacuum drying oven;Viscosity average molecular weigh is maintained at 13000 Left and right.
(5) product is blended with a certain amount of pure nylon using double screw extruder, extruder temperature setting: one Area be 250 DEG C ,-six area of 2nd areas be 260 DEG C, seven areas-No.12 District be 300 DEG C, 300 DEG C of head temperature, screw speed 400r/ min.The graphene nylon 6 composite material that final obtained graphene content is 1%.
Products therefrom sample preparation abrasion resistance test result is as shown in table 1:
Embodiment 4
(1) by 100 μm of lamella single side size, the carboxylic graphene oxide in the surface that carbon-to-oxygen ratio 6, concentration are 7mg/mL Solution 8.6L is mixed with 240g caprolactam, and 95 DEG C of sonic oscillation 2h, be uniformly mixed liquid;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operates 3 times, Air in kettle, high-speed stirred is discharged, polymerization technique is to be warming up to 90 DEG C of stirring 1h;170 DEG C of stirring 1.5h are warming up to, are warming up to 230 DEG C of stirrings 1.5h, steam pressure 4MPa;Then it drains, vacuumizes, be warming up to 270 DEG C, react 3h, pressure release to normal pressure is taken out Vacuum keeps 6h;
(3) after reaction, product takes out by water cooling, extracts 72h in boiling water after crushing, changes water and be repeated 5 times;
(4) product is taken out, 80 DEG C of vacuum heating treatment 48h in vacuum drying oven;Viscosity average molecular weigh is maintained at 6000 left sides It is right.
(5) product is blended with a certain amount of pure nylon using double screw extruder, extruder temperature setting: one Area be 230 DEG C ,-six area of 2nd areas be 230 DEG C, seven areas-No.12 District be 250 DEG C, 250 DEG C of head temperature, screw speed 200r/ min.The graphene nylon 6 composite material that final obtained graphene content is 5%.
Products therefrom sample preparation abrasion resistance test result is as shown in table 1:
The resulting experimental result of specific 4 embodiments please refers to following table.
Table 1 is the abrasion resistance test result of graphene nylon 6 composite material prepared by embodiment 1-4.
In conclusion having by the obtained graphene nylon 6 composite material of preparation method of the invention preferable wear-resisting Wipe performance.

Claims (10)

1. a kind of high-wearing feature graphene nylon 6 composite material preparation method, which is characterized in that comprise the following steps that
(1) the carboxylic graphene oxide water solution in surface is mixed with caprolactam, sonic oscillation, be uniformly mixed liquid; Ultrasonic temperature is 80-100 DEG C;
(2) product in step (1) is transferred in high-temperature high-pressure reaction kettle, is passed through nitrogen and evacuation cycle operation repeatedly, row Air in kettle out, high-speed stirred are reacted by certain polymerization technique;
(3) after reaction, product takes out step (2) by water cooling, is extracted in boiling water after crushing;
(4) step (3) products therefrom is taken out, vacuum and heating drying processing is carried out in vacuum drying oven, graphene can be obtained 6 master batch of nylon;
(5) step (4) master batch is blended according to certain proportion using double screw extruder with 6 pellet of nylon, can be obtained To high-wearing feature graphene nylon 6 composite material.
Polymerization technique described in step (2) are as follows: be warming up to 80-100 DEG C of stirring 1-2h, there is also water-soluble in device during this process Liquid;150-190 DEG C of stirring 0.5-1.5h is then heated to, 200-230 DEG C of stirring 0.5-2h, in above process, water are warming up to Water in solution all switchs to vapor, and keeping pressure is 2-4MPa;Then steam is drained, is vacuumized, 250-300 is warming up to DEG C, 1-4h, pressure release to normal pressure are reacted, then vacuumize, keeps 1-8h.
2. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that The concentration of step (1) graphene oxide water solution is 0.5-7mg/mL.
3. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that In 6 master batch of graphene nylon, graphene mass fraction is 1-20%, and nylon mass fraction is 99-80%.
4. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Between graphene oxide carbon-to-oxygen ratio 3-6,200nm-100 μm of lamella single side size, the number of plies is between 1-10 layers.
5. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Step (1) ultrasonic time is 0.5-3h.
6. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Extraction time described in step (3) is 12-96h, changes water and repeats 2-5 times.
7. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Vacuum and heating drying treatment temperature described in step (4) is 50-100 DEG C, time 12-96h.
8. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Water when step (2) is reacted in system causes caprolactam open loop as ring opening agent, polymerization reaction then occurs, and in nylon During chain polymerization, reacts with the carboxyl of surface of graphene oxide, be grafted on surface of graphene oxide.
9. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that Final graphene in the high-wearing feature graphene nylon 6 composite material obtained after master batch described in step (5) and pure nylon 6 mixing Mass percentage be 0.1-5%.
10. a kind of high-wearing feature graphene nylon 6 composite material preparation method described in accordance with the claim 1, which is characterized in that The setting of extruder temperature described in step (5): an area is 180 DEG C -250 DEG C, and-six area of 2nd areas is 200 DEG C -260 DEG C, seven areas-ten 2nd area be 210 DEG C -300 DEG C, 220 DEG C -300 DEG C of head temperature, screw speed 200-400r/min.
CN201810813059.0A 2018-07-23 2018-07-23 A kind of high-wearing feature graphene nylon 6 composite material preparation method Pending CN109161187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810813059.0A CN109161187A (en) 2018-07-23 2018-07-23 A kind of high-wearing feature graphene nylon 6 composite material preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810813059.0A CN109161187A (en) 2018-07-23 2018-07-23 A kind of high-wearing feature graphene nylon 6 composite material preparation method

Publications (1)

Publication Number Publication Date
CN109161187A true CN109161187A (en) 2019-01-08

Family

ID=64898112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810813059.0A Pending CN109161187A (en) 2018-07-23 2018-07-23 A kind of high-wearing feature graphene nylon 6 composite material preparation method

Country Status (1)

Country Link
CN (1) CN109161187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471296A (en) * 2020-01-20 2020-07-31 江苏华永汽车悬架有限公司 Manufacturing method of lightweight high-fatigue air spring plastic base
CN114622305A (en) * 2022-03-22 2022-06-14 江阴市恒宇网业有限公司 High-density acoustic mesh cloth and processing technology thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450674A (en) * 2013-09-11 2013-12-18 上海大学 Nylon 6/graphene nanometer composite material with high thermal conductivity and preparation method thereof
CN107313126A (en) * 2017-06-30 2017-11-03 福建锦江科技有限公司 A kind of method that the fiber of graphene modified nylon 6 is produced by high speed spinning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450674A (en) * 2013-09-11 2013-12-18 上海大学 Nylon 6/graphene nanometer composite material with high thermal conductivity and preparation method thereof
CN107313126A (en) * 2017-06-30 2017-11-03 福建锦江科技有限公司 A kind of method that the fiber of graphene modified nylon 6 is produced by high speed spinning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG DING ET AL.: "Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process", 《CARBON》 *
孟娜: "《聚合物/氧化石墨烯纳米复合膜制备及其分离》", 30 September 2017, 徐州:中国矿业大学出版社 *
杨桂生 等: "《中国战略性新兴产业.新材料.工程塑料》", 31 December 2017, 北京:中国铁道出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471296A (en) * 2020-01-20 2020-07-31 江苏华永汽车悬架有限公司 Manufacturing method of lightweight high-fatigue air spring plastic base
CN114622305A (en) * 2022-03-22 2022-06-14 江阴市恒宇网业有限公司 High-density acoustic mesh cloth and processing technology thereof
CN114622305B (en) * 2022-03-22 2023-12-26 江阴市恒宇网业有限公司 High-density acoustic mesh cloth and processing technology thereof

Similar Documents

Publication Publication Date Title
CN109251518A (en) A kind of high-performance carbon fibre/graphene nylon 6 composite material preparation method
CN108841169A (en) A kind of High-performance graphene nylon 6 composite material preparation method
CN109180929A (en) A kind of antistatic-level graphene nylon 6 composite material preparation method
CN109161187A (en) A kind of high-wearing feature graphene nylon 6 composite material preparation method
CN107722595B (en) Preparation method of fiber-graphene-thermoplastic polyarylether multi-scale composite material
CN109161188A (en) A kind of high-performance glass fiber/graphene nylon 6 composite material preparation method
CN102199265B (en) Long carbon chain nylon modified phenolic resin and preparation method thereof
CN107698754A (en) A kind of preparation method of graphene oxide modified polyamide 6
CN101457019B (en) Carbon nanotube/polysulfonamide nano composite material and preparation method thereof
CN109593331A (en) A kind of preparation method and product of graphene oxide tannic acid compound enhancing polylactic acid 3D printing material
CN105732914B (en) A kind of preparation method of lignin xanthans modified powder butadiene nitrile polymer
CN111234336B (en) Epoxidized natural rubber composite material and preparation method thereof
CN109867826B (en) Preparation method of modified diatomite
CN109081979B (en) Preparation method of ultrahigh molecular weight polyethylene nano composite material
CN109337381A (en) A kind of high-strength, high-ductility glass fibre/graphene nylon 6 composite material preparation method
CN110903432A (en) Preparation of photo-thermal response drug sustained-release hydrogel based on magnetic cellulose nanocrystal
CN107141392B (en) Process for synthesizing chlorinated linear low-density polyethylene
CN103289079B (en) Composite material of nylon 6/aramid fibres and preparation method for same
CN111676570B (en) Antibacterial anti-seepage fabric
CN110734593A (en) Method for preparing emulsion polymerized styrene butadiene rubber from modified graphene
CN116162183A (en) Preparation method of large-particle-size high-solid-content styrene-butadiene latex
CN104497189A (en) Preparation method of thermally-stable raw fluorubber
CN109265985A (en) A kind of high-strength, high-ductility carbon fiber/graphite alkene nylon 6 composite material preparation method
CN113801431A (en) High-toughness high-strength phenolic resin material and preparation method thereof
CN114479065B (en) Flame-retardant composite material, preparation method thereof and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108