CN109133878A - 复合陶瓷及其制备方法 - Google Patents

复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN109133878A
CN109133878A CN201710506457.3A CN201710506457A CN109133878A CN 109133878 A CN109133878 A CN 109133878A CN 201710506457 A CN201710506457 A CN 201710506457A CN 109133878 A CN109133878 A CN 109133878A
Authority
CN
China
Prior art keywords
fluorescent powder
core
sintering
shell structure
aluminium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710506457.3A
Other languages
English (en)
Other versions
CN109133878B (zh
Inventor
李乾
徐梦梦
陈雨叁
许颜正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Appotronics Corp Ltd
Original Assignee
Appotronics Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appotronics Corp Ltd filed Critical Appotronics Corp Ltd
Priority to CN201710506457.3A priority Critical patent/CN109133878B/zh
Priority to US16/626,090 priority patent/US11097984B2/en
Priority to PCT/CN2017/103417 priority patent/WO2019000671A1/zh
Publication of CN109133878A publication Critical patent/CN109133878A/zh
Application granted granted Critical
Publication of CN109133878B publication Critical patent/CN109133878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种机械性能得到提高的复合陶瓷及其制备方法。所述复合陶瓷包括荧光粉、陶瓷基质以及任选的烧结助剂,荧光粉与陶瓷基质的重量比为3:17至9:1,复合陶瓷的相对致密度95%以上。所述制备方法包括使用核壳结构的包覆式荧光粉作为原料,将所述原料球磨并进行烧结,得到所述复合陶瓷。

Description

复合陶瓷及其制备方法
技术领域
本发明涉及一种复合陶瓷及其制备方法,特别地涉及一种用于激光光源的复合陶瓷及其制备方法。
背景技术
由于激光光源的大色域、高效率和长寿命等优点,其广泛地应用于照明、投影和显示等***中以激发荧光转换材料来获得预定的单色光或多色光。可以看出,荧光转换材料的性能(例如,光学转换效率、亮度、承受温度、导热性、寿命等)也直接影响照明、投影和显示等的性能。
常规的荧光转换材料采用硅胶或玻璃封装荧光粉技术来制备。然而,由于硅胶的热导率较低,承受温度不能超过200-250℃,所以长时间工作在高温环境下容易老化,寿命不长;且即使采用可以承受较高温度的玻璃,也由于玻璃的热导率仍旧较低而无法满足大功率激光光源对荧光转换材料的要求。
因此,使用承受温度和导热性等性能都高于硅胶和玻璃的陶瓷材料来封装荧光粉有助于解决上述问题。在目前的制备发光复合陶瓷的固相法中,可以采用氧化铝基质封装商用荧光粉的方式来制备。
氧化铝-荧光粉发光复合陶瓷的制备主要采用粉末烧结的方法,主要参与烧结的是作为材料基质的氧化铝粉末颗粒,这些粉末颗粒会进入液相烧结,生成连续分布的晶体,并适当长大成一定的新尺寸。荧光粉颗粒(一般为YAG、LuAG类型)的粒径一般远大于氧化铝颗粒的尺寸,在烧结过程中不进入液相烧结,或仅有很少的一部分进入液相烧结(主要靠温度的控制来达到此目的,氧化铝烧结的温度要低于荧光粉进入液相烧结的温度,主要是为了保护荧光粉晶粒的完整性,保证其发光性能),因此氧化铝与荧光粉的结合主要是靠进入液相的氧化铝对荧光粉颗粒表面的浸润、析出再结晶的程度来决定的,为达到此目的往往需要更高的烧结温度和更长的烧结时间,但是会导致荧光粉颗粒更易进入液相烧结,改变晶粒形貌和性能。因此如何在原烧结工艺条件不变的情况下改善氧化铝与荧光粉颗粒的界面结合程度是获得综合性能优良的复合陶瓷所需要解决的关键问题。
发明内容
本发明的目的是提供一种复合陶瓷及其制备方法,通过使用具有核壳结构的荧光粉作为原料制备发光复合陶瓷,使氧化铝与荧光粉颗粒间的界面结合程度和界面结构得到改善,发光复合陶瓷的机械性能和光学性能得到提高。
本发明的第一方面提供了一种复合陶瓷,所述复合陶瓷包括陶瓷基质、烧结助剂以及荧光粉;其中,所述陶瓷基质为氧化铝烧结体,所述荧光粉未发生烧结,并以颗粒的形式散布在陶瓷基质中;所述荧光粉与所述陶瓷基质的重量比为3:17至9:1,所述复合陶瓷的相对致密度为95%-99.9%,其中,所述陶瓷基质中氧化铝的晶粒大小为0.5-5μm,所述荧光粉的半径为1-10μm;所述烧结助剂占陶瓷基质的重量百分数为0.2wt%-3wt%。
在本发明第一方面优选的实施方式中,所述荧光粉为YAG:Ce3+和/或LuAG:Ce3+中的一种或两种。
在本发明第一方面优选的实施方式中,所述烧结助剂为MgO和/或Y2O3
在本发明第一方面优选的实施方式中,所述荧光粉与所述陶瓷基质的重量比为1:5至5:1优选为1:3至2:1、更优选1:2至1:1。
在本发明第一方面优选的实施方式中,所述复合陶瓷的相对致密度为98%-99.9%。
本发明的第二方面提供了一种制备本发明第一方面所述复合陶瓷的方法,所述制备方法包括使用核壳结构的包覆式荧光粉、氧化铝、烧结助剂作为原料,将所述原料经球磨、预压制后进行烧结,得到所述复合陶瓷;
其中,所述氧化铝的粒径为0.1-2μm;
所述核壳结构的包覆式荧光粉的核部分为荧光粉,核半径为1-10μm;
所述核壳结构的包覆式荧光粉的壳部分含有氧化铝或其前驱体,壳部分的颗粒粒径为10nm-80nm;
所述核壳结构的包覆式荧光粉的壳部分的氧化铝与作为原料的所述氧化铝的用量比为1:3-4:1;
所述核壳结构的包覆式荧光粉的核部分的荧光粉与所述壳部分的氧化铝和作为原料的所述氧化铝二者之和的重量比为3:17至9:1;且
所述烧结助剂占所述壳部分的氧化铝和作为原料的所述氧化铝二者之和的重量比为0.2wt%-3wt%。
在本发明第二方面优选的实施方式中,所述核壳结构的包覆式荧光粉的壳部分含有烧结助剂或其前驱体,所述烧结助剂为选自MgO、Y2O3中的一种或多种,所述烧结助剂的前驱体为选自Mg(OH)2、Y(OH)3中的一种或多种。
在本发明第二方面优选的实施方式中,所述核壳结构的包覆式荧光粉通过以下步骤合成得到:
步骤1:配制可溶性铝盐的水溶液,所述水溶液任选包含所述烧结助剂或其阳离子的可溶性盐;
步骤2:配制pH值为4-10的沉淀剂溶液,向所述沉淀剂溶液中加入表面活性剂,再加入所述荧光粉,超声分散,得到荧光粉悬浮液,其中,所述荧光粉的半径为1-10μm;
步骤3:向步骤2得到的所述荧光粉悬浮液中滴加步骤1得到的所述水溶液,经过陈化、固液分离、干燥、以及任选的热处理,得到所述核壳结构的包覆式荧光粉。
在本发明第二方面优选的实施方式中,所述球磨过程的时间为30-50分钟。
在本发明第二方面优选的实施方式中,所述烧结为真空烧结,所述真空烧结的烧结温度为1250-1550℃。
在本发明第二方面优选的实施方式中,所述烧结为真空烧结,所述真空烧结的保温时间为0.5-6小时。
在本发明第二方面优选的实施方式中,所述烧结为热压烧结,所述热压烧结的烧结温度为1350-1550℃。
在本发明第二方面优选的实施方式中,所述烧结为热压烧结,所述热压烧结的保温时间为0.5-2h。
在本发明第二方面优选的实施方式中,所述烧结为热压烧结,所述热压烧结的烧结压力为30-60MPa。
在本发明第二方面优选的实施方式中,所述热压烧结的气氛为惰性气体和氮气中的任一种。
在本发明第二方面优选的实施方式中,所述核壳结构的包覆式荧光粉壳部分的氧化铝和作为原料的所述氧化铝的晶相均为α-Al2O3
在本发明第二方面优选的实施方式中,所述核壳结构的包覆式荧光粉为Al2O3包覆的荧光粉、Al2O3和MgO包覆的荧光粉、Al2O3和Y2O3包覆的荧光粉中的一种或两种。
在本发明第二方面优选的实施方式中,所述热处理过程在1100-1300℃进行2-5小时。
在本发明第二方面优选的实施方式中,所述沉淀剂选自于由NaOH、KOH、NH3·H2O和NH4HCO3所组成的组。
根据本发明的复合陶瓷及其制备方法,通过使用具有核壳结构的荧光粉作为原料制备发光复合陶瓷,该发光复合陶瓷中氧化铝与荧光粉颗粒的界面结合程度得到改善,不仅有利于提高氧化铝-荧光粉发光复合陶瓷的机械性能,还能改善荧光粉氧化铝两相之间的界面结构,提高复合陶瓷的致密度,提高发光复合陶瓷的光学性能。
附图说明
图1是根据本发明的核壳结构的荧光粉的SEM图。
图2是根据本发明制备的核壳结构的荧光粉粉体的XRD图。
图3是根据本发明的使用核壳结构的荧光粉制备的发光复合陶瓷YAG-Al2O3-MgO样品的抗弯强度测试图。
图4是根据本发明的使用核壳结构的荧光粉制备的发光复合陶瓷YAG-Al2O3-MgO样品的SEM图。
具体实施方式
下面,将详细说明根据本发明的复合陶瓷及其制备方法。
本发明的第一方面提供了一种复合陶瓷,所述复合陶瓷包括陶瓷基质、烧结助剂以及荧光粉;其中,所述陶瓷基质为氧化铝烧结体,所述荧光粉未发生烧结,并以颗粒的形式散布在陶瓷基质中;所述荧光粉与所述陶瓷基质的重量比为3:17至9:1,所述复合陶瓷的相对致密度为95%-99.9%,其中,所述陶瓷基质中氧化铝的晶粒大小为0.5-5μm,所述荧光粉的半径为1-10μm;所述烧结助剂占陶瓷基质的重量百分数为0.2wt%-3wt%。
在本发明中,“未发生烧结”的荧光粉可以理解为还包括轻微烧结的情况。在烧结过程中,进入烧结(即进入液相烧结)指的是某一种成分的材料颗粒进入液相,或其大部分表面为液相,参与烧结过程中的物质转移;相对于其他相的成分,荧光粉颗粒的粒径要大得多,在烧结过程中只有极少的局部表面进入液相并发生轻微的物质转移,或几乎不发生物质转移,所以称为轻微的烧结,并作为“未发生烧结”的一种情况予以考虑。
荧光粉可以是YAG:Ce3+和/或LuAG:Ce3+
制备陶瓷基质的氧化铝粉末为α-Al2O3,粒径为0.1-2μm,例如由日本大明公司以TM-DAR商品名提供的氧化铝粉末。
在一个实施方式中,本发明的烧结助剂为MgO和/或Y2O3,优选MgO。烧结助剂的存在可以使氧化铝进入液相的温度降低,而且该温度下,该烧结助剂不会对所选粒径的荧光粉产生破坏影响,使其能够保持表面形貌基本不变,使得烧结后的复合陶瓷能够保留原荧光粉的发光性能。
在本发明中,所述荧光粉与所述陶瓷基质的重量比为1:5至5:1、优选1:3至2:1、更优选1:2至1:1。
本发明的第二方面提供了用于制备本发明第一方面所述复合陶瓷的方法,其包括使用核壳结构的包覆式荧光粉、氧化铝、烧结助剂作为原料,将所述原料经球磨、预压制后进行烧结,得到所述复合陶瓷。
将核壳结构的包覆式荧光粉用于制备复合陶瓷是本发明的重要特征。在一个实施方式中,所述核壳结构的核部分为所述荧光粉。在另一个实施方式中,所述核壳结构的壳部分为氧化铝或其前驱体,并任选含有所述烧结助剂或其前驱体。氧化铝的前驱体可以为例如氢氧化铝。对于以MgO作为烧结助剂的情况,烧结助剂的前驱体可以为例如氢氧化镁。
在本发明的一个实施方式中,核壳结构的包覆式荧光粉中,核半径为1-10μm,壳部分的颗粒粒径为10nm-80nm。
在本发明所述的制备复合陶瓷的方法中,烧结温度、烧结压力、保温时间在陶瓷烧结中是相对关键的参数,如果这些参数的值过低,那么陶瓷烧结不完全,致密度低;如果这些参数的值过高,那么陶瓷出现过度烧结,晶粒尺寸变得更大,会降低陶瓷的力学性能。
通过使用具有核壳结构的荧光粉作为原料制备发光复合陶瓷,该发光复合陶瓷中氧化铝与荧光粉颗粒的界面结合程度得到改善,不仅有利于提高氧化铝-荧光粉发光复合陶瓷的机械性能,还能改善荧光粉氧化铝两相之间的界面结构,提高复合陶瓷的致密度,提高发光复合陶瓷的光学性能。本发明所述复合陶瓷的相对致密度为95%以上,更优选98%以上。相对致密度在理论上的定义是实际测量的密度值与理论计算完全致密时的密度值的比。通过采用核壳结构的包覆式荧光粉制备得到的复合陶瓷具有较高的相对致密度,这也构成了本发明的重要特征。
在另一个实施方式中,本发明所述的核壳结构的包覆式荧光粉通过以下步骤合成得到:
步骤1:配制可溶性铝盐的水溶液,所述水溶液任选包含所述烧结助剂或其阳离子的可溶性盐;
步骤2:配制pH值为4-10的沉淀剂溶液,向所述沉淀剂溶液中加入表面活性剂,再加入所述荧光粉,超声分散,得到荧光粉悬浮液,其中,所述荧光粉的半径为1-10μm;
步骤3:向步骤2得到的所述荧光粉悬浮液中滴加步骤1得到的所述水溶液,经过陈化、固液分离、干燥、以及任选的热处理,得到所述核壳结构的包覆式荧光粉。
在上述方法中,通过改变可溶性铝盐(例如Al(NO3)3)的水溶液的浓度、可溶性铝盐和沉淀剂(例如NH4HCO3)的摩尔比、沉淀反应温度、沉淀反应陈化时间、热处理的温度和时间,可以调节包覆于荧光粉上的金属氧化物(记为MOy)的粒径和包覆量及其与荧光粉的粘附性,从而影响后续烧结过程中的烧结活性及得到的陶瓷的显微结构。根据形核原理,MOy的前驱体优先在荧光粉表面成核,部分或全部MOy的前驱体沉淀沉积在荧光粉表面,得到类似核壳结构的复合结构粉体。MOy的粒径越小,与荧光粉的粘附性越好,越容易获得稳定的核壳结构。
在上述方法中,如果沉淀剂溶液的pH值过高或过低,将会影响可溶性铝盐和任选的烧结助剂或其阳离子的可溶性盐在荧光粉上的沉淀程度,从而影响荧光粉上的MOy的包覆量。如果MOy的包覆量过多或过少,也可能影响后续的致密烧结。在本发明的实施方式中,沉淀剂可以选自于由NaOH、KOH、NH3·H2O和NH4HCO3所组成的组。
超声是为了破坏荧光粉颗粒之间的二次团聚,使荧光粉在溶液中尽可能地分散;添加SDS等表面活性剂是为了进一步提高荧光粉颗粒的分散性和悬浮性。此外,可以使用SDS以外的表面活性剂。
另外,市售的满足本发明所述的结构、尺寸要求的具有核壳结构的包覆式荧光粉也可应用于本发明并实现烧结复合陶瓷的高的致密度。
实施例
希望说明的是在以下实施例中,以YAG荧光粉为例进行说明,但是并不限于此。
除非另有说明,下述实施例中采用的各试剂均为市售的普通试剂,所涉及的各设备均为本领域技术人员已知的普通设备。
实施例1:制备核壳结构的包覆式荧光粉1
步骤1:称取适量Al(NO3)3·9H2O和Mg(NO3)2·6H2O,配置Al(NO3)3和Mg(NO3)2的混合溶液(记为M(NO3)x),其中Al(NO3)3的浓度为0.5mol/L,Mg(NO3)2·6H2O的用量按MgO与Al2O3(沉淀法得到的Al2O3,通过Al(NO3)3·9H2O的量计算得到相应质量)的质量比为3:100的比例计算得到。
步骤2:配置浓度为0.5mol/L的NH4HCO3溶液,向溶液中加入SDS(十二烷基硫酸钠)使得悬浮液中SDS的浓度为5.5×10-3mol/L,得到含沉淀剂和SDS的混合溶液,将适量的商用荧光粉YAG(比如三菱商用荧光粉,半径为1-10μm)与该混合溶液混合得到荧光粉的悬浮液。其中,SDS的用量按照临界胶束浓度计算,需使得硝酸盐溶液与沉淀剂混合后,SDS的浓度大于其临界胶束浓度;荧光粉的用量与沉淀法Al2O3(沉淀法得到的Al2O3,通过Al(NO3)3·9H2O的量计算得到相应质量)质量的比为15:68。上述溶液超声1h后,选择合适的磁力搅拌速度,在磁力搅拌下得到荧光粉的悬浮液备用,其pH值为4。显然,可以使用NaOH、KOH或NH3·H2O等沉淀剂的溶液来代替NH4HCO3溶液,只要使得溶液中的氢氧根离子处于同样的浓度(即,同样的pH值),便可产生与NH4HCO3溶液同样的沉淀效果。
步骤3:在磁力搅拌作用下,将M(NO3)x溶液逐滴滴入荧光粉的悬浮液中,在沉淀剂作用下得到Al2O3和MgO(记为MOy)的前驱体沉淀。上述沉淀在磁力搅拌作用下陈化1h之后所得沉淀用去离子水离心或抽滤洗涤3次,酒精洗涤3次,干燥后,得到荧光粉和MOy前驱体的混合粉体,将该混合粉体在1100℃热处理2h,得到MOy和荧光粉的混合粉体,其中MOy包覆在荧光粉表面。由此得到核壳结构的包覆式荧光粉1。下文的表1中汇总了实施例1所使用的各项参数。
实施例2:制备核壳结构的包覆式荧光粉2
除了采用下文中的表1列出的实施例2中使用的参数(其中,N.A.表示不采用此项参数,下同)以外,按照实施例1的制备方法得到核壳结构的包覆式荧光粉2。
实施例3:制备核壳结构的包覆式荧光粉3
除了采用下文中的表1列出的实施例3中使用的参数以外,按照实施例1的制备方法得到核壳结构的包覆式荧光粉3。
实施例4:制备核壳结构的包覆式荧光粉4
按照实施例1的制备方法得到核壳结构的包覆式荧光粉4,区别在于:步骤1中仅配置浓度为0.5mol/L的Al(NO3)3溶液,其他参数使用表1列出的实施例4中使用的参数。
表1
注:N.A.表示未进行该步骤或不适用该参数。
实施例5:制备发光复合陶瓷材料1
步骤1:取核壳结构的包覆式荧光粉1,称取适量的高纯度超细的商用Al2O3粉末(粒径为0.1-2μm,购自日本大明公司TM-DAR牌号的氧化铝),商用Al2O3粉末与前述沉淀法Al2O3颗粒,通过Al(NO3)3·9H2O的量计算得到相应质量)的质量比为1:4,所述荧光粉和Al2O3粉末总量(沉淀法Al2O3粉末和商用Al2O3粉末的总和)的质量比为3:17,将两种粉体加入球磨罐中。
步骤2:向球磨罐中加入适量的PVB的乙醇溶液,其中,乙醇作为研磨溶剂;PVB作为粘结剂,有助于陶瓷坯体成型,添加量为混合粉体总质量的1wt%。用超低磨失率的氧化锆球进行球磨,球磨时间为30min。球磨后,将浆料干燥得到干粉,之后过150目筛造粒,得到混合均匀的原料粉。
步骤3:将该原料粉在7MPa压强下进行预压制,在900℃热处理,除去坯体中的有机物,同时使得Mg(NO3)2分解为MgO,然后在235MPa下冷等静压,得到陶瓷素坯,在真空气氛下烧结,烧结温度为1400℃,保温2h,获得发光复合陶瓷材料1(YAG-Al2O3-MgO),使用阿基米德法测试发光复合陶瓷材料1的相对致密度。
下文中的表2汇总了实施5中使用的参数。
实施例6:制备发光复合陶瓷2
从核壳结构的包覆式荧光粉2出发,除了采用下文中的表2列出的实施例5中使用的参数以外,按照实施例5的制备方法获得发光复合陶瓷材料2(YAG-Al2O3-MgO)。
实施例7:制备发光复合陶瓷材料3
从核壳结构的包覆式荧光粉3出发,除了采用下文中的表2列出的实施例6中使用的参数以外,按照实施例5的制备方法获得发光复合陶瓷材料3。
其中所不同的是,本实施例中采用的是热压烧结,步骤3中过筛造粒后的粉体在600℃进行热处理,使Mg(NO3)2转变为MgO,装入石墨模具中,在15MPa压强下进行预压制,然后将石墨模具放入热压烧结炉内,烧结条件可以是在氩气气氛下烧结,烧结温度1350-1550℃,保温0.5-2h,烧结压力为30-60MPa。烧结完成后,卸除压力并随炉冷却,得到发光陶瓷材料3(YAG-Al2O3-MgO)。
本实施例中具体采用的烧结参数见表2。
实施例8:制备发光复合陶瓷材料4
从核壳结构的包覆式荧光粉4出发,除了采用下文中的表2列出的实施例8中使用的参数以外,按照实施例5的制备方法获得发光复合陶瓷材料4。
其中所不同的是,步骤2中向球磨罐中加入适量的Mg(NO3)2和PVB的乙醇溶液,其中,Mg(NO3)2分解之后可生成MgO,在后续烧结过程中起到烧结助剂的作用,Mg(NO3)2的添加量按照MgO的理论添加量为商用Al2O3的1wt%计算得到。
表2
为了表征核壳结构的荧光粉以及使用其制备出的发光复合陶瓷YAG-Al2O3-MgO的性能,下面参照图1至图4进行说明。
图1是根据本发明实施例1的核壳结构的荧光粉的SEM(Scanning ElectronMicroscope:扫描电子显微镜)图。如图1所示,该核壳结构的Al2O3&MgO包覆荧光粉中的荧光粉核的粒径约为17μm,以细微颗粒形式包覆在大粒径荧光粉表面的颗粒是纳米级小粒径Al2O3和MgO,粒径约为10-50nm。这一结构的包覆式荧光粉对后续制备性能优越的复合陶瓷起到有益作用。实施例2-4也得到了类似的结果(图像未示出)。
图2是根据本发明实施例1制备的核壳结构的荧光粉粉体的XRD(X-RayDiffraction:x射线衍射)图。如图2所示,横轴表示角度2θ,单位为度(deg.),且纵轴表示强度(intensity),单位为任意单位(a.u.)。采用YAG卡片对比,从衍射图谱中可以看出,核壳结构的荧光粉/Al2O3&MgO粉体中荧光粉的衍射峰与YAG卡片的衍射峰匹配,同时Al2O3(图2中的“◆”所示)的衍射峰较弱,因为其粒径小,结晶性弱,所以衍射峰为微弱的小峰,而MgO含量很少,而且结晶度差所以没有看到明显的衍射峰。实施例2-4也得到了类似的结果(图像未示出)。
图3是根据本发明的使用核壳结构的荧光粉制备的发光复合陶瓷YAG-Al2O3-MgO样品的抗弯强度测试图。如图3所示,采用三点抗弯法来测试样品的抗弯强度。具体地,将样品制备成5×5×25mm的长条方形块体,且将样品被压断时的压强定义为抗弯强度。实验表明(参见表3),利用普通荧光粉烧结的发光复合陶瓷YAG-Al2O3-MgO(样品1,除原料以普通荧光粉作为原料外,其它过程与实施例5相同)的抗弯强度仅为280MPa,而利用本发明的核壳结构的包覆式荧光粉烧结的发光复合陶瓷YAG-Al2O3-MgO(样品2,由实施例5的复合陶瓷材料制成)的抗弯强度可以达到350MPa。由此,本发明的核壳结构的包覆式荧光粉提高了复合陶瓷样品的机械性能。实施例6-8也得到了类似的结果(数据未示出)。
表3
抗弯强度的提高,在一定程度上反映了以核壳结构的荧光粉作为原料制备的发光复合陶瓷的机械性能得到改善。
图4是根据本发明的使用核壳结构的荧光粉制备的发光复合陶瓷材料YAG-Al2O3-MgO样品(实施例5)的SEM图。如图4所示,本发明的核壳结构的荧光粉和Al2O3分布均匀(氧化铝的晶粒大小为0.5-5μm),荧光粉和Al2O3之间的界面结合程度高,气孔率低,陶瓷的致密度高,从而能够提高发光复合陶瓷的机械性能。实施例6-8也得到了类似的结果(图像未示出)。
尽管在上面已经说明了根据本发明的复合陶瓷及其制备方法,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明所附权利要求书限定的实质或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (10)

1.一种复合陶瓷,所述复合陶瓷包括陶瓷基质、烧结助剂以及荧光粉;其中,所述陶瓷基质为氧化铝烧结体,所述荧光粉未发生烧结,并以颗粒的形式散布在陶瓷基质中;所述荧光粉与所述陶瓷基质的重量比为3:17至9:1,所述复合陶瓷的相对致密度为95%-99.9%,其中,所述陶瓷基质中氧化铝的晶粒大小为0.5-5μm,所述荧光粉的半径为1-10μm;所述烧结助剂占陶瓷基质的重量百分数为0.2wt%-3wt%。
2.根据权利要求1所述的复合陶瓷,所述复合陶瓷满足如下条件(a)至(d)中的任意一项或多项:
(a)所述荧光粉为YAG:Ce3+和/或LuAG:Ce3+
(b)所述烧结助剂为MgO和/或Y2O3
(c)所述荧光粉与所述陶瓷基质的重量比为1:5至5:1、优选1:3至2:1、更优选1:2至1:1。
(d)所述复合陶瓷的相对致密度为98%-99.9%。
3.一种制备权利要求1或2所述复合陶瓷的方法,所述制备方法包括使用核壳结构的包覆式荧光粉、氧化铝、烧结助剂作为原料,将所述原料经球磨、预压制后进行烧结,得到所述复合陶瓷;
其中,所述氧化铝的粒径为0.1-2μm;
所述核壳结构的包覆式荧光粉的核部分为荧光粉,核半径为1-10μm;
所述核壳结构的包覆式荧光粉的壳部分含有氧化铝或其前驱体,壳部分的颗粒粒径为10nm-80nm;
所述核壳结构的包覆式荧光粉的壳部分的氧化铝与作为原料的所述氧化铝的重量比为1:3-4:1;
所述核壳结构的包覆式荧光粉的核部分的荧光粉与所述壳部分的氧化铝和作为原料的所述氧化铝二者之和的重量比为3:17至9:1;且
所述烧结助剂占所述壳部分的氧化铝和作为原料的所述氧化铝二者之和的重量比为0.2wt%-3wt%。
4.根据权利要求3所述的方法,所述核壳结构的包覆式荧光粉的壳部分含有烧结助剂或其前驱体,所述烧结助剂为选自MgO、Y2O3中的一种或多种,所述烧结助剂的前驱体为选自Mg(OH)2、Y(OH)3中的一种或多种。
5.根据权利要求3或4所述的方法,所述核壳结构的包覆式荧光粉通过以下步骤合成得到:
步骤1:配制可溶性铝盐的水溶液,所述水溶液任选包含所述烧结助剂或其阳离子的可溶性盐;
步骤2:配制pH值为4-10的沉淀剂溶液,向所述沉淀剂溶液中加入表面活性剂,再加入所述荧光粉,超声分散,得到荧光粉悬浮液,其中,所述荧光粉的半径为1-10μm;
步骤3:向步骤2得到的所述荧光粉悬浮液中滴加步骤1得到的所述水溶液,经过陈化、固液分离、干燥、以及任选的热处理,得到所述核壳结构的包覆式荧光粉。
6.根据权利要求3-5中任一项所述的方法,所述烧结为真空烧结,所述真空烧结满足如下条件(a)和(b)的任意一项或两项:
(a)烧结温度为1250-1550℃;
(b)保温时间为0.5-6小时。
7.根据权利要求3-5中任一项所述的方法,所述烧结为热压烧结,所述热压烧结满足如下条件(a)至(c)的任意一项或多项:
(a)烧结温度为1350-1550℃;
(b)保温时间为0.5-2h;
(c)烧结压力为30-60MPa。
8.根据权利要求3-7中任一项所述的方法,所述核壳结构的包覆式荧光粉壳部分的氧化铝和作为原料的所述氧化铝的晶相均为α-Al2O3
9.根据权利要求3-8中任一项所述的方法,所述核壳结构的包覆式荧光粉为Al2O3包覆的荧光粉、Al2O3和MgO包覆的荧光粉、Al2O3和Y2O3包覆的荧光粉中的一种或两种。
10.根据权利要求3-9中任一项所述的方法,所述热处理过程在1100-1300℃进行2-5小时。
CN201710506457.3A 2017-06-28 2017-06-28 复合陶瓷及其制备方法 Active CN109133878B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710506457.3A CN109133878B (zh) 2017-06-28 2017-06-28 复合陶瓷及其制备方法
US16/626,090 US11097984B2 (en) 2017-06-28 2017-09-26 Composite ceramic and preparation method therefor
PCT/CN2017/103417 WO2019000671A1 (zh) 2017-06-28 2017-09-26 复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710506457.3A CN109133878B (zh) 2017-06-28 2017-06-28 复合陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109133878A true CN109133878A (zh) 2019-01-04
CN109133878B CN109133878B (zh) 2021-11-30

Family

ID=64740935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710506457.3A Active CN109133878B (zh) 2017-06-28 2017-06-28 复合陶瓷及其制备方法

Country Status (3)

Country Link
US (1) US11097984B2 (zh)
CN (1) CN109133878B (zh)
WO (1) WO2019000671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947604A (zh) * 2022-12-14 2023-04-11 福建臻璟新材料科技有限公司 一种氮化铝基质的荧光陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315878A (ja) * 1986-07-04 1988-01-22 Matsushita Electronics Corp 耐酸化性蛍光体
CN1667081A (zh) * 2005-02-25 2005-09-14 东南大学 氧化铝包膜荧光粉及其膜包覆方法
US20080251765A1 (en) * 2004-10-18 2008-10-16 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device using the same
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
CN106673652A (zh) * 2017-01-13 2017-05-17 中国计量大学 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10154988A1 (de) 2001-11-08 2003-05-28 Karlsruhe Forschzent Verwendung von oxidischen Nanoteilchen
JP2006188030A (ja) 2005-01-07 2006-07-20 Yamamasu Denki Seito Kk 浮遊性セラミックボールの製造方法
CN103450876B (zh) 2013-09-13 2014-12-24 武汉工程大学 一种无机氧化物包覆型荧光粉及其制备方法
CN103626487A (zh) * 2013-11-26 2014-03-12 中国科学院福建物质结构研究所 复合结构钇铝石榴石透明陶瓷的制备方法
CN104357043A (zh) 2014-11-24 2015-02-18 北京大学工学院包头研究院 一种荧光材料及其制备方法和应用
JP6518628B2 (ja) * 2016-06-27 2019-05-22 日本特殊陶業株式会社 セラミックス焼結体
US10886437B2 (en) * 2016-11-03 2021-01-05 Lumileds Llc Devices and structures bonded by inorganic coating
WO2018225424A1 (ja) * 2017-06-06 2018-12-13 パナソニックIpマネジメント株式会社 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315878A (ja) * 1986-07-04 1988-01-22 Matsushita Electronics Corp 耐酸化性蛍光体
US20080251765A1 (en) * 2004-10-18 2008-10-16 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device using the same
CN1667081A (zh) * 2005-02-25 2005-09-14 东南大学 氧化铝包膜荧光粉及其膜包覆方法
CN104291796A (zh) * 2014-09-23 2015-01-21 上海三思电子工程有限公司 一种led用透明荧光陶瓷的制备方法
CN106673652A (zh) * 2017-01-13 2017-05-17 中国计量大学 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUXING LI等人: ""Al2O3–YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting",Shuxing Li等人,《Journal of Materials Chemistry C》,第4卷,第37期,第8648-8654页", 《JOURNAL OF MATERIALS CHEMISTRY C》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947604A (zh) * 2022-12-14 2023-04-11 福建臻璟新材料科技有限公司 一种氮化铝基质的荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN109133878B (zh) 2021-11-30
US20200385312A1 (en) 2020-12-10
WO2019000671A1 (zh) 2019-01-03
US11097984B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
CN102363728B (zh) 荧光体颗粒,发光二极管,以及照明设备和使用它们的液晶面板背光装置
CN104818023B (zh) 含有晶体缺陷修复工艺的稀土发光材料制备方法及其产物
TWI555824B (zh) Nitroxide phosphor powder, nitroxide phosphor powder, and nitrogen oxide phosphor powder for manufacturing the same
CN105777087A (zh) 基于氧化铝和氧化锆的烧结制品
EP2474590A2 (en) Phosphor particles and making method
CN108249909A (zh) 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
WO2018103481A1 (zh) 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
TWI598320B (zh) Oxynitride phosphor powder and method of manufacturing the same
Kafili et al. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants
CN111087235B (zh) 一种采用钇/助剂/铝三重核壳结构粉体制备yag透明陶瓷的方法
TWI602904B (zh) Oxynitride phosphor powder and method of manufacturing the same
WO2022138881A1 (ja) ジルコニア仮焼体
JP3280688B2 (ja) 希土類酸化物の製造方法
CN109133878A (zh) 复合陶瓷及其制备方法
JP4254222B2 (ja) ジルコニア粉末
JP2016176007A (ja) Yag蛍光体用複合粒子、yag蛍光体及びその製造方法
Zhao et al. Preparation and characterization of YAG: Ce3+ phosphors by molten salt synthesis method
CN109650851A (zh) 一种照明材料的制备方法
CN104495891A (zh) 一种完全分散的氧化铝纳米颗粒的制备方法
EP3560905A1 (en) Transparent aln sintered body, and production method therefor
EP4194528A1 (en) Nitride phosphor and manufacturing method therefor
CN108997998A (zh) 单分散的核壳结构的荧光粉颗粒及其制备方法
JP7037082B2 (ja) 希土類アルミン酸塩蛍光体の製造方法、希土類アルミン酸塩蛍光体及び発光装置
JP3599914B2 (ja) アルミン酸塩系蛍光体の製造方法
Akiyama et al. Fabrication of high-efficiency YAG: Ce3+ phosphors via concurrent optimization of firing atmosphere and fluxing agent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information

Address after: 518000 20-22, 20-22 headquarters building, 63 high tech Zone, Xuefu Road, Nanshan District, Guangdong Province, Guangdong.

Applicant after: APPOTRONICS Corp.,Ltd.

Address before: 518000 Nanshan District, Shenzhen, Guangdong, Guangdong Province, Guangdong Road, 63 Xuefu Road, high-tech zone, 21 headquarters building, 22 floor.

Applicant before: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd.

Address after: 518000 Nanshan District, Shenzhen, Guangdong, Guangdong Province, Guangdong Road, 63 Xuefu Road, high-tech zone, 21 headquarters building, 22 floor.

Applicant after: SHENZHEN GUANGFENG TECHNOLOGY Co.,Ltd.

Address before: 518055 Guangdong province Shenzhen Nanshan District Xili town south of Cha Guang road Shenzhen integrated circuit design application Industrial Park 401

Applicant before: APPOTRONICS Corp.,Ltd.

CB02 Change of applicant information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant