CN109115282A - A kind of preparation method of Bionic flexible stress/strain sensor - Google Patents

A kind of preparation method of Bionic flexible stress/strain sensor Download PDF

Info

Publication number
CN109115282A
CN109115282A CN201811249855.2A CN201811249855A CN109115282A CN 109115282 A CN109115282 A CN 109115282A CN 201811249855 A CN201811249855 A CN 201811249855A CN 109115282 A CN109115282 A CN 109115282A
Authority
CN
China
Prior art keywords
cnts
nps
metal
pdms film
pdms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811249855.2A
Other languages
Chinese (zh)
Inventor
李爱东
赖天成
刘畅
曹燕强
吴迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201811249855.2A priority Critical patent/CN109115282A/en
Publication of CN109115282A publication Critical patent/CN109115282A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Abstract

The characteristics of the invention discloses a kind of preparation methods of Bionic flexible stress/strain sensor, are related to sensor field, can have both highly sensitive, big range of stretch, quick response and stability, has excellent comprehensive performance.The present invention includes: to use the patterning PDMS film for preparing using the animal skin with suitable micro-structure as template as base material, as sensing material, the two combines and flexibility stress/strain transducer is prepared the CNTs of the metal nanoparticle modification prepared using technique for atomic layer deposition.Present invention process is simple, it is at low cost, it is environmentally protective, the base material prepared replicates the micro-structure in animal skin well, sensing material has good electric conductivity and range of stretch, make the flexibility stress/strain transducer prepared that there is excellent comprehensive performance, including high sensitivity, big range of stretch, fast response time and good cyclical stability.

Description

A kind of preparation method of Bionic flexible stress/strain sensor
Technical field
The present invention relates to sensor field more particularly to a kind of preparation methods of Bionic flexible stress/strain sensor.
Background technique
Flexibility stress/strain transducer is because it is in wearable device, electronic skin, human motion detection, human-computer interaction, strong Health monitoring etc. great potential and be concerned.Traditional strain transducer is narrow (< 5%) due to its rigidity, induction range With muting sensitivity (~2) and be unable to satisfy these application requirement.There is high sensitivity in most of stress/strain sensors Contradictory relation between high range of stretch.Specifically, flexibility stress/strain transducer is with highly sensitive but rather low Stretchable range, or it is opposite.Therefore, obtain have excellent comprehensive performance (as high sensitivity, big range of stretch, fastly Response time and good stability) flexibility stress/strain transducer be an arduous challenge.
Therefore, lack a kind of flexibility stress/strain transducer in the prior art, can have both highly sensitive, big range of stretch, The characteristics of quick response and stability, has excellent comprehensive performance.
Summary of the invention
The present invention provides a kind of preparation method of Bionic flexible stress/strain sensor, can prepare with it is highly sensitive, The strong Bionic flexible stress/strain sensor of high stretch, quick response, stability.
In order to achieve the above objectives, the present invention adopts the following technical scheme:
A kind of preparation method of Bionic flexible stress/strain sensor, comprising:
S1, it is sticked on glass slide after the fresh animal skin with suitable micro-structure is cut clean dry as biology Template.Animal cuticle has microstructure abundant, extremely sensitive to outside stimulus, using dynamic with suitable microstructure features Object skin is as biological template, complex process flow needed for can be avoided production micro-structure, and preparation flow is simple, at low cost It is honest and clean.
S2, PDMS (polydimethylsiloxane dimethyl silicone polymer) is entirely poured in animal skin surfaces, It tears after room temperature curing, obtains patterned PDMS film.PDMS film has outstanding elasticity and excellent bio-compatible Property.Also, compared with flat PDMS film, the patterning PDMS film with micro-structure makes electronic device have higher spirit Sensitivity and faster response time.
S3, grow discrete distribution in CNTs (Carbon Nanotube carbon nanotube) using Atomic layer deposition method can The metal nanoparticle of control, obtains metal NPs@CNTs composite material, and the diameter of metal nanoparticle is 5-20nm.
CNT material has fabulous toughness and electric conductivity, is able to bear higher strain, but sensitivity is not good enough, it is sluggish compared with Greatly.However, metal nanoparticle has quite high sensitivity, but range of stretch is smaller, and stability is insufficient.
Atomic layer deposition method is a kind of with from restricted and self-saturation reaction mechanism novel thin film deposition technique, Have the characteristics that excellent three-dimensional stickiness, the uniformity of large area and simple accurate subband structures film thickness monitoring.Atomic layer deposition Product method prepares the controllable metal nanoparticle of discrete distribution in such a way that island is grown, and has obtained metal NPs@CNTs composite wood Material.
Therefore, metal NPs@CNTs composite material CNT material and the respective deficiency of metal nanoparticle have been supplied into, had both The advantages of Large strain and sensitivity.
S4, it disperses metal NPs@CNTs composite material in ethyl alcohol with the concentration of 0.5-4.5mg/mL, ultrasonic 1h is obtained The alcohol dispersion liquid of metal NPs@CNTs.
S5, the alcohol dispersion liquid of metal NPs@CNTs is equably applied to patterned PDMS film surface, obtains metal NPs@CNTs-PDMS film, by metal NPs@CNTs-PDMS film heating.
S6, copper foil is sticked to metal NPs@CNTs-PDMS film both ends using conductive silver glue, curing conductive elargol, and Metal NPs@CNTs-PDMS film surface wraps up one layer of PDMS film as protective layer, obtains Bionic flexible stress/strain sensing Device.
Further, biological template uses animal skin, including die Schwimmhaut, pigskin.
Further, PDMS is made by matrix and crosslinking agent mixing, and mixing mass ratio is matrix: crosslinking agent=10:1.
Further, in S3, CNTs is hydroxylated CNTs.
Further, in S3, metal nanoparticle includes Ir NPs, Pt NPs, W NPs.
The beneficial effects of the present invention are:
The patterning PDMS film that the present invention uses the animal skin with suitable micro-structure to prepare for template is as substrate Material, as sensing material, the two is combined and is prepared into the CNTs of the metal nanoparticle modification prepared using technique for atomic layer deposition To flexibility stress/strain transducer.Present invention process is simple, at low cost, environmentally protective, and the base material prepared is multiple well The micro-structure in animal skin is made, sensing material has good electric conductivity and range of stretch, has both the toughness of PDMS film By force, the Large strain power and stability of highly sensitive, quick response feature and CNT material, make the flexibility stress/strain prepared Sensor has excellent comprehensive performance, steady including high sensitivity, big range of stretch, fast response time and good circulation It is qualitative.
Detailed description of the invention
It to describe the technical solutions in the embodiments of the present invention more clearly, below will be to needed in the embodiment Attached drawing is briefly described, it should be apparent that, drawings in the following description are only some embodiments of the invention, for ability For the those of ordinary skill of domain, without creative efforts, it can also be obtained according to these attached drawings other attached Figure.
Fig. 1 is flexibility stress prepared by the present invention/strain transducer preparation process schematic diagram;
Fig. 2 is the SEM figure of patterning PDMS film prepared by the present invention;
Fig. 3 is that the TEM of Ir NPs@CNTs composite material prepared by the present invention schemes;
Fig. 4 is that the XPS of Ir NPs@CNTs composite material prepared by the present invention schemes;
Fig. 5 is the dynamic response curve of flexibility stress/strain transducer prepared by the present invention;
Fig. 6 is the sensitivity curve of flexibility stress/strain transducer prepared by the present invention;
Fig. 7 is the response time curve of flexibility stress/strain transducer prepared by the present invention;
Fig. 8 is the stable circulation linearity curve of flexibility stress/strain transducer prepared by the present invention.
Specific embodiment
Technical solution in order to enable those skilled in the art to better understand the present invention, With reference to embodiment to this Invention is described in further detail.
Embodiment one:
The preparation process schematic diagram of the present embodiment as shown in Figure 1,
1) fresh die Schwimmhaut is cut, is successively cleaned with ethyl alcohol and deionized water, with being dried with nitrogen, is adhesive in two-sided Biological template is used as on glass slide;
2) by PDMS (polydimethylsiloxane dimethyl silicone polymer) matrix and crosslinking agent with the quality of 10:1 Than being uniformly mixed, magnetic agitation 30min is placed in deflation 30min in vacuum environment and is then entirely poured in die Schwimmhaut with eliminating bubble It tears after room temperature curing 48h, and is cut into 15 × 5 × 0.5mm in surface3Size;
3) Ir is grown on the CNTs (Carbon Nanotube carbon nanotube) that hydroxylating is handled with technique for atomic layer deposition NPs, atomic layer deposition growth conditions are as follows: growth temperature is 300 DEG C;Presoma is respectively acetylacetone,2,4-pentanedione iridium (Ir (C5H7O2)3, source 200 DEG C of temperature) and oxygen (O2, room temperature);Deposition pulse circulation are as follows: 8s Ir (C5H7O2)3Pulse, 20s clean pulse, 8s O2Arteries and veins Punching, 20s clean pulse;Carrier gas and purge gas are high pure nitrogen (N2, 99.999%);The partial pressure and flow of oxygen be respectively 1.1hPa and 50sccm;Growing recurring number is 200 circulations;
4) it disperses Ir NPs@CNTs composite material in ethyl alcohol with the concentration of 1.5mg/mL, ultrasonic 1h obtains Ir NPs@ The alcohol dispersion liquid of CNTs;
5) dispersant liquid drop is applied to above-mentioned patterned PDMS film surface, then heats 10min at 75 DEG C, to guarantee The uniformity of drop coating, the step is in triplicate;
6) copper foil is sticked to above-mentioned Ir NPs@CNTs-PDMS film both ends using conductive silver glue, is heated at 75 DEG C 30min solidifies conductive silver glue, and wraps up one layer of PDMS again as protective layer on surface, that is, prepares highly sensitive high stretching model Enclose Bionic flexible stress/strain sensor.
Embodiment two:
1) fresh die Schwimmhaut is cut, is successively cleaned with ethyl alcohol and deionized water, with being dried with nitrogen, is adhesive in two-sided Biological template is used as on glass slide;
2) PDMS matrix and crosslinking agent are uniformly mixed with the mass ratio of 10:1, magnetic agitation 30min is placed in vacuum environment Then middle deflation 30min is entirely poured in die Schwimmhaut surface, is torn after room temperature curing 48h to eliminate bubble, and it is cut into 15 × 5×0.5mm3Size;
3) Pt NPs, growth conditions are as follows: growth temperature are grown on the CNTs that hydroxylating is handled with technique for atomic layer deposition It is 300 DEG C;Presoma is respectively methyl cyclopentadienyl trimethyl platinum (PtMeCpMe3, 80 DEG C of source temperature) and oxygen (O2, room temperature); Deposition pulse circulation are as follows: 8s PtMeCpMe3Pulse, 20s clean pulse, 8s O2Pulse, 20s clean pulse;Carrier gas and purgative gas Body is high pure nitrogen (N2, 99.999%);The partial pressure and flow of oxygen are respectively 24.5hPa and 864sccm;Growing recurring number is 200 circulations;
4) it disperses Pt NPs@CNTs composite material in ethyl alcohol with the concentration of 2.5mg/mL, ultrasonic 1h obtains Pt NPs@ The alcohol dispersion liquid of CNTs;
5) dispersant liquid drop is applied to above-mentioned patterned PDMS film surface, then heats 10min at 75 DEG C, to guarantee The uniformity of drop coating, the step is in triplicate;
6) copper foil is sticked to above-mentioned Pt NPs@CNTs-PDMS film both ends using conductive silver glue, is heated at 75 DEG C 30min solidifies conductive silver glue, and wraps up one layer of PDMS film again as protective layer on surface, that is, prepares highly sensitive high drawing Stretch range Bionic flexible stress/strain sensor.
Embodiment three:
1) fresh pigskin is cut, is successively cleaned with ethyl alcohol and deionized water, with being dried with nitrogen, is adhesive in two-sided Biological template is used as on glass slide;
2) PDMS matrix and crosslinking agent are uniformly mixed with the mass ratio of 10:1, magnetic agitation 30min is placed in vacuum environment Then middle deflation 30min is entirely poured in pig skin surfaces, is torn after room temperature curing 48h to eliminate bubble, and it is cut into 15 × 5×0.5mm3Size;
3) Ir NPs, growth conditions are as follows: growth temperature are grown on the CNTs that hydroxylating is handled with technique for atomic layer deposition It is 300 DEG C;Presoma is respectively acetylacetone,2,4-pentanedione iridium (Ir (C5H7O2)3, 200 DEG C of source temperature) and oxygen (O2, room temperature);Deposition pulse is followed Ring are as follows: 8s Ir (C5H7O2)3Pulse, 20s clean pulse, 8s O2Pulse, 20s clean pulse;Carrier gas and purge gas are high-purity Nitrogen (N2, 99.999%);The partial pressure and flow of oxygen are respectively 1.1hPa and 50sccm;Growing recurring number is 200 circulations;
4) it disperses Ir NPs@CNTs composite material in ethyl alcohol with the concentration of 1.5mg/mL, ultrasonic 1h obtains Ir NPs@ The alcohol dispersion liquid of CNTs;
5) dispersant liquid drop is applied to above-mentioned patterned PDMS film surface, then heats 10min at 75 DEG C, to guarantee The uniformity of drop coating, the step is in triplicate;
6) copper foil is sticked to above-mentioned Ir NPs@CNTs-PDMS film both ends using conductive silver glue, is heated at 75 DEG C 30min solidifies conductive silver glue, and wraps up one layer of PDMS film again as protective layer on surface, that is, prepares highly sensitive high drawing Stretch range Bionic flexible stress/strain sensor.
The Bionic flexible stress/strain sensor that embodiment one is prepared is tested for the property below:
(1) pattern of base material is characterized with SEM, as shown in Fig. 2, (a) is shown with die Schwimmhaut as biological template duplicating PDMS film on dermatoglyph;(b) structure subtleer in dermatoglyph is shown with higher amplification factor, such as is permitted More ridge, groove and protrusions, their size range is from several hundred nanometers to several microns.(c) and (d) is respectively different amplification Under be covered with CNTs patterning PDMS film SEM image, it is thin that image shows that CNTs is evenly distributed in patterned PDMS The surface of film, including in groove, the top and side of ridge and protrusion.
(2) pattern of sensing material is characterized with TEM, as shown in figure 3, (a) and (b) is respectively in 200 ALD The TEM image for the CNTs that IrNPs is modified after (Atomic layer deposition atomic layer deposition) growth circulation.On CNTs Hydroxyl becomes the active site of Ir NPs nucleation core and island growth, and spherical Ir NPs fairly evenly divides along the outer wall of CNTs Cloth, for the diameter of Ir NPs in the range of 5nm to 20nm, the diameter of CNTs is about 10~25nm.(c) IrNPs@CNTs's in High-resolution TEM image shows that the lattice fringe from Ir NPs, average interplanar spacing d are 0.229nm.(d) it shows The polycrystalline diffraction ring for the IrNPs@CNTs that selective electron diffraction (SAED) is formed, diffraction ring are corresponded respectively to from Irfcc phase (111), (200), (220) and (311) crystal face and (002) crystal face from CNTs.
(3) it is characterized with XPS (X-ray photoelectron spectroscopy, X-ray photoelectron spectroscopic analysis) The ingredient of sensing material come from CNTs positioned at the peak extremely strong C 1s of 284.6eV as shown in figure 4, in (a), (b) in, Weaker bimodal peak value corresponds to Ir 4f 7/2 and 4f 5/2 at 61.5eV and 64.5eV, and spin orbit splitting can be 3.0eV。
(4) using the dynamic response curve of electrochemical workstation test sensor, as shown in figure 5, with the strain of application Increase to 30% from 0, relative resistance change also correspondingly increases to above 600% from 0, and relative resistance change is for strain Response is immediately, rapidly;The sensitivity of sensor is tested, as shown in fig. 6, relative resistance change-strain curve has exponent relation, with The increase of strain, the sensitivity of the sensor constantly increases, and sensitivity is about 5.63 under the strain of 0-15%, in 15- Sensitivity is about 35.38 under 30% strain, shows that the sensor has high sensitivity;The response time of sensor is tested, As shown in fig. 7, the sensor has quickish response time, respectively 150ms and 100ms when applying or removing strain; The cyclical stability of sensor is tested, as shown in figure 8, after stretching-recovery cycles more than 10000 times, the electricity of the sensor Stream offset is only about 4.8%, and the table sensor is with good stability.
To sum up, above experimental result indicates, flexibility stress/strain transducer prepared by the present invention can have both it is highly sensitive, The characteristics of big range of stretch, quick response and stability, there is excellent comprehensive performance.
The beneficial effects of the present invention are:
The patterning PDMS film that the present invention uses the animal skin with suitable micro-structure to prepare for template is as substrate Material, as sensing material, the two is combined and is prepared into the CNTs of the metal nanoparticle modification prepared using technique for atomic layer deposition To flexibility stress/strain transducer.Present invention process is simple, at low cost, environmentally protective, and the base material prepared is multiple well The micro-structure in animal skin is made, sensing material has good electric conductivity and range of stretch, has both the toughness of PDMS film By force, the Large strain power and stability of highly sensitive, quick response feature and CNT material, make the flexibility stress/strain prepared Sensor has excellent comprehensive performance, steady including high sensitivity, big range of stretch, fast response time and good circulation It is qualitative.
The above description is merely a specific embodiment, but scope of protection of the present invention is not limited thereto, any In the technical scope disclosed by the present invention, any changes or substitutions that can be easily thought of by those familiar with the art, all answers It is included within the scope of the present invention.Therefore, protection scope of the present invention should be subject to the protection scope in claims.

Claims (5)

1. a kind of preparation method of Bionic flexible stress/strain sensor characterized by comprising
S1, it is sticked on glass slide after the fresh animal skin with suitable micro-structure is cut clean dry as biological mould Plate;
S2, PDMS (polydimethylsiloxane dimethyl silicone polymer) is entirely poured in animal skin surfaces, in room It tears after temperature solidification, obtains patterned PDMS film;
S3, discrete be distributed controllably is grown in CNTs (Carbon Nanotube carbon nanotube) using Atomic layer deposition method Metal nanoparticle, obtains metal NPs@CNTs composite material, and the diameter of metal nanoparticle is 5-20nm;
S4, it disperses metal NPs@CNTs composite material in ethyl alcohol with the concentration of 0.5-4.5mg/mL, obtains metal after ultrasound The alcohol dispersion liquid of NPs@CNTs;
S5, by the alcohol dispersion liquid of metal NPs@CNTs, equably drop coating obtains metal in patterned PDMS film surface Metal NPs@CNTs-PDMS film heating is made metal NPs@CNTs be firmly adhered to PDMS by NPs@CNTs-PDMS film On;
S6, copper foil is sticked to metal NPs@CNTs-PDMS film both ends using conductive silver glue, curing conductive elargol, and in metal NPs@CNTs-PDMS film surface wraps up one layer of PDMS film as protective layer, obtains Bionic flexible stress/strain sensor.
2. the method according to claim 1, wherein the biological template includes animal skin die Schwimmhaut, pigskin.
3. the method according to claim 1, wherein the PDMS is matched by matrix and crosslinking agent mixing in S2 At mixing mass ratio is matrix: crosslinking agent=10:1.
4. the method according to claim 1, wherein the CNTs is hydroxylated CNTs in S3.
5. the method according to claim 1, wherein the metal nanoparticle includes Ir NPs, Pt in S3 NPs,W NPs。
CN201811249855.2A 2018-10-25 2018-10-25 A kind of preparation method of Bionic flexible stress/strain sensor Pending CN109115282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811249855.2A CN109115282A (en) 2018-10-25 2018-10-25 A kind of preparation method of Bionic flexible stress/strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811249855.2A CN109115282A (en) 2018-10-25 2018-10-25 A kind of preparation method of Bionic flexible stress/strain sensor

Publications (1)

Publication Number Publication Date
CN109115282A true CN109115282A (en) 2019-01-01

Family

ID=64855214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811249855.2A Pending CN109115282A (en) 2018-10-25 2018-10-25 A kind of preparation method of Bionic flexible stress/strain sensor

Country Status (1)

Country Link
CN (1) CN109115282A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921679A (en) * 2019-03-08 2019-06-21 吉林大学 A kind of Bionic flexible actuator and preparation method thereof having Real-time Feedback function
CN110243276A (en) * 2019-06-28 2019-09-17 江苏大学 A kind of stretchable stress strain gauge and preparation method applied to articulations digitorum manus
CN110361119A (en) * 2019-07-11 2019-10-22 南京大学 A kind of flexibility stress sensor of composite microstructure and preparation method thereof
CN111645102A (en) * 2020-06-17 2020-09-11 重庆邮电大学 Bionic magnetic control flexible gripper device with self-sensing function
CN112697033A (en) * 2020-12-07 2021-04-23 南京大学 High-sensitivity wide-response-range flexible stress/strain sensor and preparation method thereof
CN112903146A (en) * 2021-01-22 2021-06-04 中国科学院重庆绿色智能技术研究院 Preparation method and application of dermal-based flexible pressure sensor
CN113295191A (en) * 2021-05-17 2021-08-24 广州大学 Bionic bamboo leaf structure flexible strain sensor and preparation method and application thereof
CN113533458A (en) * 2021-06-07 2021-10-22 齐鲁工业大学 Flexible electrode array and preparation method and application thereof
CN113831565A (en) * 2021-10-21 2021-12-24 杭州师范大学 High-transparency recyclable flexible multifunctional electronic skin and preparation method and application thereof
CN114739354A (en) * 2022-03-25 2022-07-12 广东技术师范大学 Strain sensor and preparation method thereof
CN115290223A (en) * 2021-12-29 2022-11-04 太原工业学院 Flexible force-sensitive sensing test method based on RC oscillation frequency detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212320A (en) * 2013-06-05 2014-12-17 中国科学院宁波材料技术与工程研究所 Bionically textured material capable of preventing algae attachment and preparation method thereof
CN105387957A (en) * 2015-10-16 2016-03-09 北京印刷学院 Tensile pressure sensor based on printed transparent electrodes and preparation method thereof
US20170031491A1 (en) * 2015-07-29 2017-02-02 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus concerning sensitive force sensors
CN106840478A (en) * 2017-02-14 2017-06-13 南京工业大学 A kind of preparation method of the pliable pressure sensor based on regenerated collagen film
CN108011539A (en) * 2017-12-07 2018-05-08 苏州大学 Flexible electrode and preparation method thereof, friction nanometer power generator and preparation method thereof
CN108332887A (en) * 2018-04-28 2018-07-27 河北工业大学 A kind of flexibility stress sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212320A (en) * 2013-06-05 2014-12-17 中国科学院宁波材料技术与工程研究所 Bionically textured material capable of preventing algae attachment and preparation method thereof
US20170031491A1 (en) * 2015-07-29 2017-02-02 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus concerning sensitive force sensors
CN105387957A (en) * 2015-10-16 2016-03-09 北京印刷学院 Tensile pressure sensor based on printed transparent electrodes and preparation method thereof
CN106840478A (en) * 2017-02-14 2017-06-13 南京工业大学 A kind of preparation method of the pliable pressure sensor based on regenerated collagen film
CN108011539A (en) * 2017-12-07 2018-05-08 苏州大学 Flexible electrode and preparation method thereof, friction nanometer power generator and preparation method thereof
CN108332887A (en) * 2018-04-28 2018-07-27 河北工业大学 A kind of flexibility stress sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QING ZHANG等: "《Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs》", 《NANOMATERIALS》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921679A (en) * 2019-03-08 2019-06-21 吉林大学 A kind of Bionic flexible actuator and preparation method thereof having Real-time Feedback function
CN110243276A (en) * 2019-06-28 2019-09-17 江苏大学 A kind of stretchable stress strain gauge and preparation method applied to articulations digitorum manus
CN110361119A (en) * 2019-07-11 2019-10-22 南京大学 A kind of flexibility stress sensor of composite microstructure and preparation method thereof
CN111645102A (en) * 2020-06-17 2020-09-11 重庆邮电大学 Bionic magnetic control flexible gripper device with self-sensing function
CN112697033A (en) * 2020-12-07 2021-04-23 南京大学 High-sensitivity wide-response-range flexible stress/strain sensor and preparation method thereof
CN112903146B (en) * 2021-01-22 2022-07-15 中国科学院重庆绿色智能技术研究院 Preparation method and application of dermal-based flexible pressure sensor
CN112903146A (en) * 2021-01-22 2021-06-04 中国科学院重庆绿色智能技术研究院 Preparation method and application of dermal-based flexible pressure sensor
CN113295191A (en) * 2021-05-17 2021-08-24 广州大学 Bionic bamboo leaf structure flexible strain sensor and preparation method and application thereof
CN113533458A (en) * 2021-06-07 2021-10-22 齐鲁工业大学 Flexible electrode array and preparation method and application thereof
CN113533458B (en) * 2021-06-07 2023-06-30 齐鲁工业大学 Flexible electrode array and preparation method and application thereof
CN113831565A (en) * 2021-10-21 2021-12-24 杭州师范大学 High-transparency recyclable flexible multifunctional electronic skin and preparation method and application thereof
CN113831565B (en) * 2021-10-21 2023-09-29 杭州师范大学 High-transparency recyclable flexible multifunctional electronic skin and preparation method and application thereof
CN115290223A (en) * 2021-12-29 2022-11-04 太原工业学院 Flexible force-sensitive sensing test method based on RC oscillation frequency detection
CN114739354A (en) * 2022-03-25 2022-07-12 广东技术师范大学 Strain sensor and preparation method thereof
CN114739354B (en) * 2022-03-25 2023-11-14 广东技术师范大学 Strain sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
CN109115282A (en) A kind of preparation method of Bionic flexible stress/strain sensor
Yan et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure
Zhu et al. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane
Liu et al. A high performance self-healing strain sensor with synergetic networks of poly (ɛ-caprolactone) microspheres, graphene and silver nanowires
CN106482628B (en) A kind of large deformation flexible strain transducer and preparation method thereof
CN110108375B (en) MXene material-based electronic skin and preparation method thereof
Fung et al. Facile fabrication of electrochemical ZnO nanowire glucose biosensor using roll to roll printing technique
CN105758909B (en) A kind of flexible extensible electrode based on gold nanotubes and preparation method and application
Qiao et al. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort
WO2011024539A1 (en) Expansion device using carbon nanotube and method for manufacturing same
CN106840476A (en) The three-dimensional quick sensing element of carbon nanomaterial field-effect flexible force and preparation method
CN112621779B (en) Near-infrared driven visual Janus structural color software robot and preparation method thereof
Zhang et al. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films
Uz et al. Fabrication of high-resolution graphene-based flexible electronics via polymer casting
CN110967131B (en) Flexible conductive composite film and preparation method thereof, and flexible pressure sensor and preparation method thereof
Zhao et al. Novel multi-walled carbon nanotubes-embedded laser-induced graphene in crosslinked architecture for highly responsive asymmetric pressure sensor
CN108793056A (en) A kind of pressure sensor and preparation method thereof that flexibility can attach
CN108078543A (en) A kind of preparation method of high sensitivity electronic skin
CN102795595A (en) Preparation method of wrinkles by combining selected area ultraviolet ozonization and solvent swelling and application thereof
Chen et al. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate
CN101320209A (en) Production method of surface conducting polymer graphic pattern
Ge et al. Flexible pressure sensor based on a thermally induced wrinkled graphene sandwich structure
Teng et al. A stretchable petal patterned strain sensor comprising Ir nanoparticles-modified multi-walled carbon nanotubes for human-motion detection
Xue et al. Flexible dual‐parameter sensor array without coupling based on amorphous indium gallium zinc oxide thin film transistors
CN108981986A (en) A kind of Strain sensing material and preparation method for electronic skin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101

RJ01 Rejection of invention patent application after publication