CN109101689B - 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法 - Google Patents

一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法 Download PDF

Info

Publication number
CN109101689B
CN109101689B CN201810738658.0A CN201810738658A CN109101689B CN 109101689 B CN109101689 B CN 109101689B CN 201810738658 A CN201810738658 A CN 201810738658A CN 109101689 B CN109101689 B CN 109101689B
Authority
CN
China
Prior art keywords
vehicle
distance
braking
formula
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810738658.0A
Other languages
English (en)
Other versions
CN109101689A (zh
Inventor
潘登
夏易君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201810738658.0A priority Critical patent/CN109101689B/zh
Publication of CN109101689A publication Critical patent/CN109101689A/zh
Priority to PCT/CN2019/092747 priority patent/WO2020007215A1/zh
Priority to US17/026,228 priority patent/US11345346B2/en
Application granted granted Critical
Publication of CN109101689B publication Critical patent/CN109101689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0293Convoy travelling
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)

Abstract

提出一种用于交通运输领域最佳跟驰车距计算的曲线拟合建模方法。根据车辆在停车运行过程的控制需求,建立能够科学反映车辆在停车运行过程中动态行为特征的数学模型:
Figure DDA0001722674120000011
式中v0为车辆开始制动减速时的初速度,k、τ为大于0的常数,δ为大于0的微小速度增量,t为时间变量,v为速度变量(v|t=‑∞=v0+δ,v|t=∞=‑δ),tanh()表示双曲正切函数。本发明基于上述车辆行为调整模型,提出一种动态最佳跟驰车距的曲线拟合方法,用于动态最佳跟驰车距的实时计算,可为车辆以平稳(舒适)、快速的行为调整过程实现安全、高效跟驰运行创造条件,也可为交通管理部门进行交通管理,以及车辆制造行业提高车辆自动化水平、降低工程实验成本,提供技术支持。

Description

一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线 拟合建模方法
技术领域
本发明涉及交通运输领域,基于一种科学的车辆行为调整模型,提出一种用于最佳跟驰车距计算的曲线拟合建模方法,为确定车辆最佳跟驰车距,确保车辆能够以平稳(舒适)的行为调整过程实现安全、高效跟驰运行创造条件。
特别适用于各类载运工具的自动驾驶。
背景技术
车辆跟驰运行过程中,出于安全性、高效性和自身行为调整的平稳性和快速性考虑,前、后车辆之间的最佳距离,即最佳跟驰车距,显然不是一个固定不变的值。就车辆跟驰运行的任意时刻而言,跟驰车距为何值,车辆的跟驰运行才是既安全又高效的,同时满足车辆行为调整的平稳(舒适)性需求?不仅是高质量车辆跟驰控制所需要的基础数据,而且也是交通管理部门进行路网车流科学管理的重要依据。
显然,车辆实时地掌握这个“最佳跟驰车距”,与当前的实际跟驰车距作比较分析,可以了解自身当前的跟驰状态和行为质量,进而能够科学确定自身行为调整的具体细节。可见,“最佳跟驰车距”在任意时刻对于车辆安全、高效、平稳(舒适)跟驰运行的重要性。问题是怎样计算这个“最佳跟驰车距”呢?
目前,在世界范围内的交通领域尚无一个被广泛接受的“动态最佳跟驰车距实时计算”的行业标准。不仅公路交通领域对动态安全车距存在技术上的需求,轨道交通领域在全速域内任意跟驰形势下以动态安全车距作为车辆跟驰行为调整(控制)的参考依据,在技术上的需求更为迫切,虽有若干典型速度下的“安全车距”标准,但完全不能满足CBTC(Communication-based Train Control)***车辆在任意跟驰形势下均能安全、高效运行的控制需求。
当前学术界和工程界,“最佳跟驰车距”主要是采取拟合函数的计算方法获得。该方法根据工程实验中取得的基础数据,进行曲线拟合,从而得到如式(a)所示的最佳跟驰车距计算公式。
SOptimalFollowingDistance=f(vf) (a)
式中SOptimalFollowingDistance表示最佳跟驰车距,vf表示后车速度,f()表示函数。
上述“最佳跟驰车距”的计算公式,完全依赖于工程实践中的数据获得。由于动态安全车距涉及速度、控制策略等诸多参数,其复杂性主要表现为“每个参数均有无穷多个数值,其组合更是难以穷尽”,为建立准确的拟合函数所作的工程实验将是大量的,同时也必须是有限的才是在工程上可行的,大量的工程实验耗费巨额资金,而实验次数有限性又令拟合函数的准确性受到质疑。解决上述矛盾,将有助于实现未来车辆自动驾驶的安全性、高效性、平稳性和智能化。
本发明针对上述现状,基于车辆的科学行为调整模型,提出一种用于最佳跟驰车距计算的曲线拟合建模方法,一方面可降低工程实验的次数,另一方面能够提高所建拟合函数的准确性。
发明内容
本发明基于一种科学的车辆行为调整模型,提出一种用于最佳跟驰车距计算的曲线拟合建模方法。
本发明通过以下技术方案来实现:
(1)建立一种满足跟驰安全性、高效性和车辆行为调整的平稳性、快速性的车辆行为调整模型,具体步骤如下:
步骤1:根据客、货运输对车辆减速停车运行过程的控制需求,建立能够科学反映车辆减速停车过程中动态行为特征的数学模型:
Figure BDA0001722674100000021
式中,v0为车辆开始制动减速时的初速度,k、τ为大于0的常数,δ为大于0的微小速度增量,t为时间变量,v为速度变量(v|t=-∞=v0+δ,v|t=∞=-δ),tanh()表示双曲正切函数。
步骤2:根据车辆制动停车的平稳性和快速性需求,计算参数k、δ、τ的值。
加速度的绝对值,以及其时间导数的绝对值,可用于评估车辆行为调整的平稳性和快速性。
Figure BDA0001722674100000031
式中:a为加速度。
参数k、δ可根据车辆行为调整的平稳性和快速性需求,由式(2)计算得到。然后,将t=0和v0、k、δ的值代入式(1),就可计算得到τ的值。max(|a|)的值可以查阅ISO2631获得,
Figure BDA0001722674100000032
的值一般取2m/s3
(2)确定“最佳制动距离”计算的拟合函数。
步骤3:首先,根据式(1)所示的车辆制动停车行为模型,计算初始速度为v0的车辆制动距离。对式(1)进行时间积分,即可得到车辆制动距离的计算公式:
Figure BDA0001722674100000033
步骤4:然后,利用式(3),针对车辆任意初始速度,循环执行步骤2、步骤3,可以得到车辆任意初始速度条件下的制动距离。
步骤5:根据步骤4得到的不同初始速度,以及与之相应的车辆制动距离值,利用数值分析方法建立曲线拟合函数
SBraking=g(v0) (4)
用于计算得到车辆在任意时刻的制动距离。式中g()表示函数。
(3)最佳跟驰车距的计算。
步骤6:根据控制需求确定计算原则,按计算原则分别计算最佳跟驰车距。
计算原则1:以当前时刻前车的尾部位置为后车制动停车的参考点。此时的“最佳车距”为
Figure BDA0001722674100000034
其中
Figure BDA0001722674100000035
为遵循计算原则1时的“最佳车距”,gf()表示后车行为的拟合函数,
Figure BDA0001722674100000036
表示后车制动时的初速度,Δs为安全裕量。
计算原则2:以前车停车后的尾部位置为后车制动停车的参考点,并以前车紧急停车为计算依据。车辆紧急停车时制动距离与初始速度的拟合函数:
Figure BDA0001722674100000041
其中
Figure BDA0001722674100000042
为前车紧急制动距离,gp()表示前车行为的拟合函数,
Figure BDA0001722674100000043
表示前车制动时的初速度。
联立式(5)、(6),可得计算原则2下的“最佳车距
Figure BDA0001722674100000044
”计算公式:
Figure BDA0001722674100000045
与现有技术相比,本发明提供了一种理论与实际紧密结合的、新的数值拟合方法,降低了重大工程领域完全依赖工程实验数据建立拟合函数的复杂程度,可大幅减少工程实验的投资成本,并显著提高建立拟合函数的工作效率。该方法适用于交通领域全速域内动态安全车距的实时计算,从而可以为车辆安全、高效跟驰控制提供依据,特别适合于未来公路交通领域的车辆自动驾驶和轨道交通领域移动闭塞***车辆的跟驰运行控制,可用于交通管理部门和交通工具制造行业制定未来车辆行为规范提供科学依据。
附图说明
图1为基于行为模型的车辆减速停车运行过程;
图2描述最佳跟驰车距计算在车辆跟驰控制中应用。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
实施例技术方案一
(1)提出的用于最佳跟驰车距计算的曲线拟合建模方法,主要基于一种科学的车辆行为调整模型,其特征在于,该方法包括以下步骤:
步骤1:根据客、货运输对车辆减速停车运行过程的控制需求,建立能够满足跟驰安全性、高效性和车辆行为调整的平稳性、快速性的车辆减速停车动态行为模型:
Figure BDA0001722674100000046
式中,v0为车辆开始制动减速时的初速度,k、τ为大于0的常数,δ为大于0的微小速度增量,t为时间变量,v为速度变量(v|t=-∞=v0+δ,v|t=∞=-δ),tanh()表示双曲正切函数。
当k=k1、k2(0<k2<k1)时,可得相应的v-t曲线和a-t曲线,见图1所示(图中虚线表示的曲线为k=k1时的曲线沿横坐标轴平移而得)。
显而易见,当δ确定后,不同k值条件下车辆减速停车运行过程,即从初速v0至末速0,所花费的时间和运行的距离存在着“差异”;k值的大小与曲线的陡峭程度存在密切相关性,不仅体现了车辆运行的效率和平稳程度,而且反映了车辆在自身减速能力约束下所采取的控制策略,能够准确描述司机驾车行驶车辆减速运行过程中的行为细节,以及人们对车辆减速运行过程的普遍期望。
步骤2:根据车辆制动停车的平稳性和快速性需求,计算参数k、δ、τ的值。
对式(1)求导,可得车辆减速运行过程中的加速度函数
Figure BDA0001722674100000051
由于tanh2(k(t-τ))≤1,可知
Figure BDA0001722674100000052
显然,当t=τ时,加速度a的绝对值最大。
车辆变速运行过程中的冲动值(即加速度变化率)为
Figure BDA0001722674100000053
求加速度的二次导数
Figure BDA0001722674100000054
由式(2.3)可知,
Figure BDA0001722674100000055
在tanh2(k(t-τ))=1和
Figure BDA0001722674100000056
时存在极值点,进而可以求得车辆变速运行情况下
Figure BDA0001722674100000057
的最大绝对值。由于tanh2(k(t-τ))=1当且仅当t→±∞时才成立,不符合工程需求,故
Figure BDA0001722674100000058
的最大绝对值只能取在
Figure BDA0001722674100000059
的时刻。
Figure BDA00017226741000000510
时,
Figure BDA00017226741000000511
可知
Figure BDA0001722674100000061
联立式(2.1)、(2.5),可以得到计算k、δ的方程组
Figure BDA0001722674100000062
在载运工具运用领域,max(|a|)、
Figure BDA0001722674100000063
被用于评价车辆行为调整过程的平稳性。而人们希望车辆的行为调整过程不仅是平稳的,而且是迅速的,因此max(|a|)、
Figure BDA0001722674100000064
必存在唯一值能够满足人们对车辆行为调整过程的平稳性和快速性需求。这样,当车辆的初速度v0已知时,利用式(2)就可以求解得到k、δ的值。
然后,将t=0和v0、k、δ的值代入式(1),就可计算得到τ的值。
(2)确定“最佳制动距离”计算的拟合函数。
步骤3:首先,根据式(1)所示的车辆制动停车行为模型,计算初始速度为v0的车辆制动距离。对式(1)进行时间积分,即可得到车辆制动距离的计算公式:
Figure BDA0001722674100000065
步骤4:然后,利用式(3),针对车辆任意初始速度,循环执行步骤2、步骤3,可以得到车辆任意初始速度条件下的制动距离。
步骤5:根据步骤4得到的不同初始速度,以及与之相应的车辆制动距离值,利用数值分析方法建立曲线拟合函数
SBraking=g(v0) (4)
用于计算得到车辆在任意时刻的制动距离。式中g()表示函数。
以下进一步公开最佳跟驰车距的计算技术方案
(3)最佳跟驰车距的计算。
步骤6:根据控制需求确定计算原则,按计算原则分别计算最佳跟驰车距。
车辆跟驰运行过程中,“最佳车距”必须保证后车行为调整安全性、跟驰的高效性和行为调整平稳性和快速性,才能显示出“最佳”的特征。
目前,“最佳车距”有两种计算原则:
计算原则1:以当前时刻前车的尾部位置为后车制动停车的参考点。此时的“最佳车距”为
Figure BDA0001722674100000071
其中
Figure BDA0001722674100000072
为遵循计算原则1时的“最佳车距”,gf()表示后车制动停车行为的拟合函数,
Figure BDA0001722674100000073
表示后车制动时的初速度,Δs为安全裕量。
显然,式(5)对定点停车时确定车辆某一速度下的制动停车点或根据目标停车点的位置确定制动停车时的速度至关重要。
计算原则2:考虑前车制动停车时需要行驶一段距离,以前车停车后的尾部位置为后车制动停车的参考点。另一方面,由于前车的制动距离与其制动时的初速度和减速过程中的每一时刻的加速度相关,为增加工程实施的可行性,一般将安全放在第一的位置,即规定“以前车停车后的尾部位置为后车制动停车的参考点”的最佳车距计算,以前车紧急停车为依据。车辆紧急停车与自身的制动性能有关,一般基于安全考量,以最大恒力矩制动停车。故针对某一品牌、规格的车辆,不难得出其紧急停车时制动距离与初始速度的拟合函数:
Figure BDA0001722674100000074
其中
Figure BDA0001722674100000075
为前车紧急制动距离,gp()表示前车行为的拟合函数,
Figure BDA0001722674100000076
表示前车制动时的初速度。
联立式(5)、(6),可得计算原则2下的“最佳车距
Figure BDA0001722674100000077
”计算公式:
Figure BDA0001722674100000078
显然,式(7)反映来车辆跟驰的一般情形。
图2描述最佳跟驰车距计算在车辆跟驰控制中应用。
首先,后车获得前车速度和后车速度后,根据当前技术条件和控制需求,确定最佳跟驰车距的计算原则;
然后,根据与确定的计算原则相对应的计算公式(5)或(7)计算出最佳车距;
最后,将当前最佳车距与实际车距进行比较分析,确定相应的控制律,实施控制律,以平稳、迅速的车辆行为调整实现安全、高效跟驰运行。

Claims (2)

1.一种基于车辆行为科学调整模型的最佳跟驰车距计算的曲线拟合建模方法,其特征在于,该方法包括以下步骤:
1)根据车辆在减速停车运行过程中对平稳性和快速性的控制需求,建立能够科学反映车辆动态行为特征的数学模型:
Figure FDA0003913693880000011
式中,v0为车辆开始制动减速时的初速度,k、τ为大于0的常数,δ为大于0的微小速度增量,t为时间变量,v为速度变量,v|t=-∞=v0+δ,v|t=∞=-δ,tanh()表示双曲正切函数;
2)根据车辆制动停车的平稳性和快速性需求,见式(2)所示,计算公式(1)模型中参数k、δ、τ的值;
参数k、δ根据车辆行为调整的平稳性和快速性需求,由下式计算得到
Figure FDA0003913693880000012
式中:a为加速度;
然后,将t=0和v0、k、δ的值代入式(1),就可计算得到τ的值;
3)步骤2)算得的参数代入步骤1)的式(1),再根据式(1)所示的车辆制动停车行为模型,通过对式(1)进行时间积分,即可得到初始速度为v0的车辆制动距离的计算公式:
Figure FDA0003913693880000013
4)然后,针对车辆任意初始速度v0,循环执行步骤2)、步骤3),得到车辆任意不同初始速度条件下的制动距离;
5)根据步骤4)得到的不同初始速度v0,以及与之相应的车辆制动距离值,利用数值分析方法建立曲线拟合函数:
SBraking=g(v0) (4)
即,用于任意初始速度下计算满足行为调整平稳性和快速性的最佳车辆制动距离的曲线拟合函数建模完成。
2.如权利要求1所述的方法,其特征在于,该方法包括以下步骤:
6)根据控制需求确定计算原则,按计算原则分别计算最佳跟驰车距;
计算原则1:以当前时刻前车的尾部位置为后车制动停车的参考点,此时的“最佳车距”为
Figure FDA0003913693880000021
其中
Figure FDA0003913693880000022
为遵循计算原则1时的“最佳车距”,gf()为式(4)所示的后车最佳制动距离对各初始速度的拟合函数,
Figure FDA0003913693880000023
表示后车制动时的初速度,Δs为安全裕量;
计算原则2:“以前车停车后的尾部位置为后车制动停车的参考点”的最佳车距计算,以前车紧急停车为依据;车辆紧急停车时制动距离与初始速度的拟合函数:
Figure FDA0003913693880000024
其中
Figure FDA0003913693880000025
为前车紧急制动距离,gp()表示前车行为的拟合函数,
Figure FDA0003913693880000026
表示前车制动时的初速度;
联立式(5)、(6),可得计算原则2下的“最佳车距
Figure FDA0003913693880000027
”计算公式:
Figure FDA0003913693880000028
CN201810738658.0A 2018-07-06 2018-07-06 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法 Active CN109101689B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810738658.0A CN109101689B (zh) 2018-07-06 2018-07-06 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
PCT/CN2019/092747 WO2020007215A1 (zh) 2018-07-06 2019-06-25 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
US17/026,228 US11345346B2 (en) 2018-07-06 2020-09-20 Method for vehicle following control based on real-time calculation of dynamic safe following distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810738658.0A CN109101689B (zh) 2018-07-06 2018-07-06 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法

Publications (2)

Publication Number Publication Date
CN109101689A CN109101689A (zh) 2018-12-28
CN109101689B true CN109101689B (zh) 2023-01-31

Family

ID=64845743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810738658.0A Active CN109101689B (zh) 2018-07-06 2018-07-06 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法

Country Status (3)

Country Link
US (1) US11345346B2 (zh)
CN (1) CN109101689B (zh)
WO (1) WO2020007215A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101689B (zh) * 2018-07-06 2023-01-31 同济大学 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN109866711A (zh) * 2019-02-19 2019-06-11 百度在线网络技术(北京)有限公司 制动速度轨迹的生成方法、装置和存储介质
CN110197014B (zh) * 2019-05-14 2023-07-18 武汉工程大学 一种基于位移控制的大尺寸矩形顶管顶推力估算方法
CN112498351B (zh) * 2020-11-20 2021-11-23 东风汽车集团有限公司 一种基于v2v的自动驾驶优化***及方法
CN112428997B (zh) * 2020-11-26 2021-10-01 北京航空航天大学 一种基于风险动态平衡的车辆跟驰模型
CN113928314B (zh) * 2021-11-17 2023-11-10 吉林大学 一种冰雪路面条件下考虑前后车的自动驾驶车辆跟驰控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067031A (en) * 1997-12-18 2000-05-23 Trimble Navigation Limited Dynamic monitoring of vehicle separation
CN103761371A (zh) * 2014-01-06 2014-04-30 同济大学 一种基于模型参考的车辆跟驰***自适应控制方法
CN105577771A (zh) * 2015-12-17 2016-05-11 同济大学 一种基于车车通信和车路通信的车辆协同驾驶方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608433B2 (ja) * 1999-06-15 2005-01-12 日産自動車株式会社 先行車追従制御装置
JP3580184B2 (ja) * 1999-06-30 2004-10-20 日産自動車株式会社 車両用追従制御装置
DE102005003274A1 (de) * 2005-01-25 2006-07-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Vermeidung und/oder Minderung der Folgen von Kollisionen beim Ausweichen vor Hindernissen
KR100753983B1 (ko) * 2006-03-07 2007-08-31 김학선 차량의 주행안전거리 자동제어시스템과 그 방법
US8126642B2 (en) * 2008-10-24 2012-02-28 Gray & Company, Inc. Control and systems for autonomously driven vehicles
JP5691453B2 (ja) * 2010-12-03 2015-04-01 日産自動車株式会社 電動車両のブレーキ制御装置
CN102955884B (zh) * 2012-11-23 2015-08-19 同济大学 一种高速列车跟驰运行全速域安全车距标定方法
CN103136451B (zh) * 2013-02-16 2016-05-18 同济大学 动态相对安全车距的实时计算方法
CN103101559B (zh) * 2013-02-16 2015-06-03 同济大学 一种基于跟驰行为质量评估的全速域列车间隔实时控制方法
JP6275213B2 (ja) * 2016-08-05 2018-02-07 株式会社Subaru 車両の追従発進制御装置
CN108238069B (zh) * 2016-12-27 2019-09-13 比亚迪股份有限公司 列车的移动授权的生成方法及装置、车载atp及zc
CN109421711B (zh) * 2017-08-28 2021-07-13 腾讯科技(北京)有限公司 跟车速度控制方法、装置、***、计算机设备及存储介质
JP7245006B2 (ja) * 2018-07-05 2023-03-23 株式会社デンソー 車両の運転支援制御装置、車両の運転支援システムおよび車両の運転支援制御方法
CN109101689B (zh) * 2018-07-06 2023-01-31 同济大学 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN110197587A (zh) * 2019-05-31 2019-09-03 京东方科技集团股份有限公司 一种行车处理方法,以及车辆、服务器和行车***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067031A (en) * 1997-12-18 2000-05-23 Trimble Navigation Limited Dynamic monitoring of vehicle separation
CN103761371A (zh) * 2014-01-06 2014-04-30 同济大学 一种基于模型参考的车辆跟驰***自适应控制方法
CN105577771A (zh) * 2015-12-17 2016-05-11 同济大学 一种基于车车通信和车路通信的车辆协同驾驶方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Synchronous Control of Vehicle Following Behavior and Distance Under the Safe and Efficient Steady-Following State: Two Case Studies of High-Speed Train Following Control;Deng Pan,;《IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS》;20180531;全文 *
基于双曲函数的车辆减速策略及安全跟驰车距的计算;潘登;《交通与计算机 》;20071015;全文 *
基于双曲函数的车辆变速行为控制策略;潘登;《机电电传动》;20080510;全文 *
汽车主动防撞预警***的安全策略研究;李文娜;《中国优秀硕士学位论文全文数据库信息科技辑》;20160915;全文 *

Also Published As

Publication number Publication date
CN109101689A (zh) 2018-12-28
US20210001851A1 (en) 2021-01-07
US11345346B2 (en) 2022-05-31
WO2020007215A1 (zh) 2020-01-09

Similar Documents

Publication Publication Date Title
CN109101689B (zh) 一种基于车辆行为调整模型的用于最佳跟驰车距计算的曲线拟合建模方法
CN110286681B (zh) 一种变曲率弯道的动态自动驾驶换道轨迹规划方法
CN109484427B (zh) 一种列车制动方法和装置
CN105788360B (zh) 一种车辆防碰撞的方法、装置和***
CN106828493A (zh) 一种自动驾驶车辆分层式纵向规划控制***及方法
CN113066282B (zh) 一种面向混行环境下车辆跟驰耦合关系建模方法及***
CN109765887A (zh) 一种自动驾驶控制方法
CN113219962B (zh) 一种面向混行队列跟驰安全的控制方法、***及存储介质
CN110103959A (zh) 一种自适应巡航控制方法
CN111527019B (zh) 运行曲线制作装置、运行辅助装置以及运行控制装置
Hu et al. Coordinated collision avoidance for connected vehicles using relative kinetic energy density
CN108646745B (zh) 一种车辆跟驰控速方法
CN112722011B (zh) 重载列车自动驾驶节能控制方法及装置
CN106846812B (zh) 一种十字路口的交通流量评估方法
CN103136451B (zh) 动态相对安全车距的实时计算方法
Ando et al. Design of longitudinal controller for automated driving bus
JP6253646B2 (ja) 車両制御装置
SE540598C2 (en) A method for controlling a powertrain of a motor vehicle
CN116691680B (zh) 一种基于多车运动模型的变道方法和装置
Feng et al. Modelling and simulation for safe following distance based on vehicle braking process
CN116118822B (zh) 一种列车编组运行时的主动避碰控制方法、***及介质
CN117273371A (zh) 基于虚拟耦合的重载列车群组运行轨迹优化方法及***
CA3021482C (en) Speed profiling for locomotive display and event recorder
Pan et al. A New Calibration Method for the Real‐Time Calculation of Dynamic Safety Following Distance under Railway Moving Block System
Zhu et al. Research on Cooperative Adaptive Cruise Control (CACC) Based on Fuzzy PID Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant