CN109076568B - 用于第五代(5g)可穿戴通信中的控制平面分组处理的高层设计 - Google Patents

用于第五代(5g)可穿戴通信中的控制平面分组处理的高层设计 Download PDF

Info

Publication number
CN109076568B
CN109076568B CN201680084788.6A CN201680084788A CN109076568B CN 109076568 B CN109076568 B CN 109076568B CN 201680084788 A CN201680084788 A CN 201680084788A CN 109076568 B CN109076568 B CN 109076568B
Authority
CN
China
Prior art keywords
pdu
buffer
processors
retransmission
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680084788.6A
Other languages
English (en)
Other versions
CN109076568A (zh
Inventor
萨蒂什·C·扎
亚瑟·M·福阿德
李倩
黎光洁
金准范
维施·拉杰·沙玛·班贾德
吴晓芸
庚·吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN109076568A publication Critical patent/CN109076568A/zh
Application granted granted Critical
Publication of CN109076568B publication Critical patent/CN109076568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

讨论用于实现包括可穿戴用户设备(wUE)在内的用于通信的可穿戴高层(w‑HL)的技术。一个示例包括:向来自可穿戴无线电资源控制(w‑RRC)层的一个或多个控制平面(CP)分组中的每个CP分组分配不同的序列号;将一个或多个CP分组缓存到CP传输缓冲器;确定用于可穿戴高层(w‑HL)控制协议数据单元(C‑PDU)的物理资源配置(PRA)和分配大小;至少部分地基于缓存到CP传输缓冲器的一个或多个CP分组、PRA、以及分配大小生成w‑HL C‑PDU;向w‑HL C‑PDU添加分组报头;以及基于PRA向物理层提供w‑HL C‑PDU。

Description

用于第五代(5G)可穿戴通信中的控制平面分组处理的高层 设计
相关申请的交叉引用
本申请要求于2016年5月19日递交的名为“HIGHER LAYER DESIGN FOR CONTROLPLANE PACKET PROCESSING IN 5G-WEARABLE COMMUNICATION(用于第五代可穿戴通信中的控制平面分组处理的高层设计)”的美国临时申请No.62/338,917的权益,其内容通过引用被完全结合于此。
技术领域
本公开涉及无线技术,更具体地涉及用于可穿戴用户设备(wUE)和网络UE(nUE)之间的通信的高层设计。
背景技术
传统的LTE(长期演进)***采用高层协议栈,该高层协议栈包括PHY(物理层)与用于控制平面流量的RRC(无线电资源控制)层或用于用户平面流量的IP(互联网协议)或应用层之间的协议层。在传统的LTE中,这些高层协议层是MAC(介质访问控制)层、RLC(无线电链路控制)层、以及PDCP(分组数据汇聚协议)层。
发明内容
本公开的实施例涉及一种被配置为用在用户设备UE中的装置。
根据本公开的第一方面,提供了一种被配置为用在用户设备UE中的装置。该装置包括:存储器;以及一个或多个处理器,被配置为:从可穿戴无线电资源控制w-RRC层向可穿戴高层w-HL提供一个或多个控制平面CP分组;向所述一个或多个CP分组中的每个CP分组分配不同的序列号;将所述一个或多个CP分组缓存到CP传输缓冲器;确定用于w-HL控制协议数据单元C-PDU的物理资源配置PRA和分配大小;至少部分地基于缓存到所述CP传输缓冲器的所述一个或多个CP分组、所述PRA、以及所述分配大小生成所述w-HL C-PDU;向所述w-HLC-PDU添加分组报头;以及基于所述PRA从所述w-HL向物理层提供所述w-HL C-PDU。
根据本公开的第二方面,提供了一种被配置为用在用户设备UE中的装置。该装置包括:存储器;以及一个或多个处理器,被配置为:将来自一个或多个物理层传输块TB的一个或多个可穿戴高层w-HL控制协议数据单元C-PDU提供给w-HL;从所述一个或多个w-HL C-PDU生成多个w-HL控制服务数据单元C-SDU;基于与所述多个w-HL SDU中的每个w-HL C-SDU相关联的不同序列号SN确定所述多个w-HL SDU的排序;以及基于所述排序从所述w-HL向可穿戴无线电资源控制w-RRC层提供所述多个w-HL C-SDU。
根据本公开的第三方面,提供了一种被配置为用在用户设备UE中的装置。该装置包括:用于存储的装置,被配置为存储指令;以及用于处理的装置,被配置为执行所述指令以:从可穿戴无线电资源控制w-RRC层向可穿戴高层w-HL提供一个或多个w-HL控制服务数据单元C-SDU;向所述一个或多个w-HL C-SDU中的每个w-HL C-SDU分配唯一的序列号SN;将所述一个或多个w-HL C-SDU存储在上行链路UL控制平面CP传输缓冲器中;接收指示物理资源配置PRA和许可大小的UL许可;至少部分地基于所述UL许可生成w-HL控制协议数据单元C-PDU,其中,所述w-HL C-PDU包括缓冲器状态报告BSR、功率余量报告PHR、UL CP传输缓冲器、UL CP重传缓冲器、UL用户平面CP传输缓冲器、或UL UP重传缓冲器中的一项或多项;以及将所述w-HL C-PDU从所述w-HL传递到物理层。
附图说明
图1是示出结合本文中描述的各方面可以使用的示例用户设备(UE)的框图。
图2是根据本文中描述的各方面的可以帮助第五代(5G)可穿戴(5G可穿戴或5G-W)通信的通信***的示例示图。
图3是示出根据本文中描述的各方面的用于wUE(可穿戴UE)-nUE(网络UE)接口的协议栈的示图。
图4是示出根据本文中描述的各方面的控制平面(CP)数据可以在w-HL(可穿戴高层)层经历的处理细节的示例的流程图。
图5是示出根据本文中描述的各方面的帮助用于UE处的可穿戴通信的高层(w-HL)的***的框图。
图6是示出根据本文中描述的各方面的帮助从一个或多个w-RRC(可穿戴无线电资源控制)CP分组生成w-HL C-PDU(控制平面协议数据单元)的方法的流程图。
图7是示出根据本文中描述的各方面的帮助从一个或多个接收到的TB(传输块)生成一个或多个w-RRC CP分组并按顺序递送这些分组的方法的流程图。
图8A是示出根据本文中描述的各方面的当剩余许可仅具有一个字节时,可以在w-HL C-PDU报头的开头添加以将w-HL C-PDU大小精确匹配到许可大小的填充子报头的示例的示图。
图8B是示出根据本文中描述的各方面的当剩余许可仅具有两个字节时,可以在w-HL C-PDU报头的开头添加以将w-HL C-PDU大小精确匹配到许可大小的填充子报头的示例的示图。
图8C是示出根据本文中描述的各方面的可以在w-HL C-PDU报头的末尾添加以使能在w-HL-PDU(数据字段)的末尾***0个或更多个字节的填充数据字段从而使得w-HL C-PDU大小可以精确匹配到许可大小的填充子报头的示例的示图。
图9A是示出仅包括来自UL(上行链路)CP传输缓冲器的CP SDU(服务数据单元)的C-PDU的示例的示图。
图9B是示出包括BSR(缓冲器状态报告)和来自UL CP传输缓冲器的CP SDU的C-PDU的示例的示图。
图10A是示出包括PHR(功率余量报告)和来自UL CP传输缓冲器的CP SDU的C-PDU的示例的示图。
图10B是示出包括BSR、PHR、以及来自UL CP传输缓冲器的CP SDU的C-PDU的示例的示图。
图11是示出开头具有一个字节的填充子报头的类似于图10B的C-PDU的示例的示图。
图12是示出开头具有两个字节的填充子报头的类似于图10B的C-PDU的示例的示图。
图13示出末尾具有多个字节的填充子报头的类似于图10B的C-PDU的示例的示图。
图14是示出具有BSR、PHR、以及来自UL CP Tx(传输)缓冲器的CP-SDU分段(该分段不是该SDU的最后分段)的示例w-HL C-PDU的示图。
图15是示出具有BSR、PHR、以及来自UL CP TX缓冲器的CP-SDU(该分段是该SDU的最后分段)的w-HL C-PDU的示例的示图。
图16A是示出具有BSR、PHR、以及来自UL用户平面Tx缓冲器的UP-SDU(用户平面SDU)的w-HL C-PDU的示例的示图。
图16B是示出具有BSR、PHR、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是该SDU的最后分段)的w-HL C-PDU的示例的示图。
图17A是示出具有BSR、PHR、以及来自UL用户平面TX缓冲器的UP-SDU分段(该SDU的最后分段)的w-HL C-PDU的示例的示图。
图17B是示出具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU(没有被重新分段)的w-HL C-PDU的ARQ重传的示例的示图。
图18A是示出具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU分段(不是该重新分段的C-PDU的最后分段)的w-HL C-PDU的ARQ重传的示例的示图。
图18B是示出具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)的w-HL C-PDU分段的ARQ重传的示例的示图。
图19是示出具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL C-PDU的示例的示图。
图20是示出具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是UP-SDU的最后分段)的w-HL CP PDU的示例的示图。
图21是示出具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU分段(该SDU的最后分段)、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL CP PDU的示例的示图。
图22是示出具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU分段(该SDU的最后分段)、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是SDU的最后分段)的w-HL CP PDU的示例的示图。
图23是示出具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL C-PDU的示例的示图。
图24是示出具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是最后分段)的w-HL C-PDU的示例的示图。
图25是示出具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、来自UL控制平面传输缓冲器的CP SDU、以及来自UL用户平面TX缓冲器的UP-SDU(没有被分段)的w-HL C-PDU的示例的示图。
图26是示出具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)、以及来自UL控制平面TX缓冲器的CP-SDU的w-HL C-PDU的示例的示图。
图27是示出具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)、以及来自UL控制平面TX缓冲器的CP SDU分段(不是最后分段)的w-HLC-PDU的示例的示图。
具体实施方式
现在将参考附图描述本公开,其中,贯穿附图使用相同的参考标号来指代相似的元件,并且所示出的结构和设备不一定是按比例描绘的。如这里所使用的,术语“组件”、“***”、“接口”等用来指代计算机相关实体、硬件、软件(例如,执行中的软件)、和/或固件。例如,组件可以是处理器(例如,微处理器、控制器、或者其他处理设备)、处理器上运行的进程、控制器、对象、可执行指令、程序、存储设备、计算机、平板PC、和/或具有处理设备的用户设备(例如,移动电话等)。例如,服务器上运行的应用和服务器也可以是组件。一个或多个组件可以驻留在进程中,组件可以位于一个计算机上和/或分布在两个以上计算机之间。这里可以描述一组元件或者一组其他组件,其中,术语“组”可以理解为“一个或多个”。
另外,这些组件可以执行来自其上存储有各种数据结构(例如,模块)的各种计算机可读存储介质的数据结构。例如,这些组件可以根据具有一个或多个数据分组(例如,来自经由信号与本地***、分布式***、和/或横跨网络(例如,互联网、局域网、广域网、或者具有其他***的类似网络)中的另一组件交互的一个组件的数据)的信号经由本地和/或远程进程通信。
作为另一示例,组件可以是具有由电路或电子电路操作的机械部件提供的特定功能的装置,其中,电路或者电子电路可以由一个或多个处理器执行的软件应用或固件应用操作。一个或多个处理器可以在装置内部或外部,并且可以执行软件或固件应用的至少一部分。作为又一示例,组件可以是通过电子组件而无需机械部件提供特定功能的装置;电子组件可以包括其中执行至少部分地赋予电子组件的功能的软件和/或固件的一个或多个处理器。
使用单词“示例性”来表示具体概念。本申请中使用术语“或”来表示包括性的“或”而不是排他性的“或”。即,除非有相反指示或者从上下文中可以明了,否则“X采用A或B”表示任意自然包括排列。即,如果X采用A、X采用B、或者X采用A和B,则任意前述实例都满足“X采用A或B”。另外,本申请和所附权利要求中使用的条款“一”和“一个”应该被一般地理解为表示“一个或多个”,除非有相反的指示或者从上下文中可以明确该条款指向单数形式。另外,详细描述和权利要求中使用了术语“包括”、“包含”、“具有”、“含有”、“有”、或者它们的变形,这些术语用于表示类似于术语“包括”的包括性含义。
这里使用的术语“电路”可指代或者包括执行一个或多个软件或固件程序的专用集成电路(ASIC)、电子电路、处理器(共享、专用、或者群组)、和/或存储器(共享、专用、或者群组)、组合逻辑电路、和/或提供所描述的功能的其他适当硬件组件,或者可以是这些硬件组件的一部分。在一些实施例中,电路可以实现在一个或多个软件或固件模块中,或者与电路相关联的功能可以由一个或多个软件或固件模块实现。在一些实施例中,电路可以包括至少部分在硬件中可操作的逻辑。
本文描述的实施例可以被实现为使用任何适当配置的硬件和/或软件的***。图1示出了根据一些实施例的用户设备(UE)设备100的示例组件。在一些实施例中,UE设备100可以包括如图所示地耦合在一起的应用电路102、基带电路104、射频(RF)电路106、前端模块(FEM)电路108、以及一个或多个天线110。
应用电路102可以包括一个或多个应用处理器。例如,应用电路102可以包括例如但不限于,一个或多个单核或多核处理器的电路。一个或多个处理器可以包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任意组合。处理器可以与存储器/存储设备耦合或者可以包括存储器/存储设备,并且可以被配置为执行存储器/存储设备中存储的指令,以使能各种应用和/或操作***在***上运行。
基带电路104可以包括诸如但不限于,一个或多个单核或多核处理器的电路。基带电路104可以包括一个或多个基带处理器和/或控制逻辑,以处理从RF电路106的接收信号路径接收的基带信号并生成用于RF电路106的发送信号路径的基带信号。基带处理电路104可以与应用电路102接口连接,用于生成和处理基带信号并用于控制RF电路106的操作。例如,在一些实施例中,基带电路104可以包括第二代(2G)基带处理器104a、第三代(3G)基带处理器104b、***(4G)基带处理器104c、和/或用于其他现有的代、正在开发的代、或者将来开发出来的代(例如,第五代(5G)、6G等)的一个或多个其他基带处理器104d。基带电路104(例如,一个或多个基带处理器104a-d)可以操控经由RF电路106实现与一个或多个无线电网络的通信的各种无线电控制功能。无线电控制功能可以包括但不限于,信号调制/解调、编码/解码、无线电频率偏移等。在一些实施例中,基带电路104的调制/解调电路可以包括快速傅里叶变换(FFT)、预编码、和/或星座映射/解映射功能。在一些实施例中,基带电路104的编码/解码电路可以包括卷积、咬尾卷积、turbo、Viterbi、和/或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的实施例不限于这些示例,并且在其他实施例中可以包括其他适当功能。
在一些实施例中,基带电路104可以包括协议栈的元件,例如,演进通用陆地无线电接入网(EUTRAN)协议的元件(例如,物理(PHY)、媒体访问控制(MAC)、无线电链路控制(RLC)、分组数据汇聚协议(PDCP)、和/或无线电资源控制(RRC)元件)。基带电路104的中央处理单元(CPU)104e可以被配置为运行用于PHY、MAC、RLC、PDCP、和/或RRC层的信令的协议栈的元件。在一些实施例中,基带电路可以包括一个或多个音频数字信号处理器(DSP)104f。音频DSP 104f可以包括用于压缩/解压缩和回声消除的元件,并且在其他实施例中可以包括其他适当的处理元件。在一些实施例中,基带电路的组件可以适当地结合在单个芯片或单个芯片集中,或者布置在同一个电路板上。在一些实施例中,基带电路104和应用电路102的一些或所有构成组件可以一起实现在例如,片上***(SOC)上。
在一些实施例中,基带电路104可以提供兼容一种或多种无线电技术的通信。例如,在一些实施例中,基带电路104可以支持与演进通用陆地无线接入网(EUTRAN)和/或其他无线城域网(WMAN)、无线局域网(WLAN)、无线个人域网(WPAN)的通信。可以将基带电路104被配置为支持一种以上无线协议的无线电通信的实施例称为多模式基带电路。
RF电路106可以通过非固体介质使用经调制的电磁辐射来使能与无线网络的通信。在各种实施例中,RF电路106可以包括帮助与无线网络的通信的交换机、滤波器、放大器等。RF电路106可以包括接收信号路径,该接收信号路径可以包括对从FEM电路108接收的RF信号进行下变频并向基带电路104提供基带信号的电路。RF电路106还可以包括发送信号路径,该发送信号路径可以包括对基带电路104提供的基带信号进行上变频并向FEM电路108提供RF输出信号供传输的电路。
在一些实施例中,RF电路106可以包括接收信号路径和发送信号路径。RF电路106的接收信号路径可以包括混频器电路106a、放大器电路106b、以及滤波器电路106c。RF电路106的发送信号路径可以包括滤波器电路106c和混频器电路106a。RF电路106还可以包括合成器电路106d,该合成器电路用于合成供接收信号路径和发送信号路径的混频器电路106a使用的频率。在一些实施例中,接收信号路径的混频器电路106a可以被配置为基于合成器电路106d提供的合成频率,对从FEM电路108接收的RF信号进行下变频。放大器电路106b可以被配置为对经下变频的信号进行放大,滤波器电路106c可以是被配置为从经下变频的信号中移除不想要的信号以生成输出基带信号的低通滤波器(LPF)或带通滤波器(BPF)。输出基带信号可以被提供给基带电路104进行进一步处理。在一些实施例中,输出基带信号可以是零频基带信号,尽管这不是必须的。在一些实施例中,接收信号路径的混频器电路106a可以包括无源混频器,尽管实施例的范围在这方面不做限制。
在一些实施例中,发送信号路径的混频器电路106a可以被配置为基于合成器电路106d提供的合成频率对输入基带信号进行上变频,以生成用于FEM电路108的RF输出信号。基带信号可以由基带电路104提供并由滤波器电路106c进行滤波。滤波器电路106c可以包括低通滤波器(LPF),尽管实施例的范围在这方面不做限制。
在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以包括两个以上混频器,并且可以分别被布置用于正交下变频和/或上变频。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以包括两个以上混频器,并且可以被布置用于镜像抑制(例如,哈特利镜像抑制)。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以分别被布置用于直接下变频和/或直接上变频。在一些实施例中,接收信号路径的混频器电路106a和发送信号路径的混频器电路106a可以被配置用于超外差操作。
在一些实施例中,输出基带信号和输入基带信号可以是模拟基带信号,尽管实施例的范围在这方面不做限制。在一些替代实施例中,输出基带信号和输入基带信号可以是数字基带信号。在这些替代实施例中,RF电路106可以包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路104可以包括与RF电路106通信的数字基带接口。
在一些双模式实施例中,可以提供单独的无线电IC电路用于处理每个频谱的信号,尽管实施例的范围在这方面不做限制。
在一些实施例中,合成器电路106d可以是分数N合成器或者分数N/N+1合成器,尽管实施例的范围在这方面不做限制(因为其他类型的频率合成器也是适合的)。例如,合成器电路106d可以是delta-sigma合成器、倍频器、或者包括与分频器的锁相环的合成器。
合成器电路106d可以被配置为基于频率输入和分频器控制输入,合成供RF电路106的混频器电路106a使用的输出频率。在一些实施例中,合成器电路106d可以是分数N/N+1合成器。
在一些实施例中,频率输入可以由压控振荡器(VCO)提供,尽管这不是必须的。分频器控制输入可以由基带电路104或应用处理器102基于期望的输出频率提供。在一些实施例中,分频器控制输入(例如,N)可以基于应用处理器102指示的信道从查找表确定。
RF电路106的合成器电路106d可以包括分频器、延迟锁定环路(DLL)、多工器、以及相位累加器。在一些实施例中,分频器可以是双模分频器(DMD),相位累加器可以是数字相位累加器(DPA)。在一些实施例中,DMD可以被配置为用N或者N+1(例如,基于进位)来除输入信号,以提供分数分频比。在一些示例实施例中,DLL可以包括一组级联的可调谐的延迟元件、相位检测器、电荷泵、以及D型触发器。在这些实施例中,延迟元件可以被配置为将VCO时段分为Nd个相等的相位分组,Nd是延迟线中的延迟元件的数目。这样,DLL提供负反馈,以帮助确保通过延迟线的总延迟为一个VCO周期。
在一些实施例中,合成器电路106d可以被配置为生成作为输出频率的载频,同时在其他实施例中,输出频率可以是载频的倍数(例如,载频的两倍、载频的四倍),并且结合积分发生器和分频器电路使用来生成载频处的相互间具有不同相位的多个信号。在一些实施例中,输出频率可以是LO频率(fLO)。在一些实施例中,RF电路106可以包括IQ/极性转换器。
FEM电路108可以包括接收信号路径,该接收信号路径可以包括被配置为对从一个或多个天线110接收的RF信号进行操作,放大接收信号,并将接收信号的放大版本提供给RF电路106进行进一步处理的电路。FEM电路108还可以包括发送信号路径,该发送信号路径可以包括被配置为放大由RF电路106提供的供传输信号以供一个或多个天线110中的一个或多个天线发射的电路。
在一些实施例中,FEM电路108可以包括TX/RX交换机,以在发送模式和接收模式操作之间进行切换。FEM电路可以包括接收信号路径和发送信号路径。FEM电路的接收信号路径可以包括对接收到的RF信号进行放大并提供经放大的接收RF信号作为(例如,到RF电路106的)输出的低噪声放大器(LNA)。FEM电路108的发送信号路径可以包括对(例如,由RF电路106提供的)输入RF信号进行放大的功率放大器(PA)、以及生成供(例如,一个或多个天线110中的一个或多个天线)后续发射的RF信号的一个或多个滤波器。
在一些实施例中,UE设备100可以包括诸如,存储器/存储设备、显示器、相机、传感器、和/或输入/输出(I/O)接口的附加元件。
另外,尽管设备100的上述示例讨论是在UE设备(例如,可穿戴UE(wUE)或网络UE(nUE))的上下文中做出的,但是在各种方面,类似的设备可以结合诸如演进节点B(eNB)之类的基站(BS)使用。
在各种方面,这里公开的技术可以采用简化的高层设计用于wUE和nUE之间的通信,这些高层设计包括w-RRC(可穿戴无线电资源控制)层和用于控制平面的PHY(物理层)之间或者IP/应用层和用于用户平面的PHY层之间的单层(这里称为可穿戴高层(w-HL))。
参考图2,示出了根据本文中描述的各方面的可以帮助第五代(5G)可穿戴(5G可穿戴或5G-W)通信的通信***200的示例示图。图2的通信***示出了以下网络节点和接口:(1)具有完全基础设施网络(NW)访问协议栈(例如,完全C/U(控制/用户)平面功能)的nUE(网络UE);(2)三个wUE(可穿戴UE),其中,一个wUE具有直接NW连接,两个wUE仅经由nUE的帮助访问NW(例如,E-UTRAN(演进通用陆地无线电接入网)和EPC(演技分组核心)等)(其中的一个访问还经由另一wUE);(3)包括nUE和wUE的PAN(个人域网),nUE和wUE可以采用相互认证来形成PAN;(4)NW和nUE之间的空中接口,Uu-p接口;(5)NW和wUE之间的空中接口,Uu-w接口;(6)nUE和wUE之间的PAN内空中接口,Xu-a接口;以及(7)wUE之间的PAN内空中接口,Xu-b接口。
这里讨论的各种实施例涉及图2中示出的Xu-a接口。在各种情况中,wUE可以经由nUE与E-UTRAN通信。每个nUE可以具有与其相关联的若干wUE,nUE和wUE一起形成PAN(例如,图2中示出的nUW和三个wUE)。一般,地理区域中存在大量nUE,每个nUE可以具有其自己的PAN,这可以创建高密度网络场景。E-UTRAN可以分配用于可穿戴通信的公用资源池。该资源池可以在相对较小的地理区域中的多个PAN中间、并且在每个PAN中潜在的多个wUE中间以基于竞争的资源访问为基础进行共享。每个nUE可以具有两个高层协议栈:一个高层协议栈用于wUE和nUE之间的接口(Xu-a空中接口),一个高层协议栈用于nUE和E-UTRAN之间的接口(Uu-p空中接口)。用于接口nUE-UTRAN的高层协议栈可以是LTE Uu栈或者可以是LTE演进5G协议栈。高层协议栈可以主要指PHY和用于控制平面流量的无线电资源控制层之间以及PHY和用于用户平面流量的IP/应用层之间的一个或多个协议层。作为一个具体示例,高层指传统LTE***中的MAC、RLC、以及PDCP层。
由于用于Xu-a接口上的通信的竞争环境,可穿戴通信中的每个分组传输(例如,PHY传输块(TB)大小)可以更短,以降低冲突对***性能的影响。在一个示例中,TB大小可以为相对少量的字节,例如,小于75字节。在这种用例中,减小在高层添加的分组报头的大小可以保证数据与分组报头之比保持合理。用于这里讨论的高层的高层协议设计和分组处理过程设计可以最小化每个分组传输的高层协议报头开销,从而可以增大吞吐量。在各种实施例中,单个可穿戴高层(w-HL)可以被用于控制平面,该控制平面可以提供以下特征中的一些或所有特征:(1)简化的高层协议设计;(2)定制用于可穿戴通信的高层协议的功能;(3)协议层专用报头字段的数目减少(例如,避免添加多级分组ID(例如,序列号));(4)各种分组报头字段的长度更短;(5)分组分段和组合具有更低的分组报头开销;(6)缓冲器状态报告(BSR)、功率余量报告(PHR)、控制平面数据、以及用户平面数据的复用;以及(7)分组重传具有更低的分组报头开销。
在本文中讨论的各方面中,用于控制平面数据处理的所有高层功能(例如,传统的LTE MAC/RLC/PDCP功能)可以被融入这里称为可穿戴高层(w-HL)的单层中,这可以减小空中接口上的传输期间的分组报头。如果控制PRA(物理资源配置)上的每个PHY-SDU(PHY服务数据单元,例如,PHY TB)对于5G-w可以具有相比传统LTE非常小的大小(例如,180-600比特或22.5-75字节),则分组报头减小可以提供吞吐量方面的显著优点。
参考图3,示出了根据本文中描述的各方面的用于wUE-nUE接口(例如,这里讨论的Xu-a接口)的协议栈。对于UL(上行链路)传输,将在空中接口上发送的CP/UP(控制平面/用户平面)数据分组可以作为来自可穿戴RRC(控制平面数据)层和/或IP/主机(用户平面数据)层的w-HL服务数据单元(w-HL SDU)被接收。w-RRC层可以操控w-HL的配置。w-HL可以将CP数据存储在UL CP传输缓冲器中,直到PHY在控制PRA上指示UL许可为止。w-HL可以将UP数据存储在UL UP传输缓冲器中。本文中讨论的各种方面涉及与CP数据处理相关联的技术。w-HL可以形成CP w-HL协议数据单元(CP w-HL PDU),这可以基于PHY指示的TB大小。w-HL随后可以将w-HL CP PDU传递到PHY用于传输。CP数据分组w-HL SDU可以在其寿命期间在w-HL协议层经历本文讨论的多个操作。
参考图4,示出了示出根据本文中描述的各方面的控制平面(CP)数据可以在w-HL层经历的处理细节的示例流程图。图4还示出了将在控制PRA/资源上发送的PDU的生成(这样的PDU在这里被称为控制PDU或C-PDU)。用于控制平面数据的w-HL的一些功能包括:(1)保持w-HL SN(序列号);(2)可选的,(例如,由w-RRC配置的)控制平面数据流的完整性保护;(3)可选的,(例如,由w-RRC配置的)控制平面数据的加密和解密;(4)上层数据的按顺序递送;(5)重复w-HL CP SDU的丢弃和重复检测;(6)w-HL CP SDU丢弃(例如,基于定时器);(7)SDU的级联、分段、和装配;(8)复用缓冲器状态报告、功率余量报告、控制平面数据、和/或用户平面数据;(9)w-HL C-PDU的重新分段;以及(10)通过以下两个级别的重传进行协议错误检测和恢复:(a)首先是TB级的HARQ(混合ARQ(自动重传请求))以及(b)w-HL C-PDU级的ARQ(自动重传请求)。
在本文中讨论的各种实施例中,可以采用基于用于引导w-HL的CP数据处理的以下设计选择的w-HL。首先,可以采用显式/隐式地已知的单独PRA/资源(这里称为控制PRA)来进行控制平面数据的传输。在各种方面,控制平面数据仅在控制PRA上发送,其他PRA可以用于用户平面数据传输。PRA(物理资源配置)是资源块的物理资源分配的基本单元。第二,功率余量报告(PHR)和缓冲器状态报告(BSR)可以装载于在控制PRA上发送的w-HL PDU中。第三,如果在放置BSR、PHR、和/或CP数据后还剩余有许可资源,则用户平面数据(例如,UL UPTx(传输)缓冲器或UL UP重传缓冲器中等待传输的UP数据)可以被包括在用于控制PRA的w-HL C-PDU中。因此,可以在各种实施例中采用对用于控制PRA的w-HL PDU的复用和装配操作。
参考图5,示出了根据本文中描述的各方面的帮助用于UE(例如,网络UE(nUE)或可穿戴UE(wUE))的可穿戴通信的高层(w-HL)的***500的框图。***500可以包括一个或多个处理器510(例如,诸如结合图1讨论的一个或多个基带处理器的一个或多个基带处理器)、收发器电路520(例如,包括发射机电路或接收机电路中的一者或多者,该发射机电路和接收机电路可以采用共同的电路元件、不同的电路元件、或者它们的组合)、以及存储器530(其可以包括各种存储介质中的任意存储介质并且可以存储与一个或多个处理器510或收发器电路520中的一者或多者相关联的指令和/或数据)。在各种方面,***500可以被包括在用户设备(UE)(可穿戴UE(wUE)或网络UE(nUE))中。如下面更详细地描述的,***500可以提供用于个人域网(PAN)中的一个或多个可穿戴UE(wUE)和网络UE(nUE)之间的控制消息传送的高层功能。
一个或多个处理器510可以实现可穿戴高层(w-HL),该w-HL可以执行与在wUE和nUE之间交换的控制消息相关联的高层功能。在本文讨论的实施例中,与采用三层(MAC、RLC、以及PDCP)的传统LTE***相反,这种高层功能(例如,w-RRC(可穿戴无线电资源控制)层和PHY(物理层)之间的(一个或多个)层的功能)可以由一个或多个处理器510经由在这里被称为w-HL(可穿戴高层)的单层实现。在各种方面,一个或多个处理器510可以实现与w-HL传输(Tx)实体相关联的功能和/或与w-HL接收(Rx)实体相关联的功能。
在w-HL Tx方面,一个或多个处理器510可以实现与w-HL Tx实体相关联的一个或多个功能,例如,结合图4示出或描述的任意动作。例如,一个或多个处理器510可以接收作为w-HL SDU(服务数据单元)分组的一个或多个w-RRC(无线电资源控制)CP(控制平面)分组。一个或多个处理器510可以向w-HL SDU分配不同的序列号(SN)。可选地,一个或多个处理器510可以对w-HL SDU应用完整性保护和/或加密(加密计算)。一个或多个处理器510可以将w-HL SDU(例如,w-RRC CP分组)添加到CP传输缓冲器(例如,wUE处的上行链路(UL)CPTx缓冲器、nUE处的下行链路(DL)CP Tx缓冲器)。
一个或多个处理器510可以确定用于收发器电路520经由PHY(物理层)传输w-HLPDU(协议数据单元)的物理资源配置(PRA)和相应的分配大小。在wUE方面,PRA可以经由(例如,来自nUE的)UL许可指示。
基于PRA和分配大小,一个或多个处理器510可以生成w-HL PDU,该w-HL PDU可以包括缓冲器状态报告(BSR)(例如,当一个或多个处理器510确定包括BSR时)、功率余量报告(PHR)(例如,当一个或多个处理器510确定包括PHR时)、来自CP Tx缓冲器的一个或多个w-HL SDU或其分段(例如,一个或多个处理器510可以基于分配大小执行适当的分段)、来自CP重传缓冲器的一个或多个w-HL PDU或其分段(例如,一个或多个处理器510可以基于分配大小执行适当的重新分段)、和/或来自UP Tx缓冲器和/或UP重传缓冲器的用户平面(UP)数据中的一者或多者。BSR、PHR、CP重传缓冲器、CP Tx缓冲器、UP重传缓冲器、以及UP Tx缓冲器中的每一者都可以具有相关优先级,在一些方面,可以按照(BSR、PHR、CP重传缓冲器、CP Tx缓冲器等)的顺序赋予它们优先级。一个或多个处理器510可以基于一个或多个处理器510确定包括BSR/PHR而包括BSR和/或PHR(例如,基于当前BSR/PHR状态,接收用于提供BSR/PHT的触发/请求等)。对于足够将多个项目复用在w-HL C-PDU中的分配大小,一个或多个处理器510可以基于相关优先级执行这样的复用。在一些方面,一个或多个处理器510可以向w-HL C-PDU添加填充,以将w-HL C-PDU的大小匹配到分配大小。
一个或多个处理器510可以向如本文所述地生成的w-HL C-PDU添加w-HL分组报头,根据w-HL C-PDU的数据内容,该w-HL分组报头可以包括指示w-HL C-PDU的内容的一个或多个子报头。
一个或多个处理器510可以将具有报头的w-HL C-PDU传递到PHY,供收发器电路520经由PRA传输。
一个或多个处理器510可以采用与w-HL C-PDU有关的两级重传机制。
一个或多个处理器510可以采用物理层TB级的HARQ(混合自动重传请求)机制,该机制可以包括一个或多个处理器510处理响应于用于经由PHY传送w-HL C-PDU的TB而经由收发器电路520接收到的HARQ ACK反馈(例如,ACK(确认)或NACK(否认))。响应于NACK,一个或多个处理器510可以重新发送TB一次或多次,除非达到了HARQ重传限制。
一个或多个处理器510还可以采用w-HL C-PDU级的ARQ(自动重传请求)机制,该机制可以包括一个或多个处理器510处理响应于经由PHY的w-HL C-PDU而经由收发器520接收到的ARQ ACK反馈(例如,ACK(确认)或NACK(否认))。响应于NACK,一个或多个处理器510可以将w-HL C-PDU传递到PHY供重传一次或多次(例如,其可以包括重新分段等),除非已经达到ARQ重传限制。在再次处理将传递到PHY的w-HL C-PDU时,一个或多个处理器510可以重新确定用于w-HL C-PDU的PRA和分配大小(例如,基于新UL许可等)。根据用于w-HL C-PDU的分配大小,这可以包括一个或多个处理器510将w-HL C-PDU的CP数据与其他数据(例如,BSR、PHR、其他CP数据或其分段、UP数据等)复用和/或一个或多个处理器510对w-HL C-PDU进行重新分段。
在w-HL Rx方面,一个或多个处理器510可以实现与(例如,nUE或wUE处的)w-HL Rx实体相关联的一个或多个功能。例如,一个或多个处理器510可以响应于与一个或多个w-HLC-PDU有关的TB被收发器520成功或者不成功地接收而生成可以由收发器520发送的HARQACK反馈(例如,ACK/NACK等)。一个或多个处理器510可以基于收发器520接收到的TB生成w-HL C-PDU。一个或多个处理器510还可以响应于w-HL C-PDU被一个或多个处理器510成功或不成功地重建而生成可以由收发器电路520发送的ARQ ACK反馈(例如,ACK/NACK等)。在nUE方面,一个或多个处理器510可以生成(并且收发器电路520可以发送)指示经由其接收w-HLC-PDU的PRA和分配大小的UL许可。
一个或多个处理器510可以将生成的w-HL C-PDU从PHY提供到w-HL,供一个或多个处理器510进行高层处理。如本文所讨论的,各w-HL C-PDU可以包括BSR、PHR、一个或多个CP分组和/或其分段、或者一个或多个UP分组和/或其分段中的一者或多者。对于包括两种或更多种数据的复用的w-HL C-PDU,w-HL C-PDU的报头可以包括两个或更多个子报头,这些子报头可以指示与两种或更多种数据相关联的信息。
根据w-HL C-PDU,一个或多个处理器510可以生成一个或多个w-HL C-SDU(例如,w-RRC CP分组)。根据w-HL C-PDU的报头及其中指示的SN,一个或多个处理器510可以确定C-SDU(RRC CP分组)的排序并按顺序将C-SDU(w-RRC CP分组)递送到w-RRC层。
参考图6,示出了根据本文中描述的各方面的帮助从一个或多个w-RRC CP分组生成w-HL C-PDU的方法600的流程图。在一些方面,方法600可以在UE处执行。在其他方面,机器可读介质可以存储与方法600相关联的指令,这些指令在被执行时可以使UE(例如,nUE或wUE)执行方法600的动作。
在610,可以从w-RRC层接收一个或多个w-HL C-SDU。
在620,可以为一个或多个w-HL C-SDU中的每个w-HL C-SDU分配唯一SN。
在630,可以将一个或多个w-HL C-SDU存储在UL CP Tx缓冲器中。
在640,可以确定用于传输一个或多个w-HL C-PDU的一个或多个PRA和分配大小。
在650,可以至少部分地基于PRA和分配大小生成一个或多个w-HL C-PDU。w-HL C-PDU可以包括BSR、PHR、UL CP Tx缓冲器、UL CP重传缓冲器、UL UP Tx缓冲器、或UL UP重传缓冲器中的一者或多者。
在660,可以将w-HL C-PDU传递到PHY。
在670,可以经由一个或多个TB发送w-HL C-PDU。
另外或者替代地,方法600可以包括由以上结合***500描述的w-HL Tx实体执行的一个或多个其他动作。
参考图7,示出了根据本文中描述的各方面的帮助从一个或多个接收到的TB生成一个或多个w-RRC CP分组并按顺序递送这些分组的方法700的流程图。在一些方面,方法700可以在UE处被执行。在其他方面,机器可读介质可以存储与方法700相关联的指令,这些指令在被执行时可以使UE(例如,nUE或wUE)执行方法700的动作。
在710,可以接收承载w-RRC CP分组数据的一个或多个TB。
在720,可以从一个或多个TB生成一个或多个w-HL C-PDU。
在730,可以将一个或多个w-HL C-PDU传递到w-HL进行进一步处理。
在740,可以从一个或多个w-HL C-PDU生成一个或多个w-HL C-SDU(例如,w-RRCCP分组)。
在750,基于一个或多个w-HL C-PDU中的每个w-HL C-PDU的报头的SN,可以确定一个或多个w-HL C-SDU的排序。
在760,可以按顺序将一个或多个w-HL C-SDU递送到w-RRC层。
另外或替代地,方法700可以包括由以上结合***500描述的w-HL Rx实体执行的一个或多个其他动作。
w-HL处的控制平面分组处理
以下细节可以被用于关于本文描述的w-HL的控制平面数据的分组处理和报头添加。
当w-HL从高层(w-RRC)接收到分组时,该分组变为用于w-HL协议层的CP w-HL SDU(服务数据单元)。
可以为每个w-HL CP SDU添加序列号(SN)(以节省报头开销,这可以省去每个w-HLC-PDU的SN)。可以对每个CP SDU进行加密(加密/解密)和/或完整性保护,并且SDU SN可以用于这些操作,因此可以为每个w-HL SDU添加序列号(SN)。
可以将CP SDU存储在与UP SDU不同的缓冲器中。因此,CP和UP的序列号分配可以是彼此独立的。即,SN在CP SDU和UP SDU之间不需要是唯一的。但是,CP SDU SN在分配给CPSDU的SN之间可以是唯一的,以避免错误。另外,CP SDU的SN不需要与UP SDU的SN为相同长度。
如果w-RRC启用完整性保护,则w-HL可以对CP SDU执行完整性保护操作。另外,w-HL CP SDU可以跳过完整性保护操作。完整性保护操作通过添加一些完整性校验字节增大了w-HL SDU的大小。
如果启用加密,则w-HL CP SDU可以经历为空中接口传输添加安全性的加密操作。加密不改变w-HL CP SDU的大小。
可以将w-HL CP SDU(如果执行了完整性保护和/或加密操作,可能是经修改的CPSDU)与其分配的SN一起放置在UL CP传输缓冲器中。注意,当响应于来自PHY层的请求而生成w-HL C-PDU时,可以添加w-HL报头。在wUE处所采用的方面中,如果存在在控制PRA上接收到的UL许可,则PHY可以请求w-HL PDU。
在wUE处所采用的方面中,w-HL SDU在UL CP传输缓冲器中的缓存可以触发向nUE发送调度请求,以在控制PRA上请求UL许可。
一旦在PHY处接收到用于在控制PRA上传输的UL许可,PHY可以将UL许可传递到w-HL,请求提供用于在控制PRA上传输的w-HL C-PDU。随后可以生成大小等于PHY传输块(TB)大小(例如,接收到的UL许可的大小)的w-HL C-PDU。
w-HL可以生成w-HL C-PDU,该生成过程可以包括复用BSR、PHR、UL CP Tx缓冲器(和/或UL CP ARQ重传缓冲器)中缓存的w-HL CP SDU、以及UL UP Tx缓冲器(和/或UL UPARQ重传缓冲器)中缓存的w-HL UP SDU。基于许可大小,w-HL可以进行以下处理中的一项或多项:对来自UL CP/UP Tx缓冲器的SDU进行分段;对来自UL CP/UP ARQ重传缓冲器的w-HLCP/UP PDU进行重新分段;结合一个或多个SDU分段;结合一个或多个SDU;和/或结合0个或1个BSR、0个或1个PHR、或者0个或多个重新分出的分段、0个或多个CP/UP分段、以及0或多个CP/UP SDU。
w-HL随后可以添加分组报头以创建用于控制PRA的w-HL C-PDU。如这里所使用的,用于控制PRA的w-HL PDU也可以被称为w-HL C-PDU或w-HL CP PDU。分组报头添加的示例和它们的细节在下面更详细地讨论。w-HL可以将w-HL C-PDU的副本存储在UL CP ARQ重传缓冲器中。w-HL可以将w-HL C-PDU传递到PHY供在控制PRA上传输。
PHY可以发送w-HL C-PDU一次或多次,直到(a)在nUE/wUE成功地接收到w-HL C-PDU或(b)达到最大HARQ重传限制。
如果期望的接收方(nUE/wUE)不能在最大数目的HARQ重传尝试中成功接收到w-HLC-PDU,则w-HL可以调用ARQ重传过程。
在ARQ重传期间,如果许可大小较小,则可以对原始w-HL C-PDU进行重新分段;或者如果许可大小较大,则可以将原始w-HL C-PDU与其他分段/SDU结合。
对于每次ARQ重传,PHY可以尝试多达最大ARQ重传次数来递送C-PDU。
在最大数目的ARQ重传尝试之后,如果C-PDU没有在nUE/wUE处被成功接收到,则w-HL可以丢弃相关SDU并且可以将该情况通知给更高层(w-HL以上的协议层,例如,w-RRC)。
下面是在创建w-HL PDU时可以在w-HL层采用的分组报头添加的细节。
用于控制平面数据的高层(w-HL)分组报头设计和优化
w-HL处用于控制平面的分组报头设计特征
对于w-HL UP数据,可以为诸如IP数据的UP数据的每个w-HL SDU分配10比特的序列号(SN)。10比特SN可以容纳UL UP Tx缓冲器中的1024个UP SDU。
CP SDU由w-RRC生成。在任意时间UL CP Tx缓冲器中都不太可能存在多于128个的w-RRC消息或控制平面消息(即,w-HL CP SDU)等待传输。因此,为了减小分组报头大小,可以向CP SDU分配7比特的控制平面序列号(C-SN)。另外,也可以省去向每个w-HL C-PDU添加SN,以减少分组报头开销。通常,针对每个CP SDU执行加密和/或完整性保护(当执行时)并且CP SDU SN被用于该操作,因此可以为每个w-HL CP SDU添加控制序列号(C-SN)。
如果采用w-HL级的重传(例如,如果启用w-HL ARQ),则可以对每个w-HL C-PDU进行重传。在没有每个w-HL PDU的SN的情况下,可以采用这里描述的标记(唯一ID)来标识每个C-PDU,从而使得w-HL Rx(接收)实体可以在请求丢失C-PDU的重传时向w-HL Tx(发送)实体发送C-PDU标识标记(唯一ID)。对于以下讨论的每种情况的w-HL C-PDU,可以提供可以被用来标识每个C-PDU的标记。通常,可以使用SDU C-SN(或SN)或SDU C-SN(或SN)加分段ID作为唯一地标识如下描述的任意w-HL C-PDU的标记/ID。
如前面提到的,由于Xu-a接口上的基于竞争的传输环境,可以将L1/PHY传输块限制到数十个字节(小于75个字节)。更小的L1 TB大小可以有助于减少来自潜在冲突的性能影响。下面的表1示出了示例L1/PHY TB大小范围。在表1的示例中,最大C-PDU(或UP PDU)大小大约为600比特(75字节),最小C-PDU(或UP PDU)大小为176比特(22字节)。下面的讨论中使用表1的示例,尽管可以采用其他大小和各种细节的相应改变。
表1:示出用于5G-W的TB大小范围的示例
TB大小(比特) TB大小(字节)
最小 176 22
最大 600 75
长度指示符(L1):表示多达75字节的长度(以字节为单位),可以采用长度指示符(L1)=7比特。7比特足够指定多达127(27-1)字节的长度。
表示SDU的分段的比特数目:表示CP SDU的分段的比特数目取决于可以在w-HL处接收到的SDU的最大大小。传统LTE支持的最大PDCP SDU大小=8188字节。但是,在可穿戴通信中,大多数控制消息分组大小远小于8188字节。一般,控制平面消息大小将小于或等于1500字节。基于这两种可能的最大SDU大小,可以设计分段ID。对于用户平面数据大小,可以认为有8188字节和1500字节两种最大分组大小的选择。
有两种表示分段的方法:(i)在SDU中指定分段的开始/结束字节,可以经由13比特(对于最大SDU大小=8188字节)或11比特(对于最大SDU大小=1500字节)来指定;和/或(ii)指定分段号,可以经由9比特(对于最大分段#=8188/22=373)或7比特(对于最大分段#=1500/22=69)来指定。因此,指定分段号作为分段ID更高效,因为分段号使用较少数目的比特。然而,这会增加发送方/实体的w-HL层的一些处理复杂性。w-HL层发送方/实体可以在本地记录每个分段的分段开始/结束字节。
重传的更高优先级:重传数据可以比新传输具有更高的优先级。因此,如果UL许可在期待HARQ/ARQ重传的TTI(传输时间间隔)中可用,则重新分段的数据可以是第一个数据分段/字段。
用于控制数据的PRA的分离:如这里讨论的,一个或多个PRA可以被显式地或隐式地指定为控制PRA。在一些方面中,控制数据可以仅在这些PRA上发送。如果PHR/BSR传输被触发和/或应该基于这些值被发送,则PHR和BSR可以被装载在控制PRA上的wHL-PDU中。另外,如果在完成CP数据后剩余有资源,则用户平面数据可以被包括在用于控制PRA的wHL-PDU中。1比特标志(例如,PDU类型)可以标识用于控制PRA的wHL PDU或用于UP PRA的wHLPDU。
在C-PDU中复用BSR、PHR、CP数据、以及UP数据:由于BSR、PHR、CP数据、和/或UP数据可以被复用用于C-PDU,所以可以在报头中包括操控复用的字段(例如,字段类型)。
在ARQ重传期间w-HL C-PDU的重新分段情况下的分组报头优化
在ARQ重传期间,如果基站在控制PRA上提供等于wHL C-PDU(以前的TB大小)的许可,则不需要重新分段。但是,许可可能具有更小的大小,在这种情况下,重传缓冲器中的C-PDU(原始C-PDU)可以被重新分段。当原始C-PDU被重新分段时,可以向其每个重新分出的分段分配ID,以帮助w-HL RX实体重新创建原始C-PDU并请求丢失的一个或多个重新分出的分段的重传。如果原始C-PDU的一些重新分出的分段丢失,则可以仅重新发送丢失的重新分出的分段。在重新分出的分段的重传期间,可以潜在地再次将其分段为适合重传许可(这里可以称为第二级重新分段)。这一些方面中,可以存在多级重新分段。对于w-HL Tx和Rx实体,在管理多级重新分段的ID并缓存多级重新分段的数据时会出现潜在的困难。
为了简化(w-HL Rx/Tx实体处的)处理并节省用于ARQ重传的缓存,在各方面,可以仅将原始w-HL C-PDU存储/缓存在CP重传缓冲器中。如果(CP重传缓冲器中的)原始C-PDU的重新分段由于更小的许可大小被执行,则可以以这样的方式添加重传分组报头:(重新分段的)每个分段可以被唯一地标识并可以从原始w-HL C-PDU重建(如果(重新分段的)分段将被重传)。
在我们的设计中,w-HL C-PDU(以及UP PDU)具有多达75字节的最大大小。对于ARQ重传期间的w-HL C-PDU的重新分段,规定重新分出的分段的以字节为单位的起始偏移就足够了,因为其仅需要7比特。因此,可以经由用于标识原始C-PDU的ID和原始C-PDU中以字节为单位的起始偏移来标识(重新分段的)分段,如下所述。为了使w-HL Rx实体处的解码更简单,也可以包括指示其是否是最后分段的标志。
C-Rseg-SO(7比特):重新分段起始偏移可以指定原始C-PDU(原始报头(例如,不包括开头的填充、BSR、和PHR子报头)+原始数据字段)针对该重新分出的分段的开始字节,其可以是在C-PDU的ARQ重传期间执行重新分段时重新分出的分段中承载的原始C-PDU中的起始字节号。对于重传,可以考虑除了开头的填充、BSR、和PHR子报头以外的整个C-PDU(例如,除了开头的填充、BSR、和PHR子报头以外的原始报头+原始数据字段)作为指定重新分出的分段的起始偏移的数据。对于600比特(75字节)的示例最大C-PDU大小,7比特(覆盖多达128字节的长度)足够表示原始C-PDU中的起始偏移。
C-Rseg-SN(10比特):在重传期间,可以标识每个原始C-PDU,从而可以在其重新分段时使用C-PDU标识标记(PDU-ID)。在下面的各种用例中讨论C-PDU标识标记(PDU ID)。在各种场景中,C-PDU标识(PDU ID)可以仅基于SDU C-SN(或UP SDU SN)(7比特或10比特),或基于SDU C-SN(或UP SDU SN)和来自原始C-PDU的分段号(14或19比特)。如果采用重新分段,则Reseg C-PDU标记ID可以被定义为将在C-PDU的ARQ重传期间在报头中发送的控制平面重新分段序列号(C-Rseg-SN)(例如,3比特)。w-HL Tx实体可以至少临时维护C-Rseg-SN到原始C-PDU标识标记(PDU ID)的映射表,以使得w-HL Tx实体可以创建剩余的重新分出的分段用于以后的许可。注意,w-HL Tx不需要与w-HL Rx方交换该映射表信息。在收集了C-Rseg-SN的所有重新分出的分段后,Rx方可以提取原始分组,因此映射表信息不是必需的。原始分组可以具有原始报头(不包括开头的填充、BSR、和PHR子报头)和原始数据字段。因此,Rx方可以从原始报头获取SN或SN加Seg-N。
可以采用1比特C-Rseg-SN用于控制PRA ARQ重传,因为每个wUE在每个TTI中只有一个TB并且重传具有更高优先级。然而,可以定义3比特的C-Rseg-SN,以使得w-HL接收实体可以避免针对每个C-PDU发送ARQ ACK。因此,w-HL接收实体可以具有接收8个C-PDU(由于3比特C-RSeg-SN)的灵活性并且可以发送累计ACK以减少ARQ ACK开销。替代地,w-HL发送实体可以在没有得到ARQ ACK的条件下发送至多8个C-PDU。代替C-RSeg-SN,可以采用C-PDU-SN(每个PDU的SN)。但是,通过仅使用C-RSeg-SN用于重传,可以在每个C-PDU的第一次传输中节省3个比特。
下面,讨论用于各种情况的CP数据的分组报头设计以及可以用于每种情况的C-PDU标识标记(C-PDU ID)。
用于w-HL数据处理的控制平面分组报头设计:
分组报头的各种字段
在各种方面,可以在w-HL PDU的分组报头设计中包括以下字段,这些字段可以有效地允许SDU、SDU分段、和/或wHL C-PDU重新分出的的分段的分段和级联。与分组报头有关的用户平面数据传输可以不同于以下讨论的数据传输。下面的表2提供了可以包括在各种方面中的若干分组报头字段的简要说明:
表2:针对w-HL C-PDU提出的主要分组报头字段及其描述的简要说明。
Figure GDA0003694975860000251
Figure GDA0003694975860000261
Figure GDA0003694975860000271
Figure GDA0003694975860000281
长度指示符:每当w-HL字段中存在一个以上SDU/SDU分段/C-PDU重新分出的分段时,用于除最后数据字段以外的所有数据字段的相应子报头字段可以具有长度指示符字段。在最后数据字段也可以具有长度字段时,存在如下文所述的一种情况(称为末尾填充)。
调整w-HL C-PDU以使其大小与分配许可匹配的过程
当PHY/L1指示提供具有特定大小的C-PDU时,w-HL可以确保其向L1提供具有与L1所指示的大小完全相同的大小的w-HL C-PDU。可以假设L1传输块大小(即,由L1指示的用于w-HL C-PDU生成的许可大小)是字节对齐的。如下所述,可以使用填充来将w-HL的大小匹配到许可大小。
填充:在一些情况下,在准备w-HL C-PDU时,在包括0个以上SDU/SDU分段/C-PDU重新分出的分段后,许可的一些字节(例如,0、1、2、3、或4字节等)可能剩余。剩余许可可能不足以包括新的子报头和具有至少一个字节的相应数据字段。在另一种情况中,没有足够的数据来填充许可,并且可以使用相对较大的填充(若干字节,例如,4字节以上)来填充许可。在这些情况下,可以如图8A、8B、以及8C所示的示例八字节和以下情况所述地添加填充。
在第一种情况中,参考图8A,示出了根据本文中描述的各方面的当剩余许可仅具有一个字节时,可以在w-HL C-PDU报头的开头添加以将w-HL C-PDU大小精确匹配到许可大小的填充子报头的示例。在第一种情况中,剩余仅一个字节的UL许可,并且可以如图8A的示例中所示地在开头添加1字节的填充子报头。在第一种情况中,对于最后SDU/SDU分段/C-PDU重新分出的分段的子报头可以省略L1字段,因为其仍然是最后数据字段。填充报头可以由不同的字段类型(例如,字段类型=111等)来标识。接收方(w-HL Rx实体)在解码期间发现C-PDU报头的开头处的填充子报头时可以如同填充子报头的字节不存在一样简单地忽视该填充子报头。
在第二种情况中,参考图8B,示出了根据本文中描述的各方面的当剩余许可仅具有两个字节时,可以在w-HL C-PDU报头的开头添加以将w-HL C-PDU大小精确匹配到许可大小的填充子报头的示例。在第二种情况中,仅剩余两个字节的许可,并且可以在开头处的两个字节添加两个一字节填充子报头,参见图8B。在第二种情况中,对于最后SDU/SDU分段/C-PDU重新分出的分段的子报头可以省略L1字段,因为其仍是最后数据字段。填充报头可以由不同的字段类型(例如,字段类型=111)标识。接收方(w-HL Rx实体)在解码期间可以简单地忽视C-PDU报头的开头处的填充子报头,如同这两个字节不存在一样。
在第三种情况中,参考图8C,示出了根据本文中描述的各方面的可以在w-HL C-PDU报头的末尾添加以使得在w-HL-PDU(数据字段)的末尾***0个以上字节的填充数据字段,从而使得可以将w-HL C-PDU大小精确匹配到许可大小的填充子报头的示例。在第三种情况中,可以剩余三个或更多个字节的许可。在第三种情况中,存在足够的许可来在最后SDU/SDU分段/C-PDU重新分出的分段的子报头(如在填充之前构建的w-HL C-PDU的子报头)中添加L1字段并在末尾添加填充子报头。末尾的填充子报头(如图8C所示)可以指示在最后SDU/SDU分段/C-PDU重新分出的分段数据字段(存在用于其的L1)之后,可以用填充来充满剩余许可。这种情况中的填充数据字段可以包括0个或更多个字节。接收方(W-HL Rx实体)在解码时可以简单地忽视最后SDU/SDU分段/C-PDU重新分出的分段之后的剩余部分(例如,填充部分)。
在用于创建用于在控制PRA上传输的C-PDU的复用期间的优先级操控
用于创建w-HL C-PDU的一组示例优先级如下。BSR和PHR可以具有最高优先级,BSR和PHR后面可以是CP重传缓冲器中C-PDU。CP Tx缓冲器中的CP数据可以具有次高优先级。在创建将在控制PRA上发送的C-PDU时,CP数据可以具有比UP数据更高的优先级。只有在没有待发送的更多CP数据时,UP数据才可以被包括在C-PDU中。在放置BSR和PHR(当包括时)之后剩余的许可可以用于CP重传缓冲器中的C-PDU的ARQ重传。如果剩余有许可,则该许可随后可以被填充以CP数据。如果在放置CP数据后仍然剩余有许可,则UP数据可以被放置在C-PDU中。
根据该示例,按照降序排列的各种数据的优先级可以如下:(1)BSR字段可以具有包括在C-PDU中的第一(最高)优先级;(2)PHR字段可以具有第二优先级;(3)ARQ重传缓冲器中等待重传的C-PDU可以具有第三优先级;(4)CP数据可以具有第四优先级;(5)UP数据可以具有第五(最低)优先级。
缓冲器状态报告(BSR)和功率余量报告(PHR)
BSR可以将wUE的缓冲器中的UL数据的估计提供给nUE,以使得nUE可以向wUE分配合理的UL许可。在一个示例中,可以使用5比特(提供32个可能的BSR索引)来指定缓冲器大小范围。下面的表3示出了BSR索引与缓冲器大小(以字节为单位)的映射的示例。在表3中,缓冲器大小表示wUE处的缓冲器(例如,用户平面传输缓冲器和控制平面传输缓冲器)中的总数据。
表3:用于BSR的缓冲器大小等级
Figure GDA0003694975860000311
Figure GDA0003694975860000321
PHR可以由wUE发送,以将wUE是否可以用比当前传输使用的功率更高的传输功率进行发送告知给nUE。PHR可以为正或负。正PHR指示wUE不是以最大允许传输功率进行发送,因此其仍然能够以更高Tx功率进行发送或者其仍然能够以更高吞吐量进行发送。如果PHR为负,则wUE已经以最大允许Tx功率进行发送。PHR信息可以被nUE用来确定向wUE分配更多还是更少的UL许可。例如,在正PHR的情况下,nUE可以向wUE分配更多PRA/资源。
在一个示例中,使用5比特(相当于32个PH索引)来指定功率余量(PH)。这32个PH等级/索引可以被映射到测得的PH值。下面的表4表示在假设wUE的最大传输功率为20dBm情况下PH等级及其到测得的量值的映射的示例。由每个功率余量索引表示的测得的量值的范围可以根据可允许的PRA(物理资源配置)粒度变化。
表4:示出功率余量等级和功率余量报告的映射的示例
PH 功率余量等级/报告值 测量出的数量值
0 PH_0 -23<=PH<-21
1 PH_1 -21<=PH<-19
2 PH_2 -19<=PH<-17
3 PH_3 -17<=PH<-15
... ... ...
28 PH_28 33<=PH<35
29 PH_29 35<=PH<37
30 PH_30 37<=PH<39
31 PH_31 PH>=39
w-HL报头生成的各种示例情况
示出填充、BSR、PHR、以及来自上行链路控制平面传输缓冲器的CP SDU的w-HL C- PDU报头的各种情况的示例
参考图9A,示出了仅包括来自UL CP传输缓冲器的CP SDU的C-PDU的示例。其不具有BSR或PHR,这可以经由字段类型(例如,字段类型=011)来指示。PDU类型在这里可以为1,以指示PDU是将在控制PRA上发送的C-PDU。内容类型=0011可以指示该字段具有CP SDU。用于重传的C-PDU ID(C-PDU标识标记):图9A中的C-PDU可以由C-SN字段唯一地标识。
参考图9B,示出了包括BSR和来自UL CP传输缓冲器的CP SDU的C-PDU的示例。字段类型=000可以指示PDU具有BSR字段。w-HL接收(Rx)实体可以获知BSR具有固定大小(例如,5比特),并且在BSR之后,数据字段如E=1所指示地开始。E=1可以指示存在下一字段。数据字段的类型(CP-SDU没有被分段)可以由内容类型字段=0011标识。用于重传的C-PDU ID(C-PDU标识标记):图9B中的C-PDU可以由C-SN字段唯一地标识。
参考图10A,示出了包括PHR和来自UL CP传输缓冲器的CP SDU的C-PDU的示例。字段类型=001可以指示PDU具有PHR字段。w-HL接收实体可以获知PHR具有5比特的固定大小并且在PHR之后数据字段如E=1所指示地开始。E=1可以指示存在下一字段。数据字段的类型(CP-SDU没有被分段)可以由内容类型字段=0011标识。用于重传的C-PDU ID(C-PDU标识标记):图10A中的C-PDU可以由C-SN字段唯一地标识。
参考图10B,示出了包括BSR、PHR、以及来自UL CP传输缓冲器的CP SDU的C-PDU的示例。字段类型=010可以指示PDU具有BSR及跟在其后面的PHR字段。w-HL接收实体可以获知5比特的BSR字段后面跟着5比特的PHR字段。在BSR和PHR字段之后,数据字段可以如E=1所指示地开始。E=1可以指示存在下一字段。数据字段的类型(CP SDU-没有被分段)可以由内容类型字段0011标识。用于重传的C-PDU ID(C-PDU标识标记):图10B中的C-PDU可以由C-SN字段唯一地标识。
参考图11,示出了类似于图10B的C-PDU的示例。但是,可以在PDU的开头处添加1字节的填充子报头来填充许可。用于重传的C-PDU ID(C-PDU标识标记):图11中的C-PDU可以由C-SN字段唯一地标识。
参考图12,示出了类似于图10B的C-PDU的示例。但是,可以在PDU的开头处添加两个一字节填充子报头来填充许可。用于重传的C-PDU ID(C-PDU标识标记):图12中的C-PDU可以由C-SN字段唯一地标识。
参考图13,示出了类似于图10B的C-PDU的示例。但是,其具有填充剩余许可的在末尾处的填充子报头。可以添加长度指示符字段来指定CP-SDU字段的长度,以使得w-HL接收实体可以在得到CP-SDU之后忽略所有剩余字节。C-PDU ID(C-PDU标识标记):图13中的C-PDU可以由C-SN字段唯一地标识。
示出BSR、PHR、以及来自UL CP传输的CP SDU分段的w-HL C-PDU报头的示例
当CP SDU被分段时,每个分段可以具有分段号(C-Seg-N)和SDU的SN。参考图14,示出了具有BSR、PHR、以及来自UL CP Tx缓冲器的CP-SDU分段(其不是该SDU的最后分段)的w-HL C-PDU的示例。用于重传的C-PDU ID(C-PDU标识标记):图14中的C-PDU可以由C-SN和C-Seg-N字段唯一地标识。
参考图15,示出了具有BSR、PHR、以及来自UL CP TX缓冲器的CP-SDU分段(其是该SDU的最后分段)的w-HL C-PDU的示例。用于重传的C-PDU ID(C-PDU标识标记):图15中的C-PDU可以由C-SN和C-Seg-N字段唯一地标识。
示出BSR、PHR、来自UL UP传输的UP SDU和/或UP SDU分段的w-HL C-PDU报头的示
如上面讨论的,在创建待发送的C-PDU时,CP数据可以具有比UP数据更高的优先级。在这样的方面中,只有在没有待发送的更多CP数据时,UP数据才可以被包括在C-PDU中。因此,在放置BSR和PHR之后剩余的许可可以被用于重传缓冲器中的C-PDU的ARQ重传。如果剩余有许可,则随后可以用CP数据填充许可。如果在放置CP数据后仍然剩余有许可,则可以将UP数据放置在C-PDU中。
下面的示例表示CP传输缓冲器或CP ARQ重传缓冲器中没有数据时的情况。
参考图16A,示出了具有BSR、PHR、以及来自UL用户平面Tx缓冲器的UP-SDU的w-HLC-PDU的示例。用于重传的C-PDU ID(C-PDU标识标记):图16A中的C-PDU可以由SN字段唯一地标识。
参考图16B,示出了具有BSR、PHR、以及来自UL用户平面TX缓冲器的UP-SDU分段(其不是该SDU的最后分段)的w-HL C-PDU的示例。用于重传的C-PDU ID(C-PDU标识标记):图16B中的C-PDU可以由SN和Seg-N字段唯一地标识。
参考图17A,示出了具有BSR、PHR、以及来自UL用户平面TX缓冲器的UP-SDU分段(该SDU的最后分段)的w-HL C-PDU的示例。用于重传的C-PDU ID(C-PDU标识标记):图17A中的C-PDU可以由SN和Seg-N字段唯一地标识。
示出BSR、PHR、来自UL CP重传缓冲器的C-PDU或C-PDU分段的w-HL C-PDU报头的示
如上面讨论的,如果重传缓冲器中有控制平面数据等待重传,则这些数据可以具有比传输缓冲器中的CP数据和UP数据更高的优先级。由于许可可能小于w-HL C-PDU,所以在重传期间可以对w-HL C-PDU进行重新分段。在一些方面中,当可能在许可中包括整个w-HL C-PDU时,在重传期间不对w-HL C-PDU进行分段。
参考图17B,示出了具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU(没有被重新分段)的w-HL C-PDU的ARQ重传的示例。
参考图18A,示出了具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU分段(不是该重新分段的C-PDU的最后分段)的w-HL C-PDU的ARQ重传的示例。重传缓冲器中的w-HL C-PDU的重新分段可以由于较小的许可而被执行。
参考图18B,示出了具有BSR、PHR、以及来自UL ARQ控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)的w-HL C-PDU分段的ARQ重传的示例。重传缓冲器中的w-HL C-PDU的重新分段可以由于较小的许可而被执行。这里,该分段是最后分段,但是许可不足以容纳任何其他数据字段。
示出BSR、PHR、UP SDU、CP SDU、CP SDU分段、和/或UP SDU分段的w-HL C-PDU报头 的示例
参考图19,示出了具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL C-PDU的示例。
参考图20,示出了具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是该UP-SDU的最后分段)的w-HL CP PDU的示例。
参考图21,示出了具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU分段(该SDU的最后分段)、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL CP PDU的示例。
参考图22,示出了具有BSR、PHR、来自UL控制平面TX缓冲器的CP-SDU分段(该SDU的最后分段)、以及来自UL用户平面Tx缓冲器的UP-SDU分段(不是该SDU的最后分段)的w-HLCP PDU的示例。
示出BSR、PHR、C-PDU、C-PDU分段、CP/UP SDU、和/或CP/UP SDU分段的w-HL C-PDU 报头的示例
参考图23,示出了具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、以及来自UL用户平面TX缓冲器的UP-SDU的w-HL C-PDU的示例。在该示例中,控制平面重传缓冲器中只有一个C-PDU,控制平面传输缓冲器中没有数据。
参考图24,示出了具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、以及来自UL用户平面TX缓冲器的UP-SDU分段(不是最后分段)的w-HL C-PDU的示例。在该示例中,控制平面重传缓冲器中只有一个C-PDU,控制平面传输缓冲器中没有数据。
参考图25,示出了具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU(没有被重新分段)、来自UL控制平面传输缓冲器的CP SDU、以及来自UL用户平面TX缓冲器的UP-SDU(没有被分段)的w-HL C-PDU的示例。在该示例中,控制平面重传缓冲器中只有一个C-PDU,控制平面传输缓冲器中只有一个CP SDU。
参考图26,示出了具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)、以及来自UL控制平面TX缓冲器的CP-SDU的w-HL C-PDU的示例。在该示例中,控制平面重传缓冲器中只有一个C-PDU。
参考图27,示出了具有BSR、PHR、来自UL控制平面重传缓冲器的C-PDU分段(该重新分段的C-PDU的最后分段)、以及来自UL控制平面TX缓冲器的CP-SDU分段(不是最后分段)的w-HL C-PDU的示例。在该示例中,控制平面重传缓冲器中只有一个C-PDU。
这里的示例可以包括如下主题:诸如方法、用于执行方法的动作或块的装置、包括在被机器(例如,具有存储器的处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)等)执行时使得该机器执行上述方法的动作或者用于根据本文描述的实施例和示例使用多种通信技术同时通信的装置或***的动作的可执行指令的至少一个机器可读介质。
示例1是一种被配置为用在用户设备(UE)中的装置,包括:存储器;以及一个或多个处理器,被配置为:向来自可穿戴无线电资源控制(w-RRC)层的一个或多个控制平面(CP)分组中的每个CP分组分配不同的序列号;将一个或多个CP分组缓存到CP传输缓冲器;确定用于可穿戴高层(w-HL)控制协议数据单元(C-PDU)的物理资源配置(PRA)和分配大小;至少部分地基于缓存到CP传输缓冲器的一个或多个CP分组、PRA、以及分配大小生成w-HL C-PDU;向w-HL C-PDU添加分组报头;以及基于PRA向物理层提供w-HL C-PDU。
示例2包括示例1的任意变形的主题,其中,一个或多个处理器进一步被配置为至少部分地基于缓冲器状态报告(BSR)、功率余量报告(PHR)、CP重传缓冲器、用户平面(UP)传输缓冲器、或者UP传输缓冲器中的一者或多者生成w-HL C-PDU。
示例3包括示例2的任意变形的主题,其中,一个或多个处理器进一步被配置为确定CP传输缓冲器、CP重传缓冲器、BSR、PHR、UP传输缓冲器、以及UP重传缓冲器中的每一者的不同优先级。
示例4包括示例3的任意变形的主题,其中,一个或多个处理器进一步被配置为:至少部分地基于复用CP重传缓冲器、BSR、PHR、UP传输缓冲器、或UP重传缓冲器中的一者或多者以及CP传输缓冲器来生成w-HL C-PDU,其中,所述复用至少部分地基于针对CP传输缓冲器、CP重传缓冲器、BSR、PHR、UP传输缓冲器、以及UP重传缓冲器中的每一者确定的不同优先级。
示例5包括示例2至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为:通过对缓存到CP传输缓冲器的一个或多个CP分组进行分段、对缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU进行分段、或者对一个或多个以前生成的分段进行重新分段来生成一个或多个分段,其中,w-HL C-PDU是至少部分地基于上述一个或多个分段生成的。
示例6包括示例2至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为至少部分地基于结合以下各项中的两项或更多项来生成w-HL C-PDU:缓存到CP传输缓冲器的一个或多个CP分组、缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU、以及一个或多个分段。
示例7包括示例2至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为做出是否经由w-HL C-PDU指示BSR或PHR中的至少一者的判定,并且其中,当上述判定是肯定判定时w-HL C-PDU包括BSR或PHR中的至少一者。
示例8包括示例1至4中任一项的任意变形的主题,其中,分组报头包括两个或更多个子报头。
示例9包括示例1至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置经由填充将w-HL C-PDU的大小调整为匹配分配大小。
示例10包括示例1至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为处理与w-HL C-PDU有关的至少一个混合自动重传请求(HARQ)ACK/NACK(确认/否认)响应,其中,一个或多个处理器被配置为响应于至少一个HARQ ACK/NACK响应包括HARQ NACK而采用物理层传输块(TB)级的重传机制。
示例11包括示例1至4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为处理与w-HL C-PDU有关的至少一个自动重传请求(ARQ)ACK/NACK(确认/否认)响应,其中,一个或多个处理器进一步被配置为响应于至少一个ARQ ACK/NACK响应包括ARQNACK而采用w-HL C-PDU级的重传机制。
示例12包括示例11的任意变形的主题,其中,响应于至少一个ARQ ACK/NACK响应包括ARQ NACK,一个或多个处理器进一步被配置为:确定用于w-HL C-PDU的新PRA和新分配大小;以及基于新分配长度,执行以下处理中的至少一项:对w-HL C-PDU进行重新分段,或者将w-HL C-PDU与缓存到CP传输缓冲器的一个或多个CP分组、缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU、或者一个或多个分段中的至少一个相结合。
示例13包括示例1至4中任一项的任意变形的主题,其中,UE是可穿戴UE(w-UE),并且其中,一个或多个处理器被配置为基于上行链路(UL)许可确定PRA和分配大小。
示例14包括示例1至4中任一项的任意变形的主题,其中,UE是网络UE(n-UE)。
示例15包括示例2-4中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为通过以下处理生成一个或多个分段:对缓存到CP传输缓冲器的一个或多个CP分组进行分段、对缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU进行分段、或者对一个或多个以前生成的分段进行重新分段,其中,w-HL C-PDU是至少部分地基于一个或多个分段生成的。
示例16包括示例2至4或15中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为至少部分地基于结合以下各项中的两项或更多项生成w-HL C-PDU:缓存到CP传输缓冲器的一个或多个CP分组、缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU、或者一个或多个分段。
示例17包括示例2至4或15至16中任一项的任意变形的主题,其中,一个或多个处理器被配置为做出是否经由w-HL C-PDU指示BSR或PHR中的至少一者的判定,并且其中,当上述判定是肯定判定时w-HL C-PDU包括BSR或PHR中的至少一者。
示例18包括示例1至4或15至16中任一项的任意变形的主题,其中,分组报头包括两个或更多个子报头。
示例19包括示例1至4或15至18中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为经由填充将w-HL C-PDU的大小调整为匹配分配大小。
示例20包括示例1至4或15至19中任一项的任意变形,其中,一个或多个处理器进一步被配置为处理与w-HL C-PDU有关的至少一个混合自动重传请求(HARQ)ACK/NACK(确认/否认)响应,其中,一个或多个处理器被配置为响应于至少一个HARQ ACK/NACK响应包括HARQ NACK而采用物理层传输块(TB)级的重传机制。
示例21包括示例1至4或15至20中任一项的任意变形的主题,其中,一个或多个处理器被进一步配置为处理与w-HL C-PDU有关的至少一个自动重传请求(ARQ)ACK/NACK(确认/否认)响应,其中,一个或多个处理器被进一步配置为响应于至少一个ARQ ACK/NACK响应包括ARQ NACK而采用w-HL C-PDU级的重传机制。
示例22包括示例21的任意变形的主题,其中,响应于至少一个ARQ ACK/NACK响应包括ARQ NACK,一个或多个处理器被进一步被配置为:确定用于w-HL C-PDU的新PRA和新分配大小;以及基于新分配大小,执行以下处理中的至少一项:对w-HL C-PDU进行重新分段,或者结合缓存到CP传输缓冲器的一个或多个CP分组、缓存到CP重传缓冲器的一个或多个在先w-HL C-PDU、或一个或多个分段中的至少一者和w-HL C-PDU。
示例23是一种被配置为用在用户设备(UE)中的装置,包括:存储器;以及一个或多个处理器,被配置为:从一个或多个物理层传输块(TB)生成一个或多个可穿戴高层(w-HL)控制协议数据单元(C-PDU);将一个或多个w-HL C-PDU提供给w-HL;从一个或多个w-HL C-PDU生成多个w-HL控制服务数据单元(C-SDU);基于与多个w-HL SDU中的每个w-HL SDU相关联的不同序列号(SN)确定多个w-HL SDU的排序;以及基于上述排序将多个w-HL C-SDU递送到可穿戴无线电资源控制(w-RRC)层。
示例24包括示例23的任意变形的主题,其中,一个或多个处理器进一步被配置为生成与一个或多个物理层TB有关的一个或多个混合自动重传请求(HARQ)ACK/NACK(确认/否认)响应。
示例25包括示例23的任意变形的主题,其中,一个或多个处理器进一步被配置为生成与一个或多个w-HL C-PDU有关的一个或多个自动重传请求(ARQ)ACK/NACK(确认/否认)响应。
示例26包括示例23的任意变形的主题,其中,一个或多个w-HL C-PDU中的第一w-HL C-PDU包括多个w-HL C-SDU中的第一w-HL C-SDU的分段、多个w-HL C-SDU中的第二w-HLC-SDU、缓冲器状态报告(BSR)、功率余量报告(PHR)、第一用户平面(UP)分组的分段、或第二UP分组中的两项或更多项的复用。
示例27包括示例23的任意变形的主题,其中,一个或多个w-HL C-PDU中的第一w-HL C-PDU包括报头,该报头包括多个子报头。
示例28包括示例23至27中任一项的任意变形的主题,其中,UE是可穿戴UE(w-UE)。
示例29包括示例23至27中任一项的任意变形的主题,其中,UE是网络UE(n-UE),并且其中,一个或多个处理器被配置为生成指示一个或多个物理资源配置(PRA)的一个或多个上行链路(UL)许可,其中,一个或多个物理层TB与一个或多个PRA相对应。
示例30包括示例29的任意变形的主题,其中,一个或多个UL许可指示与一个或多个w-HL C-PDU的大小相对应的许可大小。
示例31包括示例23至24中任一项的任意变形的主题,其中,一个或多个处理器进一步被配置为生成与一个或多个w-HL C-PDU有关的一个或多个自动重传请求(ARQ)ACK/NACK(确认/否认)响应。
示例32是一种机器可读介质,包括在被执行时使得可穿戴用户设备(w-UE)执行以下处理的指令:从可穿戴无线电资源控制(w-RRC)层接收一个或多个可穿戴高层(w-HL)控制服务数据单元(C-SDU);向一个或多个w-HL C-SDU中的每一个分配唯一的序列号(SN);将一个或多个w-HL C-SDU存储在上行链路(UL)控制平面(CP)传输缓冲器中;接收指示物理资源配置(PRA)和许可大小的UL许可;至少部分地基于UL许可生成w-HL控制协议数据单元(C-PDU),其中,w-HL C-PDU包括缓冲器状态报告(BSR)、功率余量报告(PHR)、UL CP传输缓冲器、UL CP重传缓冲器、UL用户平面(UP)传输缓冲器、或UL UP重传缓冲器中的一项或多项;以及将w-HL C-PDU传递到物理层。
示例33包括示例32的任意变形的主题,其中,w-HL C-PDU包括基于BSR、PHR、UL CP传输缓冲器、UL CP重传缓冲器、UL UP传输缓冲器、或UL UP重传缓冲器中的两项或更多项的复用。
示例34包括示例32至33中任一项的任意变形的主题,其中,所述指令在被执行时进一步使得UE采用w-HL C-PDU级的自动重传请求(ARQ)ACK/NACK(确认/否认)重传机制和物理层传输块(TB)级的混合ARQ(HARQ)ACK/NACK重传机制。
示例35包括示例32至33中任一项的任意变形的主题,其中,w-HL C-PDU报头包括多个子报头。
示例36是一种被配置为用在用户设备中的装置,包括:被配置为存储指令的存储装置;以及被配置为执行指令以执行以下处理的处理装置:从可穿戴无线电资源控制(w-RRC)层接收一个或多个可穿戴高层(w-HL)控制服务数据单元(C-SDU);向一个或多个w-HLC-SDU中的每个w-HL C-SDU分配不同的序列号(SN);将一个或多个w-HL C-SDU存储在上行链路(UL)控制平面(CP)传输缓冲器中;接收指示物理资源配置(PRA)和许可大小的UL许可;至少部分地基于UL许可生成w-HL控制协议数据单元(C-PDU),其中,w-HL C-PDU包括缓冲器状态报告(BSR)、功率余量报告(PHR)、UL CP传输缓冲器、UL CP重传缓冲器、UL用户平面(UP)传输缓冲器、或UL UP重传缓冲器中的一项或多项;以及将w-HL C-PDU传递到物理层。
示例37包括示例36的任意变形的主题,其中,w-HL C-PDU包括基于BSR、PHR、UL CP传输缓冲器、UL CP重传缓冲器、UL UP传输缓冲器、或UL UP重传缓冲器中的两项或更多项的复用。
示例38包括示例36至37中任一项的任意变形的主题,其中,处理部件进一步被配置为执行指令以采用w-HL C-PDU级的自动重传请求(ARQ)ACK/NACK(确认/否认)重传机制和物理层传输块(TB)级的混合ARQ(HARQ)ACK/NACK重传机制。
示例39包括示例36至37中任一项的任意变形的主题,其中,w-HL C-PDU报头包括多个子报头。
主题公开的示出实施例的上述描述(包括摘要中的描述)不用于将所公开的实施例排他性地限制到所公开的精确形式。尽管这里出于说明性目的描述了具体实施例和示例,但是相关领域技术人员可以认识到,可以考虑落入这些实施例和示例范围中的各种变形。
这里,尽管结合各种实施例和对应附图描述了所公开的主题,但是应该理解的是,在不偏离所公开的主题的范围的条件下,可以使用其他类似实施例或者可以对所描述的实施例做出用于执行相同、类似、替代、或者替换功能的变形和添加。因此,所公开的主题不应该被限制到这里描述的任意单个实施例,而应该根据下附权利要求来理解其宽度和范围。
尤其对于上述组件或结构(装配、设备、电路、***等)执行的各种功能,用于描述这些组件的术语(包括对“部件”的引用)用于对应执行所描述的组件的指定功能的任意组件或结构(即,功能等同),即使在结构上不等同于执行这里示出的示例实施方式中的功能的所公开的结构。另外,尽管仅针对多种实施方式中的一种实施方式公开了特定特征,但是这种特征可以根据需要和有利于任意给定或特定应用而与其他实施方式的一个或多个其他特征结合。

Claims (26)

1.一种被配置为用在用户设备UE中的装置,包括:
存储器;以及
一个或多个处理器,被配置为:
从可穿戴无线电资源控制w-RRC层向可穿戴高层w-HL提供一个或多个控制平面CP分组;
向所述一个或多个CP分组中的每个CP分组分配不同的序列号;
将所述一个或多个CP分组缓存到CP传输缓冲器;
确定用于w-HL控制协议数据单元C-PDU的物理资源配置PRA和分配大小;
至少部分地基于缓存到所述CP传输缓冲器的所述一个或多个CP分组、所述PRA、以及所述分配大小生成所述w-HL C-PDU;
向所述w-HL C-PDU添加分组报头;以及
基于所述PRA从所述w-HL向物理层提供所述w-HL C-PDU。
2.如权利要求1所述的装置,其中,所述一个或多个处理器进一步被配置为至少部分地基于缓冲器状态报告BSR、功率余量报告PHR、CP重传缓冲器、用户平面UP传输缓冲器、或者UP重传缓冲器中的一者或多者生成所述w-HL C-PDU。
3.如权利要求2所述的装置,其中,所述一个或多个处理器进一步被配置为确定所述CP传输缓冲器、所述CP重传缓冲器、所述BSR、所述PHR、所述UP传输缓冲器、以及所述UP重传缓冲器中的每一者的不同优先级。
4.如权利要求3所述的装置,其中,所述一个或多个处理器进一步被配置为:
至少部分地基于复用所述CP重传缓冲器、所述BSR、所述PHR、所述UP传输缓冲器、或所述UP重传缓冲器中的一者或多者以及所述CP传输缓冲器来生成所述w-HL C-PDU,
其中,所述复用至少部分地基于针对所述CP传输缓冲器、所述CP重传缓冲器、所述BSR、所述PHR、所述UP传输缓冲器、以及所述UP重传缓冲器中的每一者确定的不同优先级。
5.如权利要求2至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为:
通过对缓存到所述CP传输缓冲器的一个或多个CP分组进行分段、对缓存到所述CP重传缓冲器的一个或多个在先w-HL C-PDU进行分段、或者对一个或多个以前生成的分段进行重新分段来生成一个或多个分段,
其中,所述w-HL C-PDU是至少部分地基于所述一个或多个分段生成的。
6.如权利要求2至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为至少部分地基于结合以下各项中的两项或更多项来生成所述w-HL C-PDU:缓存到所述CP传输缓冲器的一个或多个CP分组、缓存到所述CP重传缓冲器的一个或多个在先w-HL C-PDU、以及一个或多个分段。
7.如权利要求2至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为做出是否经由所述w-HL C-PDU指示所述BSR或所述PHR中的至少一者的判定,并且其中,当所述判定是肯定判定时所述w-HL C-PDU包括所述BSR或所述PHR中的至少一者。
8.如权利要求1至4中任一项所述的装置,其中,所述分组报头包括两个或更多个子报头。
9.如权利要求1至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置经由填充将所述w-HL C-PDU的大小调整为匹配所述分配大小。
10.如权利要求1至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为处理与所述w-HL C-PDU有关的至少一个混合自动重传请求HARQ ACK/NACK确认/否认响应,其中,所述一个或多个处理器被配置为响应于所述至少一个HARQ ACK/NACK响应包括HARQ NACK而采用物理层传输块TB级的重传机制。
11.如权利要求2至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为处理与所述w-HL C-PDU有关的至少一个自动重传请求ARQ ACK/NACK确认/否定响应,其中,所述一个或多个处理器进一步被配置为响应于所述至少一个ARQ ACK/NACK响应包括ARQ NACK而采用w-HL C-PDU级的重传机制。
12.如权利要求1至4中任一项所述的装置,其中,所述一个或多个处理器进一步被配置为处理与所述w-HL C-PDU有关的至少一个自动重传请求ARQ ACK/NACK确认/否定响应,其中,所述一个或多个处理器进一步被配置为响应于所述至少一个ARQ ACK/NACK响应包括ARQ NACK而采用w-HL C-PDU级的重传机制;以及
其中,响应于所述至少一个ARQ ACK/NACK响应包括ARQ NACK,所述一个或多个处理器进一步被配置为:
确定用于所述w-HL C-PDU的新PRA和新分配大小;以及
基于所述新分配大小,执行以下处理中的至少一项:对所述w-HL C-PDU进行重新分段,或者将所述w-HL C-PDU与缓存到所述CP传输缓冲器的一个或多个CP分组、缓存到所述CP重传缓冲器的一个或多个在先w-HL C-PDU、或者一个或多个分段中的至少一者结合。
13.如权利要求1至4中任一项所述的装置,其中,所述UE是经由其他UE的帮助访问网络NW的可穿戴UE w-UE,并且其中,所述一个或多个处理器被配置为基于上行链路UL许可确定所述PRA和所述分配大小。
14.如权利要求1至4中任一项所述的装置,其中,所述UE是具有完全基础设施网络NW访问协议栈的网络UE n-UE。
15.一种被配置为用在用户设备UE中的装置,包括:
存储器;以及
一个或多个处理器,被配置为:
将来自一个或多个物理层传输块TB的一个或多个可穿戴高层w-HL控制协议数据单元C-PDU提供给w-HL;
从所述一个或多个w-HL C-PDU生成多个w-HL控制服务数据单元C-SDU;
基于与所述多个w-HL SDU中的每个w-HL C-SDU相关联的不同序列号SN确定所述多个w-HL SDU的排序;以及
基于所述排序从所述w-HL向可穿戴无线电资源控制w-RRC层提供所述多个w-HL C-SDU。
16.如权利要求15所述的装置,其中,所述一个或多个处理器进一步被配置为生成与所述一个或多个物理层TB有关的一个或多个混合自动重传请求HARQ ACK/NACK确认/否认响应。
17.如权利要求15所述的装置,其中,所述一个或多个处理器进一步被配置为生成与所述一个或多个w-HL C-PDU有关的一个或多个自动重传请求ARQ ACK/NACK确认/否认响应。
18.如权利要求15所述的装置,其中,所述一个或多个w-HL C-PDU中的第一w-HL C-PDU包括所述多个w-HL C-SDU中的第一w-HL C-SDU的分段、所述多个w-HL C-SDU中的第二w-HLC-SDU、缓冲器状态报告BSR、功率余量报告PHR、第一用户平面UP分组的分段、或第二UP分组中的两项或更多项的复用。
19.如权利要求15所述的装置,其中,所述一个或多个w-HL C-PDU中的第一w-HL C-PDU包括报头,该报头包括多个子报头。
20.如权利要求15至19中任一项所述的装置,其中,所述UE是经由其他UE的帮助访问网络NW的可穿戴UE w-UE。
21.如权利要求15至19中任一项所述的装置,其中,所述UE是具有完全基础设施网络NW访问协议栈的网络UE n-UE,并且其中,所述一个或多个处理器被配置为生成指示一个或多个物理资源配置PRA的一个或多个上行链路UL许可,其中,所述一个或多个物理层TB与所述一个或多个PRA相对应。
22.如权利要求21所述的装置,其中,所述一个或多个UL许可指示与所述一个或多个w-HL C-PDU的大小相对应的许可大小。
23.一种被配置为用在用户设备UE中的装置,包括:
用于存储的装置,被配置为存储指令;以及
用于处理的装置,被配置为执行所述指令以:
从可穿戴无线电资源控制w-RRC层向可穿戴高层w-HL提供一个或多个w-HL控制服务数据单元C-SDU;
向所述一个或多个w-HL C-SDU中的每个w-HL C-SDU分配唯一的序列号SN;
将所述一个或多个w-HL C-SDU存储在上行链路UL控制平面CP传输缓冲器中;
接收指示物理资源配置PRA和许可大小的UL许可;
至少部分地基于所述UL许可生成w-HL控制协议数据单元C-PDU,其中,所述w-HL C-PDU包括缓冲器状态报告BSR、功率余量报告PHR、UL CP传输缓冲器、UL CP重传缓冲器、UL用户平面CP传输缓冲器、或UL UP重传缓冲器中的一项或多项;以及
将所述w-HL C-PDU从所述w-HL传递到物理层。
24.如权利要求23所述的装置,其中,所述w-HL C-PDU包括基于所述BSR、所述PHR、所述UL CP传输缓冲器、所述UL CP重传缓冲器、所述UL UP传输缓冲器、或所述UL UP重传缓冲器中的两项或更多项的复用。
25.如权利要求23至24中任一项所述的装置,其中,所述用于处理的装置还被配置为执行所述指令以:采用w-HL C-PDU级的自动重传请求ARQ ACK/NACK确认/否认重传机制和物理层传输块TB级的混合ARQ HARQ ACK/NACK重传机制。
26.如权利要求23至24中任一项所述的装置,其中,所述w-HL C-PDU报头包括多个子报头。
CN201680084788.6A 2016-05-19 2016-09-22 用于第五代(5g)可穿戴通信中的控制平面分组处理的高层设计 Active CN109076568B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662338917P 2016-05-19 2016-05-19
US62/338,917 2016-05-19
PCT/US2016/053024 WO2017200562A1 (en) 2016-05-19 2016-09-22 Higher layer design for control plane packet processing in fifth generation (5g)-wearable communication

Publications (2)

Publication Number Publication Date
CN109076568A CN109076568A (zh) 2018-12-21
CN109076568B true CN109076568B (zh) 2022-08-19

Family

ID=57043036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680084788.6A Active CN109076568B (zh) 2016-05-19 2016-09-22 用于第五代(5g)可穿戴通信中的控制平面分组处理的高层设计

Country Status (2)

Country Link
CN (1) CN109076568B (zh)
WO (1) WO2017200562A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952094B2 (en) * 2018-04-09 2021-03-16 Mediatek Inc. AT commands for 5G QoS management
CN110958709A (zh) * 2018-09-27 2020-04-03 维沃移动通信有限公司 数据传输方法及通信设备
US20200113009A1 (en) * 2018-10-06 2020-04-09 Mediatek Inc. Handling Of Invalid Mandatory Information In Mobile Communications
WO2020126018A1 (en) * 2018-12-20 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Buffer status reporting in wireless communication systems
CN113303013B (zh) * 2019-01-11 2024-04-16 中兴通讯股份有限公司 使用差分编码的基于竞争的有效载荷传输
CN113302860B (zh) * 2019-01-17 2023-05-09 中兴通讯股份有限公司 使用差分编码的基于竞争的有效载荷传输

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068317A (ko) * 2009-06-10 2009-06-26 엘지전자 주식회사 상태 보고를 보고하는 방법 및 수신기
CA2722781A1 (en) * 2008-06-18 2009-12-23 Lg Electronics Inc. Method for transmitting mac pdus
EP2166691A2 (en) * 2008-09-22 2010-03-24 HTC Corporation Methods and apparatuses for improving buffer status triggering mechanism in wireless communictions system
CN201444641U (zh) * 2007-10-01 2010-04-28 交互数字专利控股公司 无线发射/接收单元
CN101785214A (zh) * 2007-08-12 2010-07-21 Lg电子株式会社 在无线通信***中发送上行链路数据和缓存器状态报告的方法、用于实现该方法的无线设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883440B (zh) * 2011-07-15 2015-11-25 华为技术有限公司 一种无线宽带通信方法,装置和***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101785214A (zh) * 2007-08-12 2010-07-21 Lg电子株式会社 在无线通信***中发送上行链路数据和缓存器状态报告的方法、用于实现该方法的无线设备
CN201444641U (zh) * 2007-10-01 2010-04-28 交互数字专利控股公司 无线发射/接收单元
CA2722781A1 (en) * 2008-06-18 2009-12-23 Lg Electronics Inc. Method for transmitting mac pdus
EP2166691A2 (en) * 2008-09-22 2010-03-24 HTC Corporation Methods and apparatuses for improving buffer status triggering mechanism in wireless communictions system
KR20090068317A (ko) * 2009-06-10 2009-06-26 엘지전자 주식회사 상태 보고를 보고하는 방법 및 수신기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"R2-162861 5G user plane protocol design".《3GPP tsg_ran\WG2_RL2》.2016,全文. *

Also Published As

Publication number Publication date
WO2017200562A1 (en) 2017-11-23
CN109076568A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109076568B (zh) 用于第五代(5g)可穿戴通信中的控制平面分组处理的高层设计
CN111434064B (zh) 上行链路控制信息传输和混合自动重传请求处理标识
CN107925523B (zh) 无线***中的上行链路控制信息的传输
US10708000B2 (en) Contention window size adaptation
CN111316688B (zh) 在无线通信***中发送和接收分组数据信息的装置和方法
TWI735303B (zh) 下行鏈路回饋資訊發送以及接收之方法
CN107005383B (zh) 用于ca(载波聚合)和laa(授权辅助接入)的多个分量载波上的传输块的联合处理
EP3453222B1 (en) Higher layer design for user plane packet processing in fifth generation new radio things sidelink communication
CN106538022A (zh) 用于设备到设备(d2d)通信的时间资源的分配和信令的用户设备和方法
US9602248B2 (en) Method of transmitting and receiving ARQ feedback information
CN115104269B (zh) 具有紧凑存储器使用的上行链路重传
US20220015092A1 (en) Communication Method and Apparatus
WO2019056369A1 (zh) 通信方法和装置
WO2021203976A1 (zh) 数据处理方法、装置及***
CN118158818A (zh) 终端、基站、通信方法及集成电路
CN110178403B (zh) 用于5g nr通信***中的非对称上行链路/下行链路协议栈和帧结构的方法和装置
CN109474405A (zh) 多载波***中的计数方法、装置及***
WO2018071050A1 (en) RETRANSMISSION PROCEDURES FOR FIFTH GENERATION (5G) NEW RADIO (NR) THINGS SIDELINK (tSL) COMMUNICATION
WO2018119458A2 (en) Pre-grant packet header processing
TW201724786A (zh) 通道狀態資訊回饋通道
WO2023079917A1 (en) Timeline considerations and channel dropping enhancements for collision resolution between multiple high priority pucchs with harq-ack and a low priority pusch
WO2023079916A1 (en) Methods of collision resolution between multiple high priority pucchs with harq-ack and a low priority pusch
US20240080860A1 (en) Wireless communication methods, terminal devices, and network device
WO2024138725A1 (en) Wireless communication method and devices thereof
WO2024065559A1 (en) System and method for cbg based multiple slot transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200325

Address after: California, USA

Applicant after: Apple Inc.

Address before: California, USA

Applicant before: INTEL Corp.

GR01 Patent grant
GR01 Patent grant