CN109070215B - 由双相钢制造部件的方法以及通过该方法制造的部件 - Google Patents

由双相钢制造部件的方法以及通过该方法制造的部件 Download PDF

Info

Publication number
CN109070215B
CN109070215B CN201780017509.9A CN201780017509A CN109070215B CN 109070215 B CN109070215 B CN 109070215B CN 201780017509 A CN201780017509 A CN 201780017509A CN 109070215 B CN109070215 B CN 109070215B
Authority
CN
China
Prior art keywords
component
maximum temperature
phase
heat treatment
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780017509.9A
Other languages
English (en)
Other versions
CN109070215A8 (zh
CN109070215A (zh
Inventor
A.伯姆
S.布劳恩
H.劳纳
B.施拉姆
A.施泰因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Publication of CN109070215A publication Critical patent/CN109070215A/zh
Publication of CN109070215A8 publication Critical patent/CN109070215A8/zh
Application granted granted Critical
Publication of CN109070215B publication Critical patent/CN109070215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及由双相钢制造部件的方法和由此制造的部件。在此,晶粒形式的奥氏体相嵌入在铁素体基质中。将由双相钢制成且其中包含奥氏体和铁素体相,优选包含各自几乎相同含量的奥氏体和铁素体相以及其它合金元素的粉末状起始材料通过激光束局部定义地熔化,并随后凝固。将所述粉末状起始材料逐层施加到载体上,并且在所述施加后对每个单层施以激光束,以使得所述部件依次生成性形成。使由此形成的部件随后经历热处理,其中实现奥氏体相的固溶退火,其中所述热处理在850℃至1100℃的各自最大温度的温度范围中进行并且在可预设的保持时间到期后使所述部件冷却。通过特定地选择各自的最大温度和/或所述最大温度的保持时间,影响所述奥氏体相的粒度和粒度值G,并且在此遵循至少9的根据ASTM的粒度值G。

Description

由双相钢制造部件的方法以及通过该方法制造的部件
本发明涉及由双相钢制造部件的方法以及通过该方法制造的部件。
由双相钢形成的部件通常作为浇铸或锻造部件制造,其中奥氏体以晶粒形式嵌入在铁素体基质中。通常,在浇铸或锻造后还在850℃至1180℃的温度范围中进行所谓的固溶退火,以在该铁素体基质中形成奥氏体晶粒。相应地,除了合金组成外,还可以通过结构而影响性能。
一般已知的是,细粒的结构在多种情况中具有改进的性能和特别是更高的强度以及同时高的韧性。但是,通过已知操作方式不能实现非常细的结构。
此外已知其中对粉末状起始材料局部特定地施以激光束的生成性制造法。该操作方式被称为选择性激光熔化(SLM)或激光熔融。在此,将粉末状起始材料彼此逐层地施加在载体上,并且将各层然后通过激光束辐射,其中焦点局部定义地沿着预设轮廓和/或移动至预设位置。在各自层的受激光束焦点影响的区域中,进行该粉末状材料的熔化,由此使该粉末状材料的颗粒熔融在一起。因为焦点在这一熔化操作后继续移动,该熔体凝固,并且在这一区域中形成具有取决于各自能量密度和辐射时间的孔隙率的固体材料。在这些区域中,该孔隙率可以减小至零。在未辐射的区域中,留下松散的起始粉末,并且可以在各自部件完成后容易地除去并再次利用。
但是,不能通过所述已知的可能方式获得足够细粒的结构。原则上,粒度值G可以根据不同方法测定,例如根据Euronorm 103-71、DIN EN ISO 642或ASTM E1 12-12。这些标准要求通过标准化的显微照片而比较样品的晶粒结构,然后由此推导出粒度级。然后,应采用根据ASTM E1 12-12的平均粒度测定,其为国际标准并例如引用在Euronorm 103-71的附件中。
ASTM E1 12-12通过晶粒的NAE值定义了粒度值G,其中NAE值可以在边长1英寸的正方形上进行一百倍放大的情况下数出。
NAE = S G-1
为了简化粒度值的测定,对于值G=1至G=10提供比较照片。
对于通过所述方法制造的部件,粒度分布在过小范围内,以使得嵌入在铁素体中的奥氏体晶粒过大,这限制了强度和韧性。
因此,本发明的目的是提供由双相钢制造部件的可能性,其实现提高的强度和韧性。
根据本发明,所述目的通过实现权利要求1的特征的方法得以实现。权利要求9涉及通过该方法制造的部件。
在本发明方法中,使用由双相钢制成且其中包含奥氏体和铁素体相,优选包含各自几乎相同含量的奥氏体和铁素体相以及其它合金元素的粉末状起始材料,并通过激光束局部定义地熔化。但是,也可以使用金属粉末,其中在制造时较大含量或甚至所有含量的奥氏体溶于铁素体相中并因此实际上不包含可检出的单独奥氏体相。通过稍后还会再重新描述且可以在通过激光束熔化后优选在除去松散的未熔化粉末后在实际上制造完成的半成品上进行的热处理,此时可以实现形成铁素体相和奥氏体相,尽管在起始金属粉末中不含或仅含有少量的可检出的奥氏体相。
当激光束焦点(激光光斑)已继续移动时,熔化的材料凝固。在此,所述粉末状起始材料逐层施加在载体上,并且在所述施加后对每个单层施以激光束,以使得所述部件依次生成性地逐层形成。
该部件材料的组成在此仅少许变化(如果发生的话)。因此,铁素体含量未变化,这可以借助X射线衍射在相图中得以证实。但是通过使用扫描电子显微镜的研究,不能发现奥氏体晶粒。
这特别是归咎于通过激光束形成的熔体凝固时的极短时间。
出于这一原因,使如此形成的部件随后经受热处理,其中实现奥氏体相的固溶退火。该热处理在850℃至1100℃的各自最大温度的温度范围中进行,并且在可预设的保持时间到期后使该部件冷却。该冷却应在短时间内突然进行,这可以通过浸入冷水中实现。
通过特定地选择所述最大温度和/或各自最大温度的保持时间,影响所述部件材料的成品结构中奥氏体相的粒度和粒度值G。在此,应遵循至少9的根据ASTM的粒度值G。
在此通常适用的是,选择越小的最大温度和保持温度,可以形成越细的结构。但是应遵循最低条件,因为否则不能通过扩散在铁素体中形成奥氏体晶粒。
应考虑的是,可以在较小的最大温度和/或各自最大温度的较小的保持时间下实现较高的粒度值G。
应遵循15 min至10 h的保持时间,其中维持各自的最大温度。
在此,在所述热处理时应遵循1000℃至1075℃ ± 10 %的最大温度以及150 K/h至250 K/h的加热速率。
在小于1 h,优选≤ 0.5 h的保持时间和1000℃至1075℃的最大温度下,可以实现至少13,优选至少14的粒度值G。
有利地,若干参数应保持在特定的参数范围中。在所述粉末状起始材料熔化时,激光束的焦点应指向最上层,以使得遵循至少40 J/mm3至最大150 J/mm3的能量密度和400mm/s至1750 mm/s,优选500 mm/s至1500 mm/s的焦点移动推进速度和15 μm至50 μm,优选20 μm至30 μm的通过所述起始材料形成的各个层的层厚度。
在制造时,应使用如下起始材料,其通过含量彼此相差最大10体积%的奥氏体相和铁素体相以及总含量为最大45质量%。优选最大40质量%,特别优选最大35质量%的选自铬、钼、镍、氮、铜、碳、钨、硅和锰的合金元素形成。
有利的是,在该热处理过程中进行空间分辨的温度测定和各自部件的相应的局部定义的调温。对于具有非常不同壁厚度和因此存在局部不同热容量的不同区域的部件而言,这特别重要。
因此,可以将部件的具有较大体积积累或壁厚度的区域进行额外加热。这可以通过有针对性地指向此类区域的辐射,例如特别是红外辐射实现。由此可以实现,这些区域可以以与设计为更薄壁的区域相同的方式升温并且避免该部件内的温度梯度。此外,可以在传统炉中或在其上额外地存在辐射器,该辐射器将各自部件的否则缓慢升温的临界区域进行额外加热。
单独地或除此之外,也可以使部件的更薄壁的区域冷却,而部件的更厚壁或更大体积的区域不冷却或额外加热。为了冷却,可以在炉中在尽可能要冷却的相应临界区域的附近存在冷却元件。还可以将经冷却的气体流指向此类薄壁区域。
为了局部定义地调温,可以利用至少一个温度传感器,通过该传感器可以以优选不接触的方式测定在不同尺寸化区域上的各自温度。这可以例如是以偏斜方式和/或其它方式可移动的高温计。通过如此空间分辨获取的温度测量值,可以相应地调整相应布置和/或指向的加热和/或冷却元件,以使得可以在相同时间在整个部件体积上遵循相同的,但是至少几乎相同的温度。
下面应借助实施例更详细阐述本发明。也可以改变在此示出的参数,以使得获得如下结构,该结构对应于在完成制造的部件的铁素体基质中的奥氏体晶粒的最小值,其具有至少9的粒度值G,优选具有更高的粒度值G。这可以特别是在导致奥氏体溶解的热处理时的其它最大温度及其保持时间。
图1显示了通过在热处理时遵循的1065℃最大温度且经8 h时间段保持这一最大温度而根据本发明制造的部件的样品的显微照片;
图2显示了通过在热处理时遵循的1065℃最大温度且经0.5 h时间段保持这一最大温度而根据本发明制造的部件的样品的显微照片;且
图3显示了通过在热处理时遵循的1000℃最大温度且经0.5 h时间段保持这一最大温度而根据本发明制造的部件的样品的显微照片。
在实施例中利用的具有商品名NORIDUR的粉末状起始材料具有下列组成:
碳0.036质量%、硅0.6质量%、锰0.63质量%、硫0.015质量%、铬24.8质量%、镍7质量%、钼2.32质量%、铜2.93质量%和氮0.18质量%。
将各三个所示样品通过功率为90 W的激光束以并排布置的轨迹的56 µm距离进行辐射,所示轨迹通过激光束焦点的推进移动而被覆盖。使该激光束如此聚焦,以使得在焦点中遵循70 J/mm³的能量密度。该焦点通过600 mm/s的推进速度在各自由起始材料形成的各层的表面上移动。
在此,实现该部件材料的0.5 %孔隙率。
在逐层生成性形成部件后,在所述热处理时选择不同参数。
例如在图1中所示的样品的情况下,在热处理时选择1065℃的最大温度。该最大温度保持8h。这导致嵌入在铁素体中的奥氏体的11.31的粒度值G。该热处理通过200 K/h的加热速率进行。在8h的保持时间到期后,使经热处理的部件在20℃温热的水中冷却。
在图2中示出其显微照片的样品的情况下,在热处理时选择1065℃的最大温度。该最大温度保持0.5 h。这导致嵌入在铁素体中的奥氏体的14.14的粒度值G。该热处理通过200 K/h的加热速率进行。在0.5 h的保持时间到期后,使经热处理的部件在20℃温热的水中冷却。
在图3中示出其显微照片的样品的情况下,在热处理时选择1000℃的最大温度。该最大温度保持0.5 h。这导致嵌入在铁素体中的奥氏体的14.83的粒度值G。该热处理通过200 K/h的加热速率进行。在0.5 h的保持时间到期后,使经热处理的部件在20℃温热的水中冷却。
因此明显可看出,当降低在热处理时引入的能量量时,粒度值G提高并且因此获得更细的结构。但是,应使用导致奥氏体相从铁素体相溶解出的最小能量,并且奥氏体晶粒应嵌入到铁素体基质中。

Claims (8)

1.由双相钢制造部件的方法,其中晶粒形式的奥氏体相嵌入在铁素体基质中,
在所述方法中将由双相钢制成且其中包含各自几乎相同含量的奥氏体相和铁素体相以及其它合金元素的粉末状起始材料,其中奥氏体相和铁素体相的含量彼此相差最大10体积%,并且所述其它合金元素的总含量为最大45质量%,并选自铬、钼、镍、氮、铜、碳、钨、硅和锰,
通过激光束局部熔化并随后凝固,其中所述粉末状起始材料逐层施加到载体上并且在所述施加后对每个单层施以激光束,以使得所述部件依次生成性形成,并且
使由此形成的部件随后经历热处理,在所述热处理中实现奥氏体相的固溶退火,其中所述热处理在850℃至1100℃的各自的最大温度的温度范围中进行并且在可预设的保持时间到期后使所述部件冷却;并且
通过选择各自的最大温度和/或所述最大温度的保持时间,影响所述奥氏体相的粒度和粒度值G,并且在此
遵循至少9的根据ASTM E1 12-12的粒度值G。
2.根据权利要求1所述的方法,其特征在于,在较小的最大温度和/或各自的最大温度的较短的保持时间下达到较高的粒度值G。
3.根据权利要求1或2所述的方法,其特征在于,遵循15 min至10 h的保持时间。
4.根据权利要求1或2所述的方法,其特征在于,在所述热处理时遵循1000℃至1075℃± 10 %的最大温度。
5.根据权利要求4所述的方法,其特征在于,在小于1 h的保持时间和1000℃至1075℃的最大温度下实现至少13的粒度值G。
6.根据权利要求1或2所述的方法,其特征在于,在所述粉末状起始材料熔化时,激光束的焦点指向最上层,以使得遵循至少40 J/mm3至最大150 J/mm3的能量密度和
400 mm/s至1750 mm/s的焦点移动推进速度和
15 μm至50 μm的通过所述粉末状起始材料形成的各个层的层厚度。
7.根据权利要求1或2所述的方法,其特征在于,在所述热处理过程中,进行空间分辨的温度测定和各自部件的相应的局部调温。
8.通过根据权利要求1-7任一项所述的方法制造的部件,其特征在于,遵循至少9的嵌入在铁素体基质中的奥氏体相的根据ASTM E1 12-12的粒度值G。
CN201780017509.9A 2016-03-15 2017-03-15 由双相钢制造部件的方法以及通过该方法制造的部件 Active CN109070215B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102016003105.0 2016-03-15
DE102016003105 2016-03-15
DE102017204099.8A DE102017204099A1 (de) 2016-03-15 2017-03-13 Verfahren zur Herstellung von Bauteilen aus einem Duplexstahl sowie mit dem Verfahren hergestellte Bauteile
DE102017204099.8 2017-03-13
PCT/EP2017/056056 WO2017157978A1 (de) 2016-03-15 2017-03-15 Verfahren zur herstellung von bauteilen aus einem duplexstahl sowie mit dem verfahren hergestellte bauteile

Publications (3)

Publication Number Publication Date
CN109070215A CN109070215A (zh) 2018-12-21
CN109070215A8 CN109070215A8 (zh) 2019-01-29
CN109070215B true CN109070215B (zh) 2021-07-02

Family

ID=59752051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780017509.9A Active CN109070215B (zh) 2016-03-15 2017-03-15 由双相钢制造部件的方法以及通过该方法制造的部件

Country Status (13)

Country Link
US (1) US11059102B2 (zh)
EP (1) EP3429783B1 (zh)
JP (1) JP6894446B2 (zh)
KR (1) KR102314197B1 (zh)
CN (1) CN109070215B (zh)
AU (1) AU2017235370B2 (zh)
BR (1) BR112018067318B1 (zh)
CA (1) CA3017780C (zh)
DE (1) DE102017204099A1 (zh)
MX (1) MX2018011015A (zh)
RU (1) RU2706272C1 (zh)
WO (1) WO2017157978A1 (zh)
ZA (1) ZA201805877B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964539B2 (ja) * 2017-09-15 2021-11-10 株式会社神戸製鋼所 積層造形物及び積層造形物の製造方法
CN109128166B (zh) * 2018-09-27 2020-05-12 北京科技大学 一种超高强度耐腐蚀软磁铁素体不锈钢近净成形方法
CN110090961B (zh) * 2019-04-29 2022-04-15 石家庄钢铁有限责任公司 一种轴承钢产品的加工工艺
CN112570729B (zh) * 2020-11-26 2023-05-05 首都航天机械有限公司 一种降低开裂敏感性的激光增材制造方法
EP4015110A1 (en) * 2020-12-16 2022-06-22 ABB Schweiz AG Method to produce a sinter structure and sinter structure produced with such a method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336636A (ja) * 1993-05-28 1994-12-06 Kobe Steel Ltd 超微細粒組織を有するオーステナイト・フェライト系 ステンレス鋼の製造方法
CN1117087A (zh) * 1994-05-21 1996-02-21 朴庸秀 有高耐腐蚀性的双相不锈钢
CN101802237A (zh) * 2007-08-15 2010-08-11 蒂森克虏伯钢铁欧洲股份公司 双相钢、由这种双相钢制备的扁钢产品、以及制备扁钢产品的方法
CN103103439A (zh) * 2013-01-23 2013-05-15 马鞍山钢铁股份有限公司 一种双相钢及其生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793539A (fr) 1971-12-30 1973-06-29 Int Nickel Ltd Perfectionnements relatifs a la compression des poudres
US8828116B2 (en) * 2010-05-25 2014-09-09 Panasonic Corporation Metal powder for selective laser sintering, method for manufacturing three-dimensional shaped object by using the same, and three-dimensional shaped object obtained therefrom
BRPI1102980B1 (pt) * 2011-06-07 2018-06-05 Universidade Estadual De Ponta Grossa Tubos dutos ou risers de aço à base de grafeno, método de fabricação dos mesmos e sua utilização para o transporte de petróleo, gás e biocombustíveis
WO2015137507A1 (ja) * 2014-03-14 2015-09-17 山陽特殊製鋼株式会社 析出硬化型ステンレス鋼粉末及びその焼結体
US9999924B2 (en) 2014-08-22 2018-06-19 Sigma Labs, Inc. Method and system for monitoring additive manufacturing processes
RU2568600C1 (ru) * 2014-09-24 2015-11-20 Акционерное общество "Инжиниринговая компания "АЭМ-технологии" (АО "АЭМ-технологии") Охлаждаемая лопатка газотурбинного двигателя
KR101668532B1 (ko) * 2014-12-26 2016-10-24 주식회사 포스코 항복강도 및 충격인성이 우수한 슈퍼 듀플렉스 스테인리스강 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336636A (ja) * 1993-05-28 1994-12-06 Kobe Steel Ltd 超微細粒組織を有するオーステナイト・フェライト系 ステンレス鋼の製造方法
CN1117087A (zh) * 1994-05-21 1996-02-21 朴庸秀 有高耐腐蚀性的双相不锈钢
CN101802237A (zh) * 2007-08-15 2010-08-11 蒂森克虏伯钢铁欧洲股份公司 双相钢、由这种双相钢制备的扁钢产品、以及制备扁钢产品的方法
CN103103439A (zh) * 2013-01-23 2013-05-15 马鞍山钢铁股份有限公司 一种双相钢及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Transformation of austenite to duplexaustenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting;l.K.saeidi 等;《Journal of Alloys and compounds》;20151231;第463-469页 *

Also Published As

Publication number Publication date
EP3429783C0 (de) 2023-08-16
AU2017235370B2 (en) 2021-11-04
JP2019516009A (ja) 2019-06-13
DE102017204099A1 (de) 2017-09-21
BR112018067318B1 (pt) 2023-02-14
EP3429783B1 (de) 2023-08-16
RU2706272C1 (ru) 2019-11-15
CN109070215A8 (zh) 2019-01-29
MX2018011015A (es) 2019-06-20
CA3017780C (en) 2021-07-13
WO2017157978A1 (de) 2017-09-21
US20190084043A1 (en) 2019-03-21
EP3429783A1 (de) 2019-01-23
KR20180123499A (ko) 2018-11-16
ZA201805877B (en) 2019-07-31
CN109070215A (zh) 2018-12-21
AU2017235370A1 (en) 2018-09-20
US11059102B2 (en) 2021-07-13
CA3017780A1 (en) 2017-09-21
BR112018067318A2 (pt) 2018-12-26
JP6894446B2 (ja) 2021-06-30
KR102314197B1 (ko) 2021-10-19

Similar Documents

Publication Publication Date Title
CN109070215B (zh) 由双相钢制造部件的方法以及通过该方法制造的部件
Rännar et al. Hierarchical structures of stainless steel 316L manufactured by Electron Beam Melting
Yao et al. Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting
Buchmayr et al. Laser powder bed fusion–materials issues and optimized processing parameters for tool steels, AlSiMg‐and CuCrZr‐alloys
Liu et al. A preliminary investigation on selective laser melting of M2 high speed steel
KR20180040513A (ko) 적층조형용 Ni계 초합금분말
CN107914011B (zh) 用于制造机械构件的方法
RU2562722C1 (ru) Способ изготовления изделий сложной формы из порошковых систем
Zhang et al. Application prospects and microstructural features in laser-induced rapidly solidified high-entropy alloys
CA3035696A1 (en) Method for generating a component by a powder-bed-based additive manufacturing method and powder for use in such a method
CA3068408C (en) An additive manufacturing technique for precipitation-hardened superalloy powdered material
Mosallanejad et al. In-situ alloying of a fine grained fully equiaxed Ti-based alloy via electron beam powder bed fusion additive manufacturing process
JP2021508782A (ja) アルミニウム含有合金の付加製造における使用
CN112805106A (zh) 制造铝合金零件的方法
Byun et al. Effects of Cr and Fe addition on microstructure and tensile properties of Ti–6Al–4V prepared by direct energy deposition
JP6933206B2 (ja) 複合部材の製造方法及び複合部材
Shanmuganathan et al. Effect of high laser energy density on selective laser melted 316L stainless steel: analysis on metallurgical and mechanical properties and comparison with wrought 316L stainless steel
US11780014B2 (en) Auto-tempering steels for additive manufacturing
Milewski et al. Understanding metal for additive manufacturing
KR101383584B1 (ko) 치과용 임플란트에 사용되는 어버트먼트용 합금재료의 봉재 제조방법
Hearn Development of Structural Steels for Powder Bed Fusion-Laser Beam
Sprague Characterization of Direct Metal Deposition Printed Copper-Iron Alloys
Mahbooba Additive Manufacturing of Bulk Metallic Glass
Chmielewska NiTi in situ alloying in powder-based additive manufacturing
Saha Additive manufacturing of High Entropy Alloys: Trends, challenges and future perspectives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CI02 Correction of invention patent application
CI02 Correction of invention patent application

Correction item: Applicant

Correct: KSB Corporation

False: KSB AG

Number: 51-02

Page: The title page

Volume: 34

Correction item: Applicant

Correct: KSB Corporation

Number: 51-02

Volume: 34

GR01 Patent grant
GR01 Patent grant