CN109066678A - 一种改进的apf***谐波电流检测方法 - Google Patents

一种改进的apf***谐波电流检测方法 Download PDF

Info

Publication number
CN109066678A
CN109066678A CN201810987233.3A CN201810987233A CN109066678A CN 109066678 A CN109066678 A CN 109066678A CN 201810987233 A CN201810987233 A CN 201810987233A CN 109066678 A CN109066678 A CN 109066678A
Authority
CN
China
Prior art keywords
current
active
component
equivalent conductance
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810987233.3A
Other languages
English (en)
Inventor
王瑜瑜
刘少军
叶婷
李宁
王超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aeronautical Polytechnic Institute
Original Assignee
Xian Aeronautical Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aeronautical Polytechnic Institute filed Critical Xian Aeronautical Polytechnic Institute
Priority to CN201810987233.3A priority Critical patent/CN109066678A/zh
Publication of CN109066678A publication Critical patent/CN109066678A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了一种改进的APF***谐波电流检测方法,采用改进的FBD算法,由三相负载电流ia(t)、ib(t)、ic(t)与由PLL得到的参考电压参进行计算,获得有功等效电导和无功等效电导;采用改进的ip‑iq法,首先将有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t);然后采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)中的直流分量最后计算三相谐波电流参考值本发明降低了谐波电流计算的复杂性,提高检测的精度和响应速度,改进的谐波检测方法相较于传统的算法,使得***的静态及动态性能都有了明显的提高。

Description

一种改进的APF***谐波电流检测方法
技术领域
本发明属于电力电子技术领域,具体涉及一种改进的APF***谐波电流检测方法。
背景技术
APF***功能实现的前提即是谐波电流检测环节能实时准确地检测出负载所含的谐波电流,因此谐波电流检测算法的准确性和快速性将直接影响APF***的补偿效果。目前,APF***常用的谐波检测算法主要有:①基于瞬时无功功率理论的检测方法。该方法目前是在APF***中应用最为广泛的,现已发展出p-q法、ip-iq法和d-q法。其中,p-q法是应用最早的谐波检测方法,且仅适用于三相对称且无畸变的APF***;ip-iq法则应用范围广泛,对于不对称和有畸变的***同样适用,且检测误差较p-q法小;d-q法是基于Park变换的,不仅简化了对于三相对称且无畸变的APF***的检测,也适用于三相不对称、有畸变的***。②基于频域分析模拟实现的带通、带阻滤波器和谐波器检测法。该检测方法电路结构简单、成本低、品质因数易于控制,但对元件参数非常敏感且误差较大,因此很少使用。③基于频域分析的离散傅立叶变换检测法。该方法需要进行傅里叶变换及其反变换,故计算量很大,存在滞后性,尤其是当电网波形畸变严重或者频率波动时,极大影响了谐波电流的检测精度。④FBD检测法。该方法是一种时域检测法,没有复杂的Park变换和Clark变换,算法简单,但该方法无法直接对APF***的上下电容电压进行均压控制。⑤自适应检测法。该方法针对单相或三相电路电压畸变、电网参数变化以及频率偏移等诸多情况能够自适应地进行调整,但动态响应效果较差。
以上常用的电流谐波检测算法都各有优缺点,如何通过进一步的分析,推导出其中的两个或多个算法之间的内在联系并将其相融合,形成一种新的检测算法,则是本发明研究的目的。基于此,本发明经过分析推导,找到常用的FBD检测法和基于瞬时无功功率理论的ip-iq法之间的内在联系,并最终将两种算法相结合,提出一种新的电流谐波检测算法。
发明内容
本发明的目的是提供一种改进的APF***谐波电流检测方法,该方法克服了传统FBD检测法和ip-iq法的不足,省去了不必要的零序电流分离环节,并减少了坐标变换带来的矩阵运算,提高了算法的可靠性和实时性;采用改进的移动平均算法代替传统的LPF,解决了上下电容电压平衡问题的同时,提高了谐波检测的实时性和精度。
本发明所采用的技术方案是,一种改进的APF***谐波电流检测方法,具体实施步骤如下:
步骤1:采用改进的FBD算法,由三相负载电流ia(t)、ib(t)、ic(t)与由PLL得到的参考电压参进行计算,获得有功等效电导和无功等效电导;
步骤2:采用改进的ip-iq法,首先将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t);然后采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)中的直流分量
步骤3:计算三相谐波电流参考值
本发明的特点还在于,
步骤1获得有功等效电导和无功等效电导的具体方法如下:
***电压参考矢量为u=(u1,u2,...,um),电流矢量i=(i1,i2,...,im),矢量的元素分别为各相电压、电流瞬时值,相关定义如下:
瞬时功率:
瞬时电压:
由式(1-1)和(1-2)可得,其有功等效电导和无功等效电导定义如下:
其中,up为有功电压、uq为无功电压、Pq∑(t)为t时刻瞬时无功功率、Pp∑(t)为t时刻瞬时有功功率;矢量的元素u1,u2,...,um和i1,i2,...,im分别为各相电压、电流瞬时值。
将电路三相电压和电流代入式(1-3)中,可得其有功等效电导:
对称的三相交流电求和,得到sinωt+sin(ωt-120°)+sin(ωt+120°)=0,故可得:
同理可得其无功等效电导:
由式(1-6)和(1-7)可得有功等效电导Gp(t)和无功等效电导Gq(t)为:
n代表1至无穷大所的正整数,I1n为三相四线制***中正序电流,I0n为三相四线制***中零序电流,I2n为三相四线制***中负序电流,t为时间,φ1n为正序电流的初相位,φ2n为负序电流的初相位,φ0n为零序电流的初相位。
步骤2所述计算有功电流分量ip(t)和无功电流分量iq(t)中的直流分量的方法为:
将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t):
瞬时有功电流ip(t)和瞬时无功电流iq(t)分别是:
采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)分别提取有功电流分量ip(t)直流分量和无功电流分量iq(t)直流分量
式中:ip(k)为有功电流第k个采样点的实时数据,ip(k-N)为有功电流上一个周期内N个采样点中最滞后的数据,ip(l)为有功电流采样的被求和数据。
式中:iq(k)为无功电流第k个采样点的实时数据,iq(k-N)为无功电流上一个周期内N个采样点中最滞后的数据,iq(l)为无功电流采样的被求和数据。
步骤3计算三相谐波电流参考值的具体方法为:
将上下电容均压环PI调节器产生的零轴电流增量Δi0叠加到进行单独提取零轴电流中,产生零序电流参考值将直流侧电压和上下电容均压环产生的电流增量Δip叠加到有功电流中,产生有功电流参考值无功电流参考值则直接由无功电流分量iq(t)和无功电流直流分量相叠加获得;有功和无功电流参考值与零序电流的参考值一同经过反Park和反Clark变换,得到三相谐波电流参考值
本发明的有益效果是,本发明的一种改进的APF***谐波电流检测方法采用改进的FBD算法,省去了零序电流踢除的环节,直接将三相电流代入进行计算,获得有功等效电导和无功等效电导,降低了计算的复杂性;再采用改进的ip-iq法,将获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t),在此基础上为了提高检测的精度和响应速度,采用改进的移动平均值法提取直流分量,并对零轴电流单独提取,对上下电容电压进行均压控制。
附图说明
图1是本发明的一种改进的APF***谐波电流检测方法的结构示意图;
图2是传统电流检测方法中的电流仿真波形;
图3是本发明的一种改进的APF***谐波电流检测方法中的电流仿真波形;
图4是传统瞬时无功功率法电源电流谐波分析图;
图5是本发明的一种改进的APF***谐波电流检测方法的改进谐波检测法电源电流谐波分析图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明的一种改进的APF***谐波电流检测方法的流程如图1所示,具体操作步骤如下:
步骤1:采用改进的FBD算法,由三相负载电流ia(t)、ib(t)、ic(t)与由PLL得到的参考电压参进行计算,获得有功等效电导和无功等效电导;
步骤1获得有功等效电导和无功等效电导的具体方法如下:
***电压参考矢量为u=(u1,u2,...,um),电流矢量i=(i1,i2,...,im),矢量的元素分别为各相电压、电流瞬时值,相关定义如下:
瞬时功率:
瞬时电压:
由式(1-1)和(1-2)可得,其有功等效电导和无功等效电导定义如下:
其中,up为有功电压、uq为无功电压、Pq∑(t)为t时刻瞬时无功功率、Pp∑(t)为t时刻瞬时有功功率;矢量的元素u1,u2,...,um和i1,i2,...,im分别为各相电压、电流瞬时值。
传统FBD算法运用到三相四线制APF中,通常先计算三相电流的零序分量,再将该零序电流剔除,最后再将三相电压和去除了零序分量的三相电流代入式1-3中,计算可得:
ia(t)、ib(t)、ic(t)分别代表a、b、c三相负载电流,n代表1至无穷大所的正整数,I1n为三相四线制***中正序电流,I0n为三相四线制***中零序电流,I2n为三相四线制***中负序电流,t为时间,φ1n为正序电流的初相位,φ2n为负序电流的初相位,φ0n为零序电流的初相位。
为了避免传统FBD算法的计算复杂化,保持算法的简洁和稳定,现尝试不将零序电流分离,直接将电路三相电压和电流代入式(1-3)中,可得其有功等效电导:
对称的三相交流电求和,得到sinωt+sin(ωt-120°)+sin(ωt+120°)=0,故可得:
同理可得其无功等效电导:
由式(1-6)和(1-7)可得有功等效电导Gp(t)和无功等效电导Gq(t)为:
n代表1至无穷大所的正整数,I1n为三相四线制***中正序电流,I0n为三相四线制***中零序电流,I2n为三相四线制***中负序电流,t为时间,φ1n为正序电流的初相位,φ2n为负序电流的初相位,φ0n为零序电流的初相位。
比较式1-4和1-8可得,本发明采用的直接将电路三相电压和电流代入进行计算,得到的等效电导大小与传统FBD算法先将三相电流中的零序电流分离,再进行运算获得的等效电导大小相同,从而验证了采用改进的FBD算法的可行性;
步骤2:采用改进的ip-iq法,首先将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t);然后采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)中的直流分量
将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t):
设三相参考电压为:
三相电流可表示为正序电流、负序电流以及零序电流之和,下标1、2、0分别表示三相四线制***中正序、负序、零序电流。
传统的ip-iq检测方法运用在三相四线制APF中,利用锁相环(PLL)产生与a相电压同相的正弦和余弦信号,三相负载电流通过Clark变换和Park变换,得到新坐标系下的瞬时有功电流ip(t)、瞬时无功电流iq(t)、中线电流i0(t),运算过程为:
其中:
将式(2-3)和(1-4)比较可得,瞬时有功电流ip(t)和瞬时无功电流iq(t)分别是FBD算法中有功等效电导Gp(t)和无功等效电导Gq(t)的倍,即:
最终根据式1-8和2-5之间的内在联系,可以将两种谐波检测方法进行结合,算法的前半部分采用改进的FBD法,由三相负载电流ia(t)、ib(t)、ic(t)与由PLL(Phase LockedLoop为锁相环)得到的参考电压经过运算,得到等效有功电导Gp(t)和等效无功电导Gq(t),然后根据式(2-5)计算得到功电流分量ip(t)和无功电流分量iq(t)。
采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)分别提取有功电流分量ip(t)直流分量和无功电流分量iq(t)直流分量
在进行直流分量提取之前,在d-q坐标系下,在d轴和q轴的直流量不仅分别对应负载的基波有功功率和基波无功功率,而且具有以下性质:①一个工频周期内所有采样的直流分量相加,再除以采样点数,结果仍然为该直流信号;②而一个工频周期内所有采样的交流分量相加,再除以采样点数,结果却为零。
据此,令一个工频周期采样点数为N,对所有采样点的值求和后取平均值,即可得到直流分量。但若仅仅这样做,存在滞后性,不能准确跟踪信号的实时变化。为此,采用改进的移动平均值法,当采样第k个点时,用该采样点的实时数值id(k)代替上一个周期内N个采样点中最滞后的数据id(k-N),即有:
式中:id(k)为第k个采样点的实时数据,id(k-N)为上一个周期内N个采样点中最滞后的数据,id(l)为采样的被求和数据。
根据上述原理,可得有功电流直流分量和无功电流的直流分量分别为:
式中:ip(k)为有功电流第k个采样点的实时数据,ip(k-N)为有功电流上一个周期内N个采样点中最滞后的数据,ip(l)为有功电流采样的被求和数据。
式中:iq(k)为无功电流第k个采样点的实时数据,iq(k-N)为无功电流上一个周期内N个采样点中最滞后的数据,iq(l)为无功电流采样的被求和数据。
如此每采样一次数据,就可以重新计算一次直流分量的大小,根据式(2-7)和(2-8)可知,移动平均值也会随之发生变化。由此,只需要一个采样点的新数据就可以计算出新的输入信号直流分量,理论上只需要延时一个采样周期,从而保持直流分量根据实际情况实时变化,体现了数据更新的快速性和实时性。
步骤3:将上下电容均压环PI调节器产生的零轴电流增量Δi0叠加到进行单独提取零轴电流中,产生零序电流参考值将直流侧电压和上下电容均压环产生的电流增量Δip叠加到有功电流中,产生有功电流参考值无功电流参考值则直接由无功电流分量iq(t)和无功电流直流分量相叠加获得;有功和无功电流参考值与零序电流的参考值一同经过反Park和反Clark变换,得到三相谐波电流参考值
为了验证本发明所提出算法的可行性和优越性,运用仿真软件MATLAB建立仿真模型进行了仿真分析,***仿真参数如表1所示。
表1仿真参数
电源电压 U<sub>sn</sub> 220V
电网频率 f 50Hz
开关频率 f<sub>s</sub> 9600Hz
APF输出滤波电容 L 0.45mH
直流侧电容 C<sub>dcu</sub>C<sub>dcL</sub> 10000uF
负载电阻 R<sub>L</sub> 15ohm
直流侧电压 U<sub>dc</sub> 700V
①静态特性的仿真分析
为了验证改进的谐波检测算法相较于传统瞬时无功功率法对***静态性能影响的优越性,分别对***负载电流、输出指令电流、输出补偿电流和补偿后的电源电流波形进行了仿真,结果如图2和图3所示。由图可知,本发明所提出的谐波检测算法能准确的检测出负载谐波电流,以此作为APF的输出指令电流,电源电流经APF输出电流补偿后接近正弦,其总谐波畸变率(Total Harmonic Distortion,THD)由补偿前的23.88%下降到补偿后的3.81%,比运用传统瞬时功率检测算法的补偿效果4.99%更好。由此说明,运用改进的谐波检测算法,使得APF能更精确的检测***谐波,在相同的电流控制器作用下,具有更好的补偿性能。
②动态特性的仿真分析
为了验证改进谐波算法相较于传统瞬时无功功率法对***动态特性影响的优越性,在t=0.2s时,在负载两端并联一个R=15Ω的电阻,传统算法和本发明的算法***负载和谐波指令电流的响应曲线如下图4和图5所示。由图可见,传统的瞬时无功功率算法得到的指令电流需要经过3个周期才能到达新的稳态,而采用改进的谐波检测算法得到的指令电流只需经过2个周期就能到达新的稳态。由此说明,采用改进的谐波算法能更迅速的跟上负载的突变,更实时准确的检测出谐波电流的变化,具有更好的动态响应性能。
为了更快速有效的检测出APF中的谐波电流,本发明将传统瞬时无功功率法和FBD法相结合,提出一种改进的谐波检测方法。该方法省去了不必要的零序电流分离环节,降低了算法的复杂性;减少了传统瞬时无功功率算法因坐标变换带来的矩阵运算,有效降低了计算量,节省了软件存储空间,减轻了软件负担,提高了谐波检测的动态性能;对零轴电流进行单独提取,并对上下电容进行均压控制,克服了传统FBD算法中无法对直接对电容中分式APF的上下电容进行均压控制、补偿欠缺灵活性的不足,确保算法在三相四线制电容中分式APF中的可行性;采用改进的移动平均算法代替传统的LPF,避免LPF采样和计算过程中产生的滞后误差,提高了谐波检测精度。所提出的方法对于提高谐波检测性能,改善有源滤波器补偿效果具有实际意义,并可在此基础上进一步探索在三相四线制四桥臂APF中的应用与改进。

Claims (4)

1.一种改进的APF***谐波电流检测方法,其特征在于,具体操作步骤如下:
步骤1:采用改进的FBD算法,由三相负载电流ia(t)、ib(t)、ic(t)与由PLL得到的参考电压参进行计算,获得有功等效电导和无功等效电导;
步骤2:采用改进的ip-iq法,首先将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t);然后采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)中的直流分量
步骤3:计算三相谐波电流参考值
2.根据权利要求1所述的一种改进的APF***谐波电流检测方法,其特征在于,所述步骤1获得有功等效电导和无功等效电导的具体方法如下:
***电压参考矢量为u=(u1,u2,...,um),电流矢量i=(i1,i2,...,im),矢量的元素分别为各相电压、电流瞬时值,相关定义如下:
瞬时功率:
瞬时电压:
由式(1-1)和(1-2)可得,其有功等效电导和无功等效电导定义如下:
其中,up为有功电压、uq为无功电压、Pq∑(t)为t时刻瞬时无功功率、Pp∑(t)为t时刻瞬时有功功率;矢量的元素u1,u2,...,um和i1,i2,...,im分别为各相电压、电流瞬时值;
将电路三相电压和电流代入式(1-3)中,可得其有功等效电导:
对称的三相交流电求和,得到sinωt+sin(ωt-120°)+sin(ωt+120°)=0,故可得:
同理可得其无功等效电导:
由式(1-6)和(1-7)可得有功等效电导Gp(t)和无功等效电导Gq(t)为:
n代表1至无穷大所的正整数,I1n为三相四线制***中正序电流,I0n为三相四线制***中零序电流,I2n为三相四线制***中负序电流,t为时间,φ1n为正序电流的初相位,φ2n为负序电流的初相位,φ0n为零序电流的初相位。
3.根据权利要求1所述的一种改进的APF***谐波电流检测方法,其特征在于,步骤2所述计算有功电流分量ip(t)和无功电流分量iq(t)中的直流分量的方法为:
将步骤1获得的有功等效电导和无功等效电导进行线性变换后获得有功电流分量ip(t)和无功电流分量iq(t):
瞬时有功电流ip(t)和瞬时无功电流iq(t)分别是:
采用改进的移动平均值法提取有功电流分量ip(t)和无功电流分量iq(t)分别提取有功电流分量ip(t)直流分量和无功电流分量iq(t)直流分量
式中:ip(k)为有功电流第k个采样点的实时数据,ip(k-N)为有功电流上一个周期内N个采样点中最滞后的数据,ip(l)为有功电流采样的被求和数据。
式中:iq(k)为无功电流第k个采样点的实时数据,iq(k-N)为无功电流上一个周期内N个采样点中最滞后的数据,iq(l)为无功电流采样的被求和数据。
4.根据权利要求3所述的一种改进的APF***谐波电流检测方法,其特征在于,步骤3计算三相谐波电流参考值的具体方法为:
将上下电容均压环PI调节器产生的零轴电流增量Δi0叠加到进行单独提取零轴电流中,产生零序电流参考值将直流侧电压和上下电容均压环产生的电流增量Δip叠加到有功电流中,产生有功电流参考值无功电流参考值则直接由无功电流分量iq(t)和无功电流直流分量相叠加获得;有功和无功电流参考值与零序电流的参考值一同经过反Park和反Clark变换,得到三相谐波电流参考值
CN201810987233.3A 2018-08-28 2018-08-28 一种改进的apf***谐波电流检测方法 Pending CN109066678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810987233.3A CN109066678A (zh) 2018-08-28 2018-08-28 一种改进的apf***谐波电流检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810987233.3A CN109066678A (zh) 2018-08-28 2018-08-28 一种改进的apf***谐波电流检测方法

Publications (1)

Publication Number Publication Date
CN109066678A true CN109066678A (zh) 2018-12-21

Family

ID=64757307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810987233.3A Pending CN109066678A (zh) 2018-08-28 2018-08-28 一种改进的apf***谐波电流检测方法

Country Status (1)

Country Link
CN (1) CN109066678A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323748A (zh) * 2019-05-28 2019-10-11 西安航空职业技术学院 一种有源电力滤波器的电流控制器优化控制方法
CN110531138A (zh) * 2019-07-08 2019-12-03 江苏科技大学 一种有源电力滤波器谐波电流检测方法
CN110907686A (zh) * 2019-09-16 2020-03-24 国网河南省电力公司郑州供电公司 基于fbd法的分布式光伏并网***谐波检测方法
CN113363963A (zh) * 2021-05-20 2021-09-07 南昌大学 一种改进麻雀搜索算法优化三相sapf直流侧控制方法
CN113804942A (zh) * 2021-07-28 2021-12-17 国网冀北电力有限公司电力科学研究院 串补装置限压器的阻性电流监测方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532705A (zh) * 2015-12-31 2017-03-22 安徽天电能质量技术有限公司 多同步旋转坐标系下分次谐波补偿的三相四线制apf计算方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532705A (zh) * 2015-12-31 2017-03-22 安徽天电能质量技术有限公司 多同步旋转坐标系下分次谐波补偿的三相四线制apf计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王裕: "三相四线制有源电力滤波器关键技术研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323748A (zh) * 2019-05-28 2019-10-11 西安航空职业技术学院 一种有源电力滤波器的电流控制器优化控制方法
CN110531138A (zh) * 2019-07-08 2019-12-03 江苏科技大学 一种有源电力滤波器谐波电流检测方法
CN110907686A (zh) * 2019-09-16 2020-03-24 国网河南省电力公司郑州供电公司 基于fbd法的分布式光伏并网***谐波检测方法
CN113363963A (zh) * 2021-05-20 2021-09-07 南昌大学 一种改进麻雀搜索算法优化三相sapf直流侧控制方法
CN113804942A (zh) * 2021-07-28 2021-12-17 国网冀北电力有限公司电力科学研究院 串补装置限压器的阻性电流监测方法及***
CN113804942B (zh) * 2021-07-28 2024-04-12 国网冀北电力有限公司电力科学研究院 串补装置限压器的阻性电流监测方法及***

Similar Documents

Publication Publication Date Title
CN109066678A (zh) 一种改进的apf***谐波电流检测方法
CN106501574B (zh) 一种有源电力滤波器谐波电流检测方法
Xia et al. A complex least squares enhanced smart DFT technique for power system frequency estimation
Qasim et al. Optimal current harmonic extractor based on unified ADALINEs for shunt active power filters
CN108964118A (zh) 考虑锁相环的单相并网逆变器小信号阻抗建模方法
CN102565523B (zh) 一种电流谐波检测***及工作方法
CN109787491A (zh) 基于虚拟磁链的三相Vienna整流器预测直接功率控制方法
CN107102189B (zh) 基于s函数的变步长lms谐波电流检测方法
Sinha et al. A pre-filter based PLL for three-phase grid connected applications
CN107863774B (zh) 谐波指令电流的获取方法、装置、***及可读存储介质
CN106329566B (zh) 电网电压不对称时的逆变器无交流电压传感器控制方法
Nwobu et al. Grid voltage synchronization for unbalanced voltages using the energy operator
CN106253276B (zh) 一种融合抗扰动技术的三相三电平有源滤波器控制方法
Shen et al. UPQC Harmonic detection algorithm based on improved pq theory and design of low-pass filter
Silva et al. A robust phase-locked loop against fundamental frequency deviations and harmonic distortions
CN109951093B (zh) 一种基于混杂参数的中点电压控制***及方法
CN115236404B (zh) 一种并网逆变器端口阻抗自测量方法
CN115912489A (zh) 一种适用于非理想电网的lms-sogi三相锁相环设计方法及***
Ashraf et al. Performance analysis of current injection techniques for shunt active power filter
CN105162138A (zh) 基于电压序分解的无功及谐波电流快速检测方法
CN202433442U (zh) 基于改进fbd算法与dsp技术的电流谐波检测***
Cai et al. A three-phase active power filter based on park transformation
CN108268856A (zh) 基于l2范数和真正跟踪误差的变步长自适应谐波检测方法
Shang et al. Amplitude-phase-locked loop: Estimator of three-phase grid voltage vector
Shokri et al. A novel controller for a voltage controlled voltage source inverter to mitigation voltage fluctuations measured at the point of common coupling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181221

RJ01 Rejection of invention patent application after publication