CN109059796A - 无水深控制点区域的浅海水深多光谱卫星遥感反演方法 - Google Patents

无水深控制点区域的浅海水深多光谱卫星遥感反演方法 Download PDF

Info

Publication number
CN109059796A
CN109059796A CN201810805032.7A CN201810805032A CN109059796A CN 109059796 A CN109059796 A CN 109059796A CN 201810805032 A CN201810805032 A CN 201810805032A CN 109059796 A CN109059796 A CN 109059796A
Authority
CN
China
Prior art keywords
depth
wave band
water
remote sensing
shallow water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810805032.7A
Other languages
English (en)
Other versions
CN109059796B (zh
Inventor
陈本清
杨燕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Institute of Oceanography SOA
Original Assignee
Third Institute of Oceanography SOA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Institute of Oceanography SOA filed Critical Third Institute of Oceanography SOA
Priority to CN201810805032.7A priority Critical patent/CN109059796B/zh
Publication of CN109059796A publication Critical patent/CN109059796A/zh
Application granted granted Critical
Publication of CN109059796B publication Critical patent/CN109059796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

无水深控制点区域的浅海水深多光谱卫星遥感反演方法,属于卫星海洋遥感应用技术领域。基于推导的双波段线性浅海水深反演模型,通过不同深度不同海底类型的像元点对数据集,求解出最优波段旋转单位矢量,并基于水陆边界线位置的典型底质类型像元采用,估算模型中的海底参数,同时通过相同底质类型不同深度的像元数据计算获得蓝绿波段漫射衰减系数比值,以及基于最邻近浅海区的深水区数据,利用半分析和漫射衰减系数算法计算绿波段衰减系数。通过以上参数计算,从而实现无水深控制点区域的浅海水深遥感反演。

Description

无水深控制点区域的浅海水深多光谱卫星遥感反演方法
技术领域
本发明属于卫星海洋遥感应用技术领域,尤其是涉及无水深控制点区域的浅海水深多光谱卫星遥感反演方法。
背景技术
浅海水深作为舰船安全航行保障和近岸生态***与光学研究的重要参数,一直是海洋测绘和光学遥感的重要内容。常规的浅海水深测量主要是船载多/单波束声学测量,近几年发展的机载激光测深技术也逐步得到广泛应用。但对于一些危险或存在争议海域,这些技术手段费时费力,甚至无法实现。尽管探测深度和精度尚不能替代常规的海洋测量,但卫星遥感技术是获取这些区域浅海水深数据唯一可行的方法。因此,开展浅海水深卫星遥感反演技术研究具有重要意义和应用前景。
目前浅海水深卫星遥感反演方法总体可归纳为两大类:基于半分析算法的高光谱遥感和基于经验模型的多光谱遥感,从文献报道来看,两者目前的水深反演精度基本相当。尽管高光谱遥感具有物理基础明确和无需实测水深点等优势,但目前高光谱图像存在空间分辨率较低,可利用数据少的不足。相对而言,多光谱图像空间分辨率最高可达到2m,且可用卫星数量多,更适用于开展浅海水深遥感。但多光谱浅海水深反演模型需要一定数量的实测或可靠海图的水深点数据作为输入进行模型系数解算。由于水体性质以及海底类型的变化,多光谱水深反演模型具有明显的区域性。对于一些偏远、危险或有争议的,其实测水深点少,水深反演结果不可靠,有时甚至没有可用的水深控制点,无法开展浅海水深遥感反演。因此,开发一种无水深控制点区域的浅海水深多光谱卫星遥感反演方法就显得十分必要。
发明内容
本发明的目的在于针对多光谱浅海水深遥感反演需要水深控制点存在的难题,通过解析表达双波段线性模型,结合多光谱图像采样点,计算浅海水深模型所需的参数,提供无水深控制点区域的浅海水深多光谱卫星遥感反演方法。
本发明包括以下步骤:
1)根据双波段线性模型的矢量乘积形式推导浅海水深反演公式(1):
Xi=ln[rwi)-rdpi)]i=1,2
式中,z为待反演的浅海水深;α12为蓝绿波段权重特征向量;g1,g2为蓝绿波段光谱水体双程漫射衰减系数;rwi)为第i波段(蓝绿)的水面之下遥感反射率;rbi)为第i波段(蓝绿)的海底遥感反射率;rdpi)为第i波段(蓝绿)光学深水区水面之下遥感反射率;即可获得该无水深点区域的水深遥感反演结果;
2)选取图像上不同深度不同底质的相邻像元对,通过对相邻像元对的Xi数据集进行最小化求解,获得一组最优的波段旋转单位向量[α12]:
式中,i表示某相邻像元对,Δszi为第i个像元对经过旋转后值的差异,A、B表示该像元点对所对应的不同底质类型,n为像元点对数量,f为最小化函数;
3)在图像水边线处选择多种典型海底底质像元集,结合获得最优的波段旋转单位向量[α12],通过平均统计,获得海底参数α1ln rb12ln rb2值;
4)利用图像上相同海底底质类型、不同深度位置上X1~X2数据集,计算蓝绿波段双程漫射衰减系数比值g1/g2
5)在假设水体性质均匀的前提下,利用半分析和漫射衰减系数算法,计算最邻近于浅海区域光学深水区的绿波段漫射衰减系数g2
6)将上述步骤计算获得的系数,包括[α1、α2]、海底参数α1ln rb12ln rb2、g1/g2和g2代入浅海水深反演公式,并应用于整幅图像,实现无水深控制点区域的浅海水深多光谱卫星遥感反演。
与现有技术相比,本发明具有如下优点:
1)本发明基于推导的双波段线性浅海水深反演模型,通过不同深度不同海底类型的像元点对数据集,求解出最优波段旋转单位矢量,并基于水陆边界线位置的典型底质类型像元采用,估算模型中的海底参数,同时通过相同底质类型不同深度的像元数据计算获得蓝绿波段漫射衰减系数比值,以及基于最邻近浅海区的深水区数据,利用半分析和漫射衰减系数算法计算绿波段衰减系数。通过以上参数计算,从而实现无水深控制点区域的浅海水深遥感反演。
2)与现有的、需要水深控制点参与的水深反演方法相比,本发明能够一定程度上消除海底底质类型差异对水深反演影响,同时不需要水深控制点即可实现无水深控制点区域的浅海水深遥感反演。
附图说明
图1是本发明实施例中图像像元采样点以及水深精度验证点等分布图;
图2是本发明实施例中蓝、绿波段沙质海底采样点X1~X2散点图及其线性拟合;
图3是本发明实施例中水深遥感反演结果图;
图4是本发明实施例中新方法反演水深精度验证结果。
具体实施方式
本发明针对无水深点区域的水深多光谱卫星遥感,通过图像本身获取水深反演所需的相关参数,从而实现无水深点区域的浅海水深遥感反演。
下面结合附图和实施例,详细描述本发明技术方案的具体实施过程:
步骤一:获取研究区高分辨率多光谱卫星图像,开展大气校正获得反射率图像,并将反射率数据转换为水面下遥感反射率数据rw。当卫星图像定位误差低于6m时需首先开展几何校正处理;当图像存在明显的耀斑干扰时,还需开展耀斑校正处理;
步骤二:通过目视判读,选取最邻近浅海区域的深水区像元(图1),统计其蓝、绿波段rdp值,并根据公式Xi=ln[rwi)-rdpi)],计算获得蓝、绿波段的Xi图像数据;
步骤三:沿岸线不同距离上(代表不同深度)选取-不同底质类型的相邻像元点对数据集(图1),并利用最优算法(公式2)计算,获得最优波段旋转单位矢量[α12];
步骤四:参考近红外图像,在图像的水陆边界线选取典型底质类型的像元集(图1),计算Xi数据,并结合获得的最优波段旋转单位矢量[α12],计算海底参数α1ln rb12lnrb2
步骤五:在图像上选取沙质海底、不同深度位置的X1~X2数据集(图1),利用最小二乘法建立两者的线性回归公式(如图2),获得蓝、绿波段的水体双程漫射衰减系数比值g1/g2
步骤六:根据半分析和漫射衰减系数算法,计算最邻近浅海区域的深水区像元的绿波段向上向下漫射衰减系数总和g2
步骤七:将计算获得的无水深点区域的[α1、α2]、α1ln rb12ln rb2、g1/g2和g2等参数代入公式1,并应用于整幅图像,获得该无水深点区域的水深遥感反演结果(如图3);
步骤八:随机选取实测水深点数据集(分布见图1)对水深遥感反演结果进行精度验证,绘制反演水深与实测水深对比散点图,并计算均方根误差RMSE(如图4)。本实施例中,水深反演的RMSE误差为1.18m。

Claims (1)

1.无水深控制点区域的浅海水深多光谱卫星遥感反演方法,其特征在于所述方法包括:
1)根据双波段线性模型的矢量乘积形式推导浅海水深反演公式:
Xi=ln[rwi)-rdpi)] i=1,2
式中,z为待反演的浅海水深;α12为蓝绿波段权重特征向量;g1,g2为蓝绿波段光谱水体双程漫射衰减系数;rwi)为第i波段的水面之下遥感反射率;rbi)为第i波段的海底遥感反射率;rdpi)为第i波段光学深水区水面之下遥感反射率;即可获得该无水深点区域的水深遥感反演结果;
2)选取图像上不同深度不同底质的相邻像元对,通过对相邻像元对的Xi数据集进行最小化求解,获得一组最优的波段旋转单位向量[α12]:
式中,i表示某相邻像元对,Δszi为第i个像元对经过旋转后值的差异,A、B表示该像元点对所对应的不同底质类型,n为像元点对数量,f为最小化函数;
3)在图像水边线处选择多种典型海底底质像元集,结合获得最优的波段旋转单位向量[α12],通过平均统计,获得海底参数α1lnrb12lnrb2值;
4)利用图像上相同海底底质类型、不同深度位置上X1~X2数据集,计算蓝绿波段双程漫射衰减系数比值g1/g2
5)在假设水体性质均匀的前提下,利用半分析和漫射衰减系数算法,计算最邻近于浅海区域光学深水区的绿波段漫射衰减系数g2
6)将上述步骤计算获得的系数,包括[α1、α2]、海底参数α1lnrb12lnrb2、g1/g2和g2代入浅海水深反演公式,并应用于整幅图像,实现无水深控制点区域的浅海水深多光谱卫星遥感反演。
CN201810805032.7A 2018-07-20 2018-07-20 无水深控制点区域的浅海水深多光谱卫星遥感反演方法 Active CN109059796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810805032.7A CN109059796B (zh) 2018-07-20 2018-07-20 无水深控制点区域的浅海水深多光谱卫星遥感反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810805032.7A CN109059796B (zh) 2018-07-20 2018-07-20 无水深控制点区域的浅海水深多光谱卫星遥感反演方法

Publications (2)

Publication Number Publication Date
CN109059796A true CN109059796A (zh) 2018-12-21
CN109059796B CN109059796B (zh) 2020-07-31

Family

ID=64834858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810805032.7A Active CN109059796B (zh) 2018-07-20 2018-07-20 无水深控制点区域的浅海水深多光谱卫星遥感反演方法

Country Status (1)

Country Link
CN (1) CN109059796B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274858A (zh) * 2019-07-15 2019-09-24 南京吉泽信息科技有限公司 利用goci数据递归估算浅水湖泊不同深度悬浮泥沙浓度的遥感方法
CN110823190A (zh) * 2019-09-30 2020-02-21 广州地理研究所 基于随机森林的岛礁浅海水深预测方法
CN111474122A (zh) * 2020-04-21 2020-07-31 自然资源部第二海洋研究所 一种浅海底质反射率的遥感提取方法
CN111561916A (zh) * 2020-01-19 2020-08-21 自然资源部第二海洋研究所 一种基于四波段多光谱遥感图像的浅海水深无控提取方法
CN111651707A (zh) * 2020-05-28 2020-09-11 广西大学 一种基于光学浅水区卫星遥感影像的潮位反演方法
CN113140000A (zh) * 2021-03-26 2021-07-20 中国科学院东北地理与农业生态研究所 基于卫星光谱的水体信息估算方法
CN113793374A (zh) * 2021-09-01 2021-12-14 自然资源部第二海洋研究所 一种基于利用改进的四波段遥感影像qaa算法水质反演结果反演水深的方法
CN113960625A (zh) * 2021-10-22 2022-01-21 自然资源部第二海洋研究所 一种基于星载单光子激光主被动遥感融合的水深反演方法
CN114199827A (zh) * 2022-02-21 2022-03-18 中国石油大学(华东) 一种基于遥感数据反演par漫衰减系数垂直变化的方法
CN114459438A (zh) * 2022-01-10 2022-05-10 山东科技大学 基于光谱粗糙度信息判断高分辨率多光谱水深反演数据有效性的方法
CN114594503A (zh) * 2022-03-02 2022-06-07 中南大学 一种浅海地形反演方法、计算机设备及存储介质
CN114758254A (zh) * 2022-06-15 2022-07-15 中国地质大学(武汉) 一种双波段无监督水深反演方法及***
CN115235431A (zh) * 2022-05-19 2022-10-25 南京大学 一种基于光谱分层的浅海水深反演方法及***
CN115422981A (zh) * 2022-11-04 2022-12-02 自然资源部第一海洋研究所 面向单频机载激光测深数据的水陆分类方法、***及应用
CN115797760A (zh) * 2023-01-29 2023-03-14 水利部交通运输部国家能源局南京水利科学研究院 主被动融合的水质立体遥感反演方法、***及存储介质
CN117152636A (zh) * 2023-10-29 2023-12-01 自然资源部第二海洋研究所 一种基于双波段关系的浅海底质反射率遥感监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065730A1 (en) * 2003-09-18 2005-03-24 Schlumberger Technology Corporation Determination of stress characteristics of earth formations
CN104181515A (zh) * 2013-05-21 2014-12-03 时春雨 一种基于蓝-黄波段高光谱数据的浅海水深反演方法
CN105627997A (zh) * 2015-12-23 2016-06-01 国家***第一海洋研究所 多角度遥感水深决策融合反演方法
CN105651263A (zh) * 2015-12-23 2016-06-08 国家***第海洋研究所 浅海水深多源遥感融合反演方法
CN105865424A (zh) * 2016-04-13 2016-08-17 中测新图(北京)遥感技术有限责任公司 一种基于非线性模型的多光谱遥感水深反演方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065730A1 (en) * 2003-09-18 2005-03-24 Schlumberger Technology Corporation Determination of stress characteristics of earth formations
CN104181515A (zh) * 2013-05-21 2014-12-03 时春雨 一种基于蓝-黄波段高光谱数据的浅海水深反演方法
CN105627997A (zh) * 2015-12-23 2016-06-01 国家***第一海洋研究所 多角度遥感水深决策融合反演方法
CN105651263A (zh) * 2015-12-23 2016-06-08 国家***第海洋研究所 浅海水深多源遥感融合反演方法
CN105865424A (zh) * 2016-04-13 2016-08-17 中测新图(北京)遥感技术有限责任公司 一种基于非线性模型的多光谱遥感水深反演方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈本清等: "基于高分一号卫星多光谱数据的岛礁周边浅海水深遥感反演", 《热带海洋学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274858A (zh) * 2019-07-15 2019-09-24 南京吉泽信息科技有限公司 利用goci数据递归估算浅水湖泊不同深度悬浮泥沙浓度的遥感方法
CN110274858B (zh) * 2019-07-15 2021-08-31 南京吉泽信息科技有限公司 利用goci数据估算湖泊悬浮泥沙浓度的遥感方法
CN110823190A (zh) * 2019-09-30 2020-02-21 广州地理研究所 基于随机森林的岛礁浅海水深预测方法
CN110823190B (zh) * 2019-09-30 2020-12-08 广州地理研究所 基于随机森林的岛礁浅海水深预测方法
CN111561916B (zh) * 2020-01-19 2021-09-28 自然资源部第二海洋研究所 一种基于四波段多光谱遥感图像的浅海水深无控提取方法
CN111561916A (zh) * 2020-01-19 2020-08-21 自然资源部第二海洋研究所 一种基于四波段多光谱遥感图像的浅海水深无控提取方法
CN111474122A (zh) * 2020-04-21 2020-07-31 自然资源部第二海洋研究所 一种浅海底质反射率的遥感提取方法
CN111651707A (zh) * 2020-05-28 2020-09-11 广西大学 一种基于光学浅水区卫星遥感影像的潮位反演方法
CN113140000A (zh) * 2021-03-26 2021-07-20 中国科学院东北地理与农业生态研究所 基于卫星光谱的水体信息估算方法
CN113793374A (zh) * 2021-09-01 2021-12-14 自然资源部第二海洋研究所 一种基于利用改进的四波段遥感影像qaa算法水质反演结果反演水深的方法
CN113793374B (zh) * 2021-09-01 2023-12-22 自然资源部第二海洋研究所 一种基于利用改进的四波段遥感影像qaa算法水质反演结果反演水深的方法
CN113960625A (zh) * 2021-10-22 2022-01-21 自然资源部第二海洋研究所 一种基于星载单光子激光主被动遥感融合的水深反演方法
CN113960625B (zh) * 2021-10-22 2024-06-11 自然资源部第二海洋研究所 一种基于星载单光子激光主被动遥感融合的水深反演方法
CN114459438A (zh) * 2022-01-10 2022-05-10 山东科技大学 基于光谱粗糙度信息判断高分辨率多光谱水深反演数据有效性的方法
CN114459438B (zh) * 2022-01-10 2024-02-02 山东科技大学 一种判断高分辨率多光谱水深反演数据有效性的方法
CN114199827B (zh) * 2022-02-21 2022-05-10 中国石油大学(华东) 一种基于遥感数据反演par漫衰减系数垂直变化的方法
CN114199827A (zh) * 2022-02-21 2022-03-18 中国石油大学(华东) 一种基于遥感数据反演par漫衰减系数垂直变化的方法
CN114594503A (zh) * 2022-03-02 2022-06-07 中南大学 一种浅海地形反演方法、计算机设备及存储介质
CN115235431A (zh) * 2022-05-19 2022-10-25 南京大学 一种基于光谱分层的浅海水深反演方法及***
CN115235431B (zh) * 2022-05-19 2024-05-14 南京大学 一种基于光谱分层的浅海水深反演方法及***
CN114758254A (zh) * 2022-06-15 2022-07-15 中国地质大学(武汉) 一种双波段无监督水深反演方法及***
CN115422981A (zh) * 2022-11-04 2022-12-02 自然资源部第一海洋研究所 面向单频机载激光测深数据的水陆分类方法、***及应用
CN115797760A (zh) * 2023-01-29 2023-03-14 水利部交通运输部国家能源局南京水利科学研究院 主被动融合的水质立体遥感反演方法、***及存储介质
CN117152636A (zh) * 2023-10-29 2023-12-01 自然资源部第二海洋研究所 一种基于双波段关系的浅海底质反射率遥感监测方法
CN117152636B (zh) * 2023-10-29 2024-03-15 自然资源部第二海洋研究所 一种基于双波段关系的浅海底质反射率遥感监测方法

Also Published As

Publication number Publication date
CN109059796B (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN109059796A (zh) 无水深控制点区域的浅海水深多光谱卫星遥感反演方法
Pe’eri et al. Satellite remote sensing as a reconnaissance tool for assessing nautical chart adequacy and completeness
CN105445751B (zh) 一种浅水区域水深比值遥感反演方法
Overstreet et al. Removing sun glint from optical remote sensing images of shallow rivers
CN105865424B (zh) 一种基于非线性模型的多光谱遥感水深反演方法及装置
Holman et al. cBathy: A robust algorithm for estimating nearshore bathymetry
CN105651263B (zh) 浅海水深多源遥感融合反演方法
CN110110654B (zh) 一种针对下降型海洋内孤立波的振幅反演方法及装置
Chybicki Mapping south baltic near-shore bathymetry using Sentinel-2 observations
CN111781146B (zh) 利用高分辨率卫星光学影像的波浪参数反演方法
CN112013822A (zh) 基于改进gwr模型的多光谱遥感水深反演方法
Zhang et al. Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor
Liang et al. Derivation of bathymetry from high-resolution optical satellite imagery and USV sounding data
Ye et al. Atmospheric correction of Landsat-8/OLI imagery in turbid estuarine waters: A case study for the Pearl River estuary
Pattanaik et al. Estimation of shallow water bathymetry using IRS-multispectral imagery of Odisha Coast, India
Tsukada et al. UAV-based mapping of nearshore bathymetry over broad areas
Laxague et al. Spectral characteristics of gravity‐capillary waves, with connections to wave growth and microbreaking
CN111561916B (zh) 一种基于四波段多光谱遥感图像的浅海水深无控提取方法
McIntyre et al. Coastal bathymetry from hyperspectral remote sensing data: comparisons with high resolution multibeam bathymetry
Gholoum et al. A new image classification approach for mapping coral density in State of Kuwait using high spatial resolution satellite images
Sam et al. Evaluation of optical remote sensing-based shallow water bathymetry for recursive mapping
Chen et al. Improving surface current estimation from Geostationary Ocean Color Imager using tidal ellipse and angular limitation
Zhan et al. MODIS-based research on Secchi disk depth using an improved semianalytical algorithm in the Yellow Sea
Leckler Observation et modélisation du déferlement des vagues
CN105259145B (zh) 一种同时遥感岛礁水下地形和地物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 361005 Fujian Province University of Siming District of Xiamen City Road No. 178

Applicant after: THIRD INSTITUTE OF OCEANOGRAPHY, MINISTRY OF NATURAL RESOURCES

Address before: 361005 Fujian Province University of Siming District of Xiamen City Road No. 178

Applicant before: Third Institute of Oceanography, State Oceanic Administration

GR01 Patent grant
GR01 Patent grant