CN109045304B - 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用 - Google Patents

一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用 Download PDF

Info

Publication number
CN109045304B
CN109045304B CN201810332801.6A CN201810332801A CN109045304B CN 109045304 B CN109045304 B CN 109045304B CN 201810332801 A CN201810332801 A CN 201810332801A CN 109045304 B CN109045304 B CN 109045304B
Authority
CN
China
Prior art keywords
silica nanoparticles
inhibitor
polymerase
mesoporous silica
peg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810332801.6A
Other languages
English (en)
Other versions
CN109045304A (zh
Inventor
陈红波
朵燕红
曾小伟
杨敏
梅林�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201810332801.6A priority Critical patent/CN109045304B/zh
Publication of CN109045304A publication Critical patent/CN109045304A/zh
Application granted granted Critical
Publication of CN109045304B publication Critical patent/CN109045304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种携带Polymerase I抑制剂的核仁靶向纳米载体,所述纳米载体由介孔二氧化硅纳米颗粒、包载在介孔二氧化硅纳米粒孔道内部的Polymerase I抑制剂、涂覆在介孔二氧化硅纳米颗粒表面的多巴胺及修饰在介孔二氧化硅纳米粒表面的能特异性靶向核仁素的核酸适配体构成。首先制备得到介孔二氧硅纳米颗粒,再制备负载Polymerase I抑制剂的纳米颗粒,然后用多巴胺封堵二氧硅纳米颗粒孔道,最后用链接有核酸适配体的聚乙二醇对二氧化硅纳米颗粒进行化学修饰;本发明制备得到的纳米载体具有高的药物包封率,好的生物组织相容性和核仁靶向性,在制备抗肿瘤药物方面具有较大的应用前景。

Description

一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备 方法和应用
技术领域
本发明涉及纳米材料生物技术领域。更具体地,涉及一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用。
背景技术
核酸适配体(Aptamer),一般由30-50个碱基组成的单链寡聚核苷酸(RNA)或单链寡聚脱氧核苷酸(DNA)。它能特异结合蛋白,小分子,离子和细胞等多种靶分子。核酸适配体有Szostak 和Gold等人发明的,具有许多其他抗体难以媲美的优势。目前,利用SELEX技术可以筛选出特异性与靶蛋白亲和力结合的核酸适配体(Aptamer)。经过十几年的发展,SELEX技术已发展为一种重要的工具和研究手段,绝大多数核酸适配体都是通过SELEX筛选获得的,这种技术主要由4个重要步骤:包括建库、筛选、分离、PCR扩增,对所需核酸适配体能否筛选成功有重要的影响,其中PCR是一个比较关键的环节,在此环节中以筛选得到的核酸为模板,在DNA酶的作用下进行扩增。理论上来说,通过SELEX技术可以获得任何靶目标的核酸适配体,截止日前,利用SELEX技术已获得了很多与人类疾病密切相关的核酸适配体,例如,血管内皮生长因子(VEGF)、凝血酶、hnRNPA1蛋白、核仁素等核酸适配体。
CX-5461是第一个被发现的polymerase I(Pol I)转录酶特异性抑制剂。CX-5461能够通过抑制SL1和rDNA的相互作用,进而抑制转录前复合体的形成,抑制rRNA(ribosomalRNA)转录。此外,研究表面低浓度的CX-5461不会抑制polymerase II介导的mRNA合成,也不会抑制DNA的复制。这说明CX-5461有效的在核仁部位累积对其药物效果的发挥具有重要作用。然而目前却还未见可有效促进CX-5461的在核仁部位累积的药物或方法。
发明内容
本发明所要解决的技术问题是针对现有Polymerase I抑制剂在应用中无法有效发挥药效的缺陷和不足,提供一种基于核酸适配体的靶向递送Pol I抑制剂的纳米载体。利用具有核仁素靶向的核酸适配体修饰包载Pol I抑制剂的介孔二氧化硅纳米颗粒,从而将Pol I抑制剂高效率和靶向地递送到核仁中,提高药效。
本发明的第一个目的是提供一种携带Polymerase I抑制剂的核仁靶向纳米载体。
本发明的第二个目的是提供所述纳米载体的制备方法。
本发明的第三个目的是提供所述纳米载体的应用。
本发明的上述目的是通过以下技术方案给予实现的:
一种携带Polymerase I抑制剂的核仁靶向纳米载体,由介孔二氧化硅纳米颗粒、包载在介孔二氧化硅纳米粒孔道内部的Polymerase I抑制剂、涂覆在介孔二氧化硅纳米颗粒表面的多巴胺及修饰在介孔二氧化硅纳米粒表面的聚乙二醇构成;所述聚乙二醇连接有靶向核仁的核酸适配体。
所述介孔二氧硅纳米颗粒可高效包载同Polymerase I抑制剂,PDA可以有效封堵二氧硅纳米颗粒孔道,而连接有靶向核仁的核酸适配体的PEG修饰可以提高纳米粒子的生物相容性和核仁靶向性,可以有效将Polymerase I抑制剂靶向输送到核仁部位,发挥其抗肿瘤效果。
优选地,所述Polymerase I抑制剂为CX-5461以及类似物或衍生物。
具体地,所述纳米载体的结构通式为:MSNs-CX-5461@PDA-PEG-APt,其结构呈现圆球状,直径大小约100纳米;BET表面积为923.6 m2/g,孔体积平均是1.31 cm3/g,BJH计算的孔直径大约为3.11 nm。
优选地,所述核酸适配体为AS1411,其核苷酸序列如SEQ ID NO:1所示,末端修饰有巯基(SH)。
AS1411序列:5'-GGTGGTGGTGGTTGTGGTGGTGGTGG-SH-3'(SEQ ID NO:1)。
上述携带Polymerase I抑制剂的核仁靶向纳米载体的制备方法为先制备得到介孔二氧硅纳米颗粒,再制备负载Polymerase I抑制剂的纳米颗粒,然后用多巴胺封堵二氧硅纳米颗粒孔道,最后用链接有核酸适配体的聚乙二醇对二氧化硅纳米颗粒进行化学修饰,制备得到携带Polymerase I抑制剂的核仁靶向纳米载体。
优选地,所述介孔二氧硅纳米颗粒通过溶解凝胶法制备得到。
优选地,所述制备方法包括如下步骤:
S1.溶解凝胶法制备得到介孔二氧硅纳米颗粒;
S2.将介孔二氧硅纳米颗粒、Polymerase I抑制剂与NaOH溶液混合,调节溶液pH值约8.5,吸附过夜,再加入多巴胺,反应4~6 h;
S3.向H2N-PEG-Mal中加入靶向核仁的核酸适配体,再加入TCEP常温下反应2~4h,得到连接核酸适配体的聚乙二醇;
S4.将S3得到的产物加入到S2中,反应2~4 h,离心,用PBS洗涤若干次,离心,即得。
优选地,S2介孔二氧硅纳米颗粒、Polymerase I抑制剂、NaOH溶液与多巴胺的质量体积比为10 mg:2 mg:3 mL:2 mg。
更优选地,所述Polymerase I抑制剂为CX-5461以及类似物或衍生物。
更优选地,所述核酸适配体为AS1411。
本发明还请求保护所述纳米载体在制备肿瘤治疗药物中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明提供了一种携带Polymerase I抑制剂的核仁靶向纳米载体,纳米载体的粒径约100纳米,纳米BET表面积是923.6 m2/g,孔体积平均是1.31 cm3/g, BJH计算的孔直径大约为3.11 nm;所述纳米载体具有高的药物包封率,好的生物组织相容性和核仁靶向性,可将Polymerase I抑制剂靶向输送到核仁,显著提高药物的治疗效果,在制备抗肿瘤药物中具有较大的应用前景。
附图说明
图1为实施例1 MSNs- CX-5461@PDA-PEG-APt纳米靶向载体的制备流程图。
图2为实施例1 MSNs- CX-5461@PDA-PEG-APt纳米粒透射电镜检测图。
图3为实施例1 MSNs- CX-5461@PDA-PEG-Apt BET纳米硅孔径分析图。
图4为实施例1 MSNs- CX-5461@PDA-PEG-Apt纳米靶向载体傅里叶红外光谱检测图。
图5为凝胶电泳验证实施例1 MSNs- CX-5461@PDA-PEG-Ap核酸适配体AS1411连接成功。
图6为MSNs- CX-5461@PDA-PEG-APt纳米材料对核仁靶向性。
图7为MSNs- CX-5461@PDA-PEG-APt纳米材料MTT检测细胞活性。
图8为MSNs- CX-5461@PDA-PEG-APt纳米材料克隆形成检测。
图9为MSNs- CX-5461@PDA-PEG-APt纳米材料治疗后肿瘤体积测定。
图10为MSNs- CX-5461@PDA-PEG-APt纳米材料治疗后肿瘤重量测定。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1 MSNs-CX-5461@PDA-PEG-APt纳米靶向载体的制备
1、制备方法
(1)利用正硅酸四乙酯(TEOS)在C16TAB和NH4F溶液中,通过磁力搅拌下加热回流水解制备得到纳米硅球;
(2)然后使用浓盐酸和无水乙醇混合液洗涤,去除纳米硅球介孔内的表面活性剂,为保证模板剂剂能够完全除去,此过程重复3次;
(3)最终真空干燥后得到介孔二氧化硅纳米颗粒(MSNs),MSNs为白色粉末,在水中具有很好的分散性,无絮集结块现象,并且长时间放置,也表现的十分稳定,不易产生沉淀;
(4)将10 mg MSNs,2 mg CX-5461,3 mL NaOH混合,调节溶液pH值约8.5,吸附过夜。第二天加入2 mg多巴胺(Dopamine),反应5 h;
(5)将核酸适配体Apt-SH(10 OD)加入H2N-PEG-Mal(1mg),再加入TCEP(20µg)常温下反应3小时;
(6)然后把(5)得到的产物加入到(4)中,反应3小时。离心,用PBS(pH 7.4)洗涤3次。离心,最后装到2个1.5 mL的小离心管中,冷冻保存;即得到带负载CX-5461核仁靶向纳米载体MSNs-CX-5461@PDA-PEG-APt。
2、MSNs-CX-5461@PDA-PEG-APt纳米靶向载体的表征
(1)透射电镜(TEM)检测:为了观察MSNs-CX-5461@PDA-PEG-APt的形态和大小,我们执行了投射电镜研究。结果如图2所示,MSNs-CX-5461@PDA-PEG-APt呈现圆球状,直径大小约100纳米。
(2)纳米硅孔径分析:通过Brunauer–Emmett–Teller(BET)容量法分析了纳米粒的表面区,同时利用Barrett Joyner Halenda(BJH)方法对孔大小和体积进行了分析。结果如图3所示,MSNs-CX-5461@PDA-PEG-APt的BET表面积是923.6 m2/g,孔体积平均是1.31 cm3/g,BJH计算的孔直径大约为3.11 nm。
(3)傅里叶红外光谱检测(FT-IR):傅立叶变换红外光谱仪一般用于进行红外吸收曲线测定,同时通过特征红外吸收峰以及标准谱图库检索对样品中有机化合物进行官能团进行解析,从而辅助判断样品主体物质。结果如图4所示,所有的纳米粒子都含有1043.6cm-1和956.5 cm-1的峰,对应着Si-O键。当加入PDA后,在3390~3150 cm-1处出现了N-H/O-H34的峰。进一步,MSNs-CX-5461@PDA-PEG-APt纳米粒在1351 cm-1和872 cm-1 处出现峰值,代表H2N-PEG-APt被成功偶联到了纳米硅球上了。
3、凝胶电泳验证核酸适配体AS1411连接成功
(1)配置3%的琼脂糖凝胶,精密称取0.3g的琼脂糖(agrose ),以稀释的电极缓冲液Tris-EDTA(TEA)为溶剂,用沸水浴或微波炉配制3%浓度的溶胶,灌入水平胶框或垂直胶膜,***梳子,自然冷却。即为3%的琼脂糖凝胶。
(2)上样:按Marker、核酸适配体(aptamer)、MSNs@PDA-PEG、MSNs@PDA-PEG-APt上样,为跑胶做好准备。
(3)在平胶框中加入适量的Tris-EDTA(TEA)缓冲液,在60V下跑胶,在低浓度、低电压下,分离效果较好。在低电压条件下,线性DNA分子的电泳迁移率与所用的电压呈正比。
(4)染色和拍照
用荧光染料溴乙锭(EB)染色后,在紫外光下观察DNA条带,拍照。结果如图5所示,链接上aptamer的MSNs-CX-5461@PDA-PEG-APt纳米粒子经过EB染色后,显示出了强的荧光,说明aptamer连接成功。
实施例2 MSNs-CX-5461@PDA-PEG-APt纳米材料对核仁的靶向性检测
1、方法
(1)用高糖的DMEM,在37℃,5% CO2下培养Hela细胞,用12孔板的培养皿,每个孔放入一个灭过菌的盖玻片,用细胞种板,第二天细胞汇合度达到70%-90%。
(2)第二天分别用FITC标记的MSNs@PDA-PEG和MSNs@PDA-PEG-APt的两种纳米材料处理,在0.5和2.5小时时分别取样,然后进行后续激光共聚焦实验。
(3)激光共聚焦显微镜检测:细胞用PBS洗3遍;用4%的多聚甲醛或甲醇固定15min,吸掉多聚甲醛用PBS洗3次;0.1% Triton-100打孔,约7-10min,用PBS洗3次;用3%的BSA(现配:精确称取1.5g的BSA,用50mL的PBS溶解)封闭2h;用DAPI染核(加1µg/mL的DAPI50-100 µL,刚好覆盖住玻片),10min;在玻片上加20-50µL的封片剂,盖上处理好的盖玻片;在激光共聚焦显微镜下,观察拍照。
2、结果
结果如图6所示,未链接Apatamer的MSNs@PDA-PEG主要定位在细胞质中,而链接上aptamer的MSNs@PDA-PEG-APt纳米材料显著增加了在核质和核仁中靶向效果(箭头所示位置为核仁)。
实施例3 体外细胞增殖测定生物活性实验
(1)MTT实验:用高糖的DMEM,在37℃,5% CO2下培养Hela细胞;待细胞状态良好,用96孔板种板;第二天用制备好的药物或材料来处理,在不同时间点取样(12h,24h,48h);每孔加入5mg/mL的MTT,培养4h;去掉培养基,每孔加150µL的DMSO,在摇床上,10min;在酶标仪上测OD值(490nm波长),结果如图7所示,MSNs-CX-5461@PDA-PEG-APt组对细胞的抑制效果远远大于其他组的处理。
(2)克隆形成实验:用高糖的DMEM,在37℃,5% CO2下培养Hela细胞;用六孔板来种板,用细胞计数板来计数,每个孔里大概种2000个细胞;第二天加入制备好的药物或材料;养7-14天,观察长出克隆的情况;用PBS洗2次,用甲醇固定15min;弃固定液,用水冲洗干净;用0.1%的结晶紫染色;晾干,拍照。结果如图8所示,MSNs-CX-5461@PDA-PEG-APt组对细胞的抑制效果显然大于其他组别的处理。
实施例4 体内抑制肿瘤效果实验
(1)首先建立裸鼠肿瘤模型:从广东动物中心购买30只裸鼠,饲养一个星期左右,然后在裸鼠腋下接种Hela细胞,两个星期以后等种的瘤长的差不多大,对种好瘤的裸鼠进行随机分组,分为五组,每组5只,分别用:Saline(生理盐水)、CX-5461、MSNs-CX-5461@PDA、MSNs-CX-5461@PDA-PEG、MSNs-CX-5461@PDA-PEG-APt来尾静脉注射。平均每隔2天注射一次。
(2)肿瘤体积计算方法如下:在第一天药物注射时开始记录并随时观察并记录每组裸鼠的生存情况,每2天测量肿瘤大小并对其进行体重称量,约7次。
肿瘤体积计算方法如下:肿瘤体积计算公式:长×宽×宽/2.
结果如图9所示,MSNs-CX-5461@PDA-PEG-APt对肿瘤的生长具有最好的抑制效果。
(3)肿瘤重量测定:对裸鼠进行药物注射后第30天对全部植了宫颈瘤的裸鼠进行解剖,取出其肿瘤组织,并测量每个肿瘤组织的质量和体积,并对其进行数据处理,结果如图10所示,显示制备的新型MSNs-CX-5461@PDA-PEG-APt处理组平均肿瘤重量最低;表明上述制备得到的MSNs-CX-5461@PDA-PEG-APt可显著挺高CX-5461的药效。

Claims (7)

1.一种携带Polymerase I抑制剂的核仁靶向纳米载体,其特征在于,由介孔二氧化硅纳米颗粒、包载在介孔二氧化硅纳米颗粒孔道内部的Polymerase I抑制剂、涂覆在介孔二氧化硅纳米颗粒表面的多巴胺及修饰在介孔二氧化硅纳米颗粒表面的聚乙二醇构成;所述聚乙二醇连接有靶向核仁的核酸适配体;
所述Polymerase I抑制剂为CX-5461;
所述核酸适配体为AS1411,其核苷酸序列如SEQ ID NO:1所示。
2.根据权利要求1所述的纳米载体,其特征在于,所述纳米载体的结构通式为:MSNsCX-5461@PDA-PEG-APt。
3.根据权利要求1所述的纳米载体,其特征在于,所述聚乙二醇为H2N-PEG-Mal。
4.权利要求1~3任一项所述携带Polymerase I抑制剂的核仁靶向纳米载体的制备方法,其特征在于,先制备得到介孔二氧化硅纳米颗粒,再制备负载Polymerase I抑制剂的纳米颗粒,然后用多巴胺封堵二氧化硅纳米颗粒孔道,最后用连接有核酸适配体的聚乙二醇对二氧化硅纳米颗粒进行化学修饰。
5.根据权利要求4所述的制备方法,其特征在于,包括如下步骤:
S1.溶解凝胶法制备得到介孔二氧化硅纳米颗粒;
S2.将介孔二氧化硅纳米颗粒、Polymerase I抑制剂与NaOH溶液混合,调节溶液pH值约8.5,吸附过夜,再加入多巴胺,反应4~6h;
S3.向H2N-PEG-Mal中加入靶向核仁的核酸适配体,再加入TCEP常温下反应2~4h,得到连接核酸适配体的聚乙二醇;
S4.将S3得到的产物加入到S2中,反应2~4h,离心,用PBS洗涤若干次,离心,即得。
6.根据权利要求5所述的制备方法,其特征在于,S2所述介孔二氧化硅纳米颗粒、Polymerase I抑制剂、NaOH溶液与多巴胺的质量体积比为10mg:2mg:3mL:2mg。
7.权利要求1~3任一项所述纳米载体在制备肿瘤治疗药物中的应用。
CN201810332801.6A 2018-04-13 2018-04-13 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用 Active CN109045304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810332801.6A CN109045304B (zh) 2018-04-13 2018-04-13 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810332801.6A CN109045304B (zh) 2018-04-13 2018-04-13 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109045304A CN109045304A (zh) 2018-12-21
CN109045304B true CN109045304B (zh) 2022-04-05

Family

ID=64819982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810332801.6A Active CN109045304B (zh) 2018-04-13 2018-04-13 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109045304B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110478497B (zh) * 2019-09-03 2020-07-10 青岛大学 一种基于靶向核仁素的双重载药***及制备方法与应用
CN116143804B (zh) * 2021-09-01 2024-03-29 核新生物医药(长春)有限公司 一种四环喹诺酮化合物、药学上可接受的盐及其应用
CN114308153B (zh) * 2021-12-17 2023-06-02 华南农业大学 一种用于检测那非类物质的固相萃取微流控芯片及用于检测那非类物质的***

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120034523A (ko) * 2010-10-01 2012-04-12 사회복지법인 삼성생명공익재단 siRNA 전달을 위한 하이브리드 실리카 나노입자
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
CN104983716A (zh) * 2015-07-20 2015-10-21 广西医科大学 肿瘤细胞膜/核膜双靶向肿瘤纳米药物缓释***及其制备与应用
CN106806343A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 一种叶酸和聚多巴胺修饰的肿瘤靶向介孔二氧化硅纳米粒及制备方法与应用
CN106806344A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 聚多巴胺和聚乙二醇维生素e琥珀酸酯修饰的介孔二氧化硅纳米粒及其制备方法与应用
CN106822900A (zh) * 2017-03-14 2017-06-13 山东大学 Rna聚合酶i的抑制剂在抑制血管损伤后再狭窄的应用
CN106890340A (zh) * 2017-02-28 2017-06-27 福州大学 一种双适配体修饰的介孔二氧化硅靶向载药纳米粒
CN107233577A (zh) * 2017-04-27 2017-10-10 清华大学深圳研究生院 一种pH响应和肿瘤靶向的双载药纳米粒子及制备方法与应用
WO2017205832A1 (en) * 2016-05-26 2017-11-30 Fred Hutchinson Cancer Research Center L-myc pathway targeting as a treatment for small cell lung cancer
CN107753946A (zh) * 2017-10-23 2018-03-06 福州大学 一种适配体修饰的靶向载药纳米粒及其制备方法与应用
CN108904508A (zh) * 2018-06-08 2018-11-30 中山大学 Polymerase I 抑制剂的新用途
CN109044993A (zh) * 2018-09-18 2018-12-21 华南理工大学 一种以核酸适配体靶向聚乙二醇修饰的介孔二氧化硅纳米粒及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339012A (zh) * 2013-05-03 2016-02-17 西莱克塔生物科技公司 降低i型和iv型超敏反应的致耐受性合成纳米载体的局部伴随施用
CN104013965A (zh) * 2014-05-06 2014-09-03 重庆大学 一种兼具细胞特异靶向性、还原响应性及三重抗癌治疗功效的介孔硅纳米药物载体的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120034523A (ko) * 2010-10-01 2012-04-12 사회복지법인 삼성생명공익재단 siRNA 전달을 위한 하이브리드 실리카 나노입자
CN103990423A (zh) * 2014-03-27 2014-08-20 华南师范大学 一种单链dna核酸适配体修饰二氧化硅/四氧化三铁磁性微球的制备方法
CN104983716A (zh) * 2015-07-20 2015-10-21 广西医科大学 肿瘤细胞膜/核膜双靶向肿瘤纳米药物缓释***及其制备与应用
WO2017205832A1 (en) * 2016-05-26 2017-11-30 Fred Hutchinson Cancer Research Center L-myc pathway targeting as a treatment for small cell lung cancer
CN106806343A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 一种叶酸和聚多巴胺修饰的肿瘤靶向介孔二氧化硅纳米粒及制备方法与应用
CN106806344A (zh) * 2017-02-17 2017-06-09 清华大学深圳研究生院 聚多巴胺和聚乙二醇维生素e琥珀酸酯修饰的介孔二氧化硅纳米粒及其制备方法与应用
CN106890340A (zh) * 2017-02-28 2017-06-27 福州大学 一种双适配体修饰的介孔二氧化硅靶向载药纳米粒
CN106822900A (zh) * 2017-03-14 2017-06-13 山东大学 Rna聚合酶i的抑制剂在抑制血管损伤后再狭窄的应用
CN107233577A (zh) * 2017-04-27 2017-10-10 清华大学深圳研究生院 一种pH响应和肿瘤靶向的双载药纳米粒子及制备方法与应用
CN107753946A (zh) * 2017-10-23 2018-03-06 福州大学 一种适配体修饰的靶向载药纳米粒及其制备方法与应用
CN108904508A (zh) * 2018-06-08 2018-11-30 中山大学 Polymerase I 抑制剂的新用途
CN109044993A (zh) * 2018-09-18 2018-12-21 华南理工大学 一种以核酸适配体靶向聚乙二醇修饰的介孔二氧化硅纳米粒及其制备方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
》.2011,第71卷(第4期), *
CX-5461, a novel, orally bioavailable selective small molecule inhibitor of RNA polymerase I transcription, induces autophagy and shows potent antitumor activity;D. Drygin et al;《Poster Session-New molecular targets》;20081023;第108页 *
CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy;Yanhong Duo;《Acta Biomaterialia》;20180830(第79期);第317-330页 *
Denis Drygin et al.Targeting RNA Polymerase I with an Oral Small Molecule CX-5461 Inhibits Ribosomal RNA Synthesis and Solid Tumor Growth.《Cancer Res *
Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy;Yang Li et al;《Nanomedicine》;20180807;第1-20页 *
EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer;Yang li et al;《International Journal of Nanomedicine》;20170826(第12期);摘要、第6240页左栏第1段至第6241页右栏第1段、第6253页右栏最后1段、图1-12、表1 *
PICT-1通过抑制rRNA转录诱导细胞发生死亡性的自噬;朵燕红;《中国博士学位论文全文数据库 医药卫生科技辑》;20180415(第04期);第E072-74页 *
Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy;Kaiyuan Wang et al;《Acta Biomaterialia》;20150114(第16期);第196-205页 *
功能化介孔纳米硅球负载miR155反义序列靶向治疗结直肠癌;李阳;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20180215(第02期);第E072-704页 *
基于介孔二氧化硅纳米颗粒的可控释放体系;王文谦,等;《化学进展》;20130531;第25卷(第5期);第676-690页 *
核酸适配体在肿瘤靶向治疗方面的研究进展;堵玉林,等;《化学通报》;20171231;第80卷(第9期);摘要、第1.2、4.2节 *

Also Published As

Publication number Publication date
CN109045304A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
Zhang et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy
Sun et al. Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli)
Huo et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors
CN107469088B (zh) 一种基于dna折纸术的精确识别靶向纳米载体的构建方法及其应用
Shi et al. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes
Li et al. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging
CN109045304B (zh) 一种携带Polymerase I抑制剂的核仁靶向纳米载体及其制备方法和应用
Zhang et al. Metal–organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging
Wang et al. Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery
KR101388958B1 (ko) 약물전달용 조성물 및 이를 이용한 약물전달방법
Donkor et al. Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube
Du et al. Lipid‐coated gold nanoparticles functionalized by folic acid as gene vectors for targeted gene delivery in vitro and in vivo
KR102023839B1 (ko) 분지된 dna, 압타머를 포함하는 고효율 압타머 복합체 및 이의 용도
Li et al. A siRNA-induced peptide co-assembly system as a peptide-based siRNA nanocarrier for cancer therapy
CN107952078B (zh) 一种载药体系的合成方法及其用途
CN104151559A (zh) 聚丙烯酰胺-丙烯腈-聚乙二醇及合成方法和应用
Abbas et al. A DNA-based nanocarrier for efficient cancer therapy
WO2015012912A2 (en) Alkyne phosphoramidites and preparation of spherical nucleic acid constructs
EP3332812A1 (en) Nucleic acid-based assembly and use of the assembly in cancer therapy
CN107715117B (zh) 一种四面体结构的载药体系及制药用途
Teng et al. Intracellular RNA and nuclear DNA-dual-targeted tumor therapy via upconversion nanoplatforms with UCL/MR dual-mode bioimaging
Su et al. pH-sensitive PEG-coated hyper-branched β-D-glucan derivative as carrier for CpG oligodeoxynucleotide delivery
Chen et al. Polyethylenimine modified graphene oxide for effective chemo-gene-photothermal triples therapy of triple-negative breast cancer and inhibits metastasis
CN113713118A (zh) 一种双靶向dna纳米载药复合体的建立及合成方法
Li et al. A conjugated aptamer and oligonucleotides-stabilized gold nanoclusters nanoplatform for targeted fluorescent imaging and efficient drug delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant