CN109020021A - 一种海咸水淡化及浓盐水综合利用节能工艺 - Google Patents

一种海咸水淡化及浓盐水综合利用节能工艺 Download PDF

Info

Publication number
CN109020021A
CN109020021A CN201810795629.8A CN201810795629A CN109020021A CN 109020021 A CN109020021 A CN 109020021A CN 201810795629 A CN201810795629 A CN 201810795629A CN 109020021 A CN109020021 A CN 109020021A
Authority
CN
China
Prior art keywords
strong brine
mgcl
mgso
nacl
kcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810795629.8A
Other languages
English (en)
Inventor
彭赛军
朱晓峰
柴朝晖
袁建军
唐娜
张维胜
冯逸仙
项振荣
周堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Zhongqing International Engineering Co Ltd
Original Assignee
China Zhongqing International Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Zhongqing International Engineering Co Ltd filed Critical China Zhongqing International Engineering Co Ltd
Priority to CN201810795629.8A priority Critical patent/CN109020021A/zh
Publication of CN109020021A publication Critical patent/CN109020021A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种海咸水淡化及浓盐水综合利用节能工艺,取含氯化钠、硫酸镁、氯化钾、溴化钠、氯化镁的海咸水为原料,进行海咸水淡化,得到淡水和浓盐水;将该浓盐水采用空气吹出法生产溴和脱溴浓盐水;将该脱溴浓盐水纳滤分离得到一价化合物浓盐水和二价化合物浓盐水,将一价浓盐水高温蒸发得到氯化钠和制盐母液,将该制盐母液低温蒸发得到氯化钾和制钾母液,将该制钾母液循环至与脱溴浓盐水混合并进行纳滤,将二价浓盐水高温蒸发得到一水硫酸镁和制镁母液,将该制镁母液蒸发浓缩冷却得到氯化镁产品。本发明具有工艺流程合理,热能利用率高,产品质量高,生产成本和能耗大幅度降低、实现浓盐水零排放的特点,可以适应大规模海咸水淡化。

Description

一种海咸水淡化及浓盐水综合利用节能工艺
技术领域
本发明属于无机化工技术领域,特别是一种海咸水淡化及浓盐水综合利用节能工艺。
背景技术
海咸水淡化及浓盐水综合利用,即从海水中提取淡水、化学元素、化学品及深加工等。已知的以含盐、硫酸镁、海咸水淡化氯化钾、溴素、氯化镁等组分的海水为原料生产淡水及浓盐水,兑卤法生产盐、硫酸镁、氯化钾、溴素和氯化镁工艺,是一种海水化学资源的综合利用工艺,然而该工艺存在工艺流程长,热能利用不合理,蒸汽消耗很高,生产成本很高,不能适应大规模海咸水淡化的问题。因此,上述方法生产盐、硫酸镁、氯化钾、溴素和氯化镁的工艺方法经济性和适应性都比较差。
发明内容
本发明的目的是提供一种海咸水淡化及浓盐水综合利用节能工艺,其利用膜技术分离淡水、一价和二价化合物,通过合理的工艺途径蒸发分离一价和二价化合物,有利于降低投资、能耗和成本,可以解决现有工艺经济性差和适应性的问题。
为实现上述目的,本发明采取以下技术方案:
一种海咸水淡化及浓盐水综合利用节能工艺,其特征在于,它包括下列步骤:
A.取含氯化钠、硫酸镁、氯化钾、溴化钠、氯化镁的海咸水为原料,采用热蒸馏法或反渗透法或电渗析法进行海咸水淡化,淡化温度为20-130℃,得到淡水和浓盐水;
B.将该浓盐水采用空气吹出法生产溴和脱溴浓盐水;
C.将该脱溴浓盐水纳滤分离得到一价化合物浓盐水(含有少量二价化合物)和二价化合物浓盐水(含有少量一价化合物),纳滤温度为20--30℃;
D.将一价化合物浓盐水高温蒸发得到氯化钠和制盐母液,蒸发温度为100-140℃;
E.将该制盐母液低温蒸发得到氯化钾和制钾母液(含有部分二价化合物),蒸发温度为20-70℃;
F.将该制钾母液循环至步骤C,与脱溴浓盐水混合并进行纳滤,混合温度为20-30℃;
G.将二价化合物浓盐水高温蒸发得到一水硫酸镁和制镁母液,蒸发温度为70-140℃;
H.将该制镁母液蒸发浓缩冷却得到氯化镁产品,蒸发温度为20-130℃。
进一步的,所述原料中各组分含量为:NaCl 15-40g/l、KCl 0.3-1.0g/l、NaBr0.05-0.20g/l、MgSO4 1.0-3.0g/l、MgCl2 1.5-5.0g/l。
进一步的,所述淡水中各组分含量为:TDS≤500ppm、其余为H2O。
进一步的,所述浓盐水中各组分含量为:NaCl 60-100g/l、KCl 1.2-2.5g/l、NaBr0.25-0.5g/l、MgSO4 4.0-7.5g/l、MgCl2 6.0-11.0g/l。
进一步的,所述脱溴浓盐水中各组分含量为:NaCl 60-100g/l、KCl1.2-2.5g/l、MgSO4 4.0-7.5g/l、MgCl2 6.0-11.0g/l。
进一步的,所述一价化合物浓盐水中各组分含量为:NaCl 60-100g/l、KCl1.2-2.5g/l、MgSO4 0.2-0.35g/l、MgCl2 0.6-1.1g/l;所述二价化合物浓盐水中各组分含量为:NaCl 1-2g/l、KCl 0.12-0.25g/l、MgSO4 40-75g/l、MgCl2 60-110g/l。
进一步的,所述制盐母液中各组分含量为:NaCl 100-250g/l、KCl150-250g/l、MgSO4 20-35g/l、MgCl2 80-140g/l。
进一步的,所述制钾母液中各组分含量为:NaCl 250-280g/l、KCl150-200g/l、MgSO4 20-35g/l、MgCl2 80-140g/l。
进一步的,所述制镁母液中各组分含量为:NaCl 4-14g/l、KCl 0.72-1.50g/l、MgSO4 4-14g/l、MgCl2 350-600g/l。
进一步的,所述步骤A中的海咸水淡化是采用热蒸馏法或反渗透或电渗析膜技术进行淡化。
进一步的,步骤A中的原料可以采用含氯化钠、硫酸镁、氯化钾、溴化钠、氯化镁的苦咸水或者工业废水为替代原料。
本发明的有益效果是:本发明海咸水淡化及浓盐水综合利用节能工艺,具有工艺流程合理,热能利用率高,产品质量高,生产成本和能耗大幅度降低、实现浓盐水零排放的特点,可以适应大规模海咸水淡化。
附图说明
图1是本发明海咸水淡化及浓盐水综合利用节能工艺的工艺流程示意图。
具体实施方式
下面结合较佳实施例详细说明本发明的具体实施方式。
如图1所示,本发明提供一种海咸水淡化及浓盐水综合利用节能工艺,它包括下列步骤:
A.取含氯化钠、硫酸镁、氯化钾、溴化钠、氯化镁的海咸水为原料,进行淡化处理,得到淡水和浓盐水;淡化处理是采用热蒸馏法或反渗透法或电渗析法进行海咸水淡化;淡化温度为20-130℃;
B.将该浓盐水采用空气吹出法生产溴(Br2)和脱溴浓盐水;空气吹出法是目前常用的提取溴素的方法,向溶液通入氯气,使溶液中的溴离子氧化成单质溴;鼓入热空气或水蒸气,可以蒸馏出其中的单质溴;
C.将该脱溴浓盐水纳滤分离得到一价化合物浓盐水(含有少量二价化合物)和二价化合物浓盐水(含有少量一价化合物),纳滤温度为20-30℃;
D.将一价化合物浓盐水(含有少量二价化合物)高温蒸发得到氯化钠和制盐母液,高温蒸发温度100-140℃;
E.将该制盐母液低温蒸发得到氯化钾和制钾母液,低温蒸发温度20-70℃;
F.将该制钾母液(含有部分二价化合物)循环至与脱溴浓盐水混合去纳滤分离二价化合物,混合温度为20-30℃;
G.将二价化合物浓盐水高温蒸发得到一水硫酸镁和制镁母液,高温蒸发温度70-140℃;
H.将该制镁母液蒸发浓缩冷却得到氯化镁产品,蒸发冷却温度20-130℃。
以下即列举几个具体实施例对本发明进行详细说明。
实施例1:取900m3海水(NaCl 30g/l、KCl 0.72g/l、NaBr 0.14g/l、MgSO42.15g/l、MgCl2 3.28g/l)为原料,采用反渗透进行海水淡化生产600吨淡水和300m3浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl29.84g/l),反渗透温度30℃;将300m3浓盐水采用空气吹出法生产0.29吨溴(Br2)和300m3脱溴浓盐水(NaCl 90g/l、KCl2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将300m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与3.49m3制钾母液(NaCl250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后303.49m3混合液纳滤分离得到278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到26.96吨氯化钠和3.82m3制盐母液(NaCl 228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将3.82m3制盐母液低温蒸发得到0.63吨氯化钾和3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到2.05吨一水硫酸镁和6.87m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2430g/l),蒸发温度100℃;将6.87m3制镁母液蒸发浓缩冷却得到6.91吨氯化镁(含MgCl2 42.75%)。
实施例2:取900m3海水(NaCl 30g/l、KCl 0.72g/l、NaBr 0.14g/l、MgSO42.15g/l、MgCl2 3.28g/l)为原料,采用热蒸馏进行海水淡化生产600吨淡水和300m3浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl29.84g/l),热蒸馏温度80℃;将300m3浓盐水采用空气吹出法生产0.29吨溴(Br2)和300m3脱溴浓盐水(NaCl 90g/l、KCl2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将300m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与3.49m3制钾母液(NaCl250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后303.49m3混合液纳滤分离得到278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到26.96吨氯化钠和3.82m3制盐母液(NaCl 228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将3.82m3制盐母液低温蒸发得到0.63吨氯化钾和3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到2.05吨一水硫酸镁和6.87m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2430g/l),蒸发温度100℃;将6.87m3制镁母液蒸发浓缩冷却得到6.91吨氯化镁(含MgCl2 42.75%)。
实施例3:取900m3海水(NaCl 30g/l、KCl 0.72g/l、NaBr 0.14g/l、MgSO42.15g/l、MgCl2 3.28g/l)为原料,采用电渗析进行海水淡化生产600吨淡水和300m3浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl29.84g/l),电渗析温度25℃;将300m3浓盐水采用空气吹出法生产0.29吨溴(Br2)和300m3脱溴浓盐水(NaCl 90g/l、KCl2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将300m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与3.49m3制钾母液(NaCl250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后303.49m3混合液纳滤分离得到278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将278.7m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到26.96吨氯化钠和3.82m3制盐母液(NaCl 228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将3.82m3制盐母液低温蒸发得到0.63吨氯化钾和3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将3.49m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将24.79m3二价化合物浓盐水(NaCl 1.2g/l、KCl0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到2.05吨一水硫酸镁和6.87m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2430g/l),蒸发温度100℃;将6.87m3制镁母液蒸发浓缩冷却得到6.91吨氯化镁(含MgCl2 42.75%)。
实施例4:取900m3苦咸水(NaCl 3g/l、KCl 0.072g/l、NaBr 0.014g/l、MgSO40.215g/l、MgCl2 0.328g/l)为原料,采用反渗透进行苦咸水淡化生产870吨淡水和30m3浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl2 9.84g/l),反渗透温度30℃;将30m3浓盐水采用空气吹出法生产0.029吨溴(Br2)和30m3脱溴浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将30m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后30.349m3混合液纳滤分离得到27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和2.479m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到2.696吨氯化钠和0.382m3制盐母液(NaCl228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将0.382m3制盐母液低温蒸发得到0.063吨氯化钾和0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl287.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将2.479m3二价化合物浓盐水(NaCl1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到0.205吨一水硫酸镁和0.687m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2 430g/l),蒸发温度100℃;将0.687m3制镁母液蒸发浓缩冷却得到0.691吨氯化镁(含MgCl2 42.75%)。
实施例5:取900m3苦咸水(NaCl 3g/l、KCl 0.072g/l、NaBr 0.014g/l、MgSO40.215g/l、MgCl2 0.328g/l)为原料,采用热蒸馏进行苦咸水淡化生产870吨淡水和30m3浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl2 9.84g/l),热蒸馏温度80℃;将30m3浓盐水采用空气吹出法生产0.029吨溴(Br2)和30m3脱溴浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将30m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后30.349m3混合液纳滤分离得到27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和2.479m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到2.696吨氯化钠和0.382m3制盐母液(NaCl228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将0.382m3制盐母液低温蒸发得到0.063吨氯化钾和0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl287.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将2.479m3二价化合物浓盐水(NaCl1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到0.205吨一水硫酸镁和0.687m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2 430g/l),蒸发温度100℃;将0.687m3制镁母液蒸发浓缩冷却得到0.691吨氯化镁(含MgCl2 42.75%)。
实施例6:取900m3苦咸水(NaCl 3g/l、KCl 0.072g/l、NaBr 0.014g/l、MgSO40.215g/l、MgCl2 0.328g/l)为原料,采用电渗析进行苦咸水淡化生产870吨淡水和30m3浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr 0.42g/l、MgSO4 6.45g/l、MgCl2 9.84g/l),电渗析温度25℃;将30m3浓盐水采用空气吹出法生产0.029吨溴(Br2)和30m3脱溴浓盐水(NaCl90g/l、KCl 2.16g/l、NaBr 0.015g/l、MgSO46.45g/l、MgCl2 9.84g/l);将30m3脱溴浓盐水(NaCl 90g/l、KCl 2.16g/l、NaBr0.015g/l、MgSO4 6.45g/l、MgCl2 9.84g/l)与0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l)混合后30.349m3混合液纳滤分离得到27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl21.0g/l)和2.479m3二价化合物浓盐水(NaCl 1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l),纳滤温度25℃;将27.87m3一价化合物浓盐水(NaCl 100g/l、KCl 4.7g/l、MgSO4 0.3g/l、MgCl2 1.0g/l)高温蒸发得到2.696吨氯化钠和0.382m3制盐母液(NaCl228g/l、KCl 346g/l、MgSO4 23.8g/l、MgCl2 79.7g/l),蒸发温度125℃;将0.382m3制盐母液低温蒸发得到0.063吨氯化钾和0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl2 87.2g/l);将0.349m3制钾母液(NaCl 250g/l、KCl 193g/l、MgSO4 26.1g/l、MgCl287.2g/l)循环至与脱溴浓盐水混合去纳滤分离二价化合物;将2.479m3二价化合物浓盐水(NaCl1.2g/l、KCl 0.12g/l、MgSO4 78.05g/l、MgCl2 119.08g/l)高温蒸发得到0.205吨一水硫酸镁和0.687m3制镁母液(NaCl 4.33g/l、KCl 0.43g/l、MgSO4 23.4g/l、MgCl2 430g/l),蒸发温度100℃;将0.687m3制镁母液蒸发浓缩冷却得到0.691吨氯化镁(含MgCl2 42.75%)。
本发明具有工艺流程合理,热能利用率高,产品质量高,生产成本和能耗大幅度降低、实现浓盐水零排放的特点,可以适应大规模海咸水淡化。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的结构作任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术方案的范围内。

Claims (10)

1.一种海咸水淡化及浓盐水综合利用节能工艺,其特征在于,它包括下列步骤:
A.取含氯化钠、硫酸镁、氯化钾、溴化钠、氯化镁的海咸水为原料,进行海咸水淡化,淡化温度为20-130℃,得到淡水和浓盐水;
B.将该浓盐水采用空气吹出法生产溴和脱溴浓盐水;
C.将该脱溴浓盐水纳滤分离得到一价化合物浓盐水和二价化合物浓盐水,纳滤温度为20--30℃;
D.将一价浓盐水高温蒸发得到氯化钠和制盐母液,蒸发温度为100-140℃;
E.将该制盐母液低温蒸发得到氯化钾和制钾母液,蒸发温度为20-70℃;
F.将该制钾母液循环至步骤C,与脱溴浓盐水混合并进行纳滤,混合温度为20-30℃;
G.将二价浓盐水高温蒸发得到一水硫酸镁和制镁母液,蒸发温度为70-140℃;
H.将该制镁母液蒸发浓缩冷却得到氯化镁产品,蒸发温度为20-130℃。
2.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述原料中各组分含量为:NaCl 15-40g/l、KCl 0.3-1.0g/l、NaBr 0.05-0.20g/l、MgSO4 1.0-3.0g/l、MgCl2 1.5-5.0g/l。
3.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述淡水中各组分含量为:TDS≤500ppm、其余为H2O。
4.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述浓盐水中各组分含量为:NaCl 60-100g/l、KCl 1.2-2.5g/l、NaBr 0.25-0.5g/l、MgSO4 4.0-7.5g/l、MgCl2 6.0-11.0g/l。
5.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述脱溴浓盐水中各组分含量为:NaCl 60-100g/l、KCl 1.2-2.5g/l、MgSO4 4.0-7.5g/l、MgCl26.0-11.0g/l。
6.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述一价化合物浓盐水中各组分含量为:NaCl 60-100g/l、KCl 1.2-2.5g/l、MgSO4 0.2-0.35g/l、MgCl2 0.6-1.1g/l;所述二价化合物浓盐水中各组分含量为:NaCl 1-2g/l、KCl 0.12-0.25g/l、MgSO4 40-75g/l、MgCl2 60-110g/l。
7.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述制盐母液中各组分含量为:NaCl 100-250g/l、KCl 150-250g/l、MgSO4 20-35g/l、MgCl2 80-140g/l。
8.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述制钾母液中各组分含量为:NaCl 250-280g/l、KCl 150-200g/l、MgSO4 20-35g/l、MgCl2 80-140g/l。
9.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述制镁母液中各组分含量为:NaCl 4-14g/l、KCl 0.72-1.50g/l、MgSO4 4-14g/l、MgCl2 350-600g/l。
10.根据权利要求1所述的海咸水淡化及浓盐水综合利用节能工艺,其特征在于,所述步骤A中的海咸水淡化是采用热蒸馏法或反渗透或电渗析膜技术进行淡化。
CN201810795629.8A 2018-07-19 2018-07-19 一种海咸水淡化及浓盐水综合利用节能工艺 Pending CN109020021A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810795629.8A CN109020021A (zh) 2018-07-19 2018-07-19 一种海咸水淡化及浓盐水综合利用节能工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810795629.8A CN109020021A (zh) 2018-07-19 2018-07-19 一种海咸水淡化及浓盐水综合利用节能工艺

Publications (1)

Publication Number Publication Date
CN109020021A true CN109020021A (zh) 2018-12-18

Family

ID=64643261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810795629.8A Pending CN109020021A (zh) 2018-07-19 2018-07-19 一种海咸水淡化及浓盐水综合利用节能工艺

Country Status (1)

Country Link
CN (1) CN109020021A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0038381B1 (en) * 1980-04-18 1984-04-18 Norsk Hydro A/S Method for purification and concentration of mgcl2-brines
CN102167459A (zh) * 2011-03-22 2011-08-31 天津长芦汉沽盐场有限责任公司 海水淡化综合利用的生产方法
CN105819401A (zh) * 2016-03-18 2016-08-03 中国中轻国际工程有限公司 一种lng冷能海水淡化及浓盐水综合利用工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0038381B1 (en) * 1980-04-18 1984-04-18 Norsk Hydro A/S Method for purification and concentration of mgcl2-brines
CN102167459A (zh) * 2011-03-22 2011-08-31 天津长芦汉沽盐场有限责任公司 海水淡化综合利用的生产方法
CN105819401A (zh) * 2016-03-18 2016-08-03 中国中轻国际工程有限公司 一种lng冷能海水淡化及浓盐水综合利用工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
天津市汉沽盐场: "《苦卤的综合利用》", 30 September 1972 *
阮国岭: "《海水淡化工程设计》", 31 March 2013 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2022-11-15 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Similar Documents

Publication Publication Date Title
CN109020021A (zh) 一种海咸水淡化及浓盐水综合利用节能工艺
CN104692574B (zh) 一种高含盐废水的处理方法
CN111484178B (zh) 一种海水或浓盐水的综合处理方法
CN106315991B (zh) 一种用于工业废水的分盐工艺
CN106830465A (zh) 一种含盐废水的分盐及纯化回收方法
CN105948362A (zh) 一种煤化工ro浓盐水处理工艺
Das et al. Insights into membrane crystallization: A sustainable tool for value added product recovery from effluent streams
CN108529802A (zh) 钛白粉生产排放高含盐废水零排工艺
Turek et al. Salt production from coal-mine brine in ED–evaporation–crystallization system
CN105621769B (zh) 一种高浓废水的零排放方法
CA2920389A1 (en) Process and system for producing sodium chloride brine
CN103253818A (zh) 海水淡化、资源综合利用及零排放处理***
CN105198141B (zh) 一种高温高盐废水的零排放方法
CN105084630A (zh) 一种炼油催化剂废水零排放处理方法
CN105800851A (zh) 正渗透汲取液及其循环再生方法和应用
CN107935264A (zh) 一种海水淡化制盐综合工艺方法
CN105236627A (zh) 一种造纸尾水中水回用零排放处理方法
CN106082516A (zh) 一种分盐结晶工艺和装置
CN109534568A (zh) 一体化海水资源综合利用***
CN104649494B (zh) 一种硅溶胶废水的处理及联产钠盐的方法
CN111003717A (zh) 一种海水淡化浓盐水蒸发结晶制备碱盐的装置及方法
CN203229436U (zh) 一种海水淡化、资源综合利用及零排放处理***
CN104761091A (zh) 工业浓盐水零排放处理工艺及装置
CN106673019A (zh) 一种利用含盐废水和co2生产纯碱的方法
CN108218101A (zh) 一种高含盐气田水低成本处理及资源化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218

RJ01 Rejection of invention patent application after publication