CN109009591B - Bioabsorbable stent - Google Patents

Bioabsorbable stent Download PDF

Info

Publication number
CN109009591B
CN109009591B CN201810979503.6A CN201810979503A CN109009591B CN 109009591 B CN109009591 B CN 109009591B CN 201810979503 A CN201810979503 A CN 201810979503A CN 109009591 B CN109009591 B CN 109009591B
Authority
CN
China
Prior art keywords
diamond
support
shaped
frame
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810979503.6A
Other languages
Chinese (zh)
Other versions
CN109009591A (en
Inventor
王云兵
陈宇
熊艳
叶春瑶
蒋文涛
周志宏
田晓宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201810979503.6A priority Critical patent/CN109009591B/en
Publication of CN109009591A publication Critical patent/CN109009591A/en
Application granted granted Critical
Publication of CN109009591B publication Critical patent/CN109009591B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)

Abstract

The invention relates to the field of biological stents, and aims to solve the problem of insufficient radial supporting force of the existing biological absorbable stent, and provides a biological absorbable stent which comprises a tube stent; the pipe bracket comprises a supporting ring row and a connecting ring row which are sequentially and alternately distributed along the axial direction; the support ring column comprises a plurality of first diamond-shaped frames which are distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, the sharp corners of two adjacent first diamond-shaped frames which are arranged towards the circumferential direction are connected, and a plurality of reinforced diamond-shaped frames which are reduced in an equal-magnification manner are arranged in the first diamond-shaped frames; the middle part of each edge of each first diamond-shaped frame is connected with the sharp corners of the four adjacent second diamond-shaped frames through connecting bars. The support ring row can ensure and strengthen the whole radial supporting force of the pipe bracket, strengthen the setting of the diamond frame and further strengthen the whole radial supporting force. While the connecting ring array is used for facilitating the press-holding of the whole structure so as to reduce the diameter of the tube bracket, so that the tube bracket can be sent into the organ.

Description

Bioabsorbable stent
Technical Field
The invention relates to the field of biological stents, in particular to a bioabsorbable stent.
Background
Scaffold materials are often used in surgical procedures such as vascular scaffolds, intestinal scaffolds that provide support, artificial bone scaffolds, artificial organ scaffolds, etc. that act as carriers for nutrients and provide a certain size structure. Early stent materials, which are typically metallic or some other non-degradable material, often required secondary surgical removal with some attendant negative effects; the bio-absorbable stent is made of a material which can be dissolved in a human body and can be absorbed by the human body after being put into the body.
Bioabsorbable stents can achieve restoration of vascular function by complete degradation, reducing the incidence of long-term adverse events, while also leaving more room for selection of treatment options that may be needed in the future by the patient. The biggest problem with bioabsorbable stents is insufficient radial support.
Disclosure of Invention
The invention aims to provide a bioabsorbable stent so as to solve the problem of insufficient radial supporting force of the existing bioabsorbable stent.
Embodiments of the present invention are implemented as follows:
embodiments of the present invention provide a bioabsorbable stent,
comprises a pipe bracket, wherein the pipe wall of the pipe bracket is in a hollowed-out net structure;
the pipe bracket comprises a supporting ring row and a connecting ring row which are sequentially and alternately distributed along the axial direction, and one connecting ring row is arranged on two adjacent supporting ring rows;
the support ring column comprises a plurality of first diamond-shaped frames which are distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, the sharp corners of two adjacent first diamond-shaped frames which are arranged towards the circumferential direction are connected, and a plurality of reinforced diamond-shaped frames which are reduced in an equal-magnification manner are arranged in the first diamond-shaped frames; the connecting ring row comprises a plurality of second diamond-shaped frames which are distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, and the sharp corners of two adjacent second diamond-shaped frames are connected with each other;
the sharp angle of the first diamond-shaped frame facing the circumferential direction is opposite to the sharp angle of the second diamond-shaped frame facing the axial direction; the middle part of each edge of each first diamond-shaped frame is connected with the sharp corners of the four adjacent second diamond-shaped frames through connecting bars.
In one implementation of the present embodiment:
the pipe bracket is provided with a plurality of inner-layer supporting frames which are arranged at intervals along the axial direction;
each inner layer support frame comprises a diamond-shaped support frame, the center of the support frame coincides with the axial lead of the pipe support, and four corners of the support frame are provided with support holes;
the inner peripheral wall of the pipe bracket is provided with a support column which can be correspondingly connected with the support hole.
In one implementation of the present embodiment:
arc-shaped pieces which extend along the circumferential direction and the outer side walls of which can be attached to the inner peripheral wall of the pipe bracket are arranged at the outer sides of the four sharp corners of the supporting frame;
the supporting hole is arranged on the arc-shaped piece.
In one implementation of the present embodiment:
the outer side wall of the arc-shaped piece and the inner peripheral wall of the pipe bracket are arranged at intervals.
In one implementation of the present embodiment:
four connecting strips around each first diamond extend towards the center of the first diamond and are intersected.
The beneficial effects of the invention are as follows:
the support ring row can ensure and strengthen the whole radial supporting force of the pipe bracket, strengthen the setting of the diamond frame and further strengthen the whole radial supporting force. While the connecting ring array is used for facilitating the press-holding of the whole structure so as to reduce the diameter of the tube bracket, so that the tube bracket can be sent into the organ.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings that are needed in the embodiments will be briefly described below, it being understood that the following drawings only illustrate some embodiments of the present invention and therefore should not be considered as limiting the scope, and other related drawings may be obtained according to these drawings without inventive effort for a person skilled in the art.
FIG. 1 is a schematic side view of a bioabsorbable stent according to embodiment 1 of the present invention;
FIG. 2 is a schematic view showing the structure of the bioabsorbable stent according to the embodiment 1 of the present invention in the unfolded state;
FIG. 3 is a schematic view showing the structure of a bioabsorbable stent according to embodiment 1 of the present invention in a compressed state;
fig. 4 is a schematic structural view of an inner layer support frame of a bioabsorbable stent according to embodiment 1 of the present invention;
fig. 5 is a schematic structural view of an outer scaffold of a bioabsorbable scaffold according to embodiment 1 of the present invention;
FIG. 6 is a schematic view showing a second structure of the bioabsorbable stent according to embodiment 1 of the present invention;
FIG. 7 is a schematic diagram showing a compressed state of a second structure of the bioabsorbable stent according to embodiment 1 of the present invention;
FIG. 8 is a schematic view showing a partial structure of a first structure of a bioabsorbable stent according to embodiment 2 of the present invention;
FIG. 9 is a schematic view showing a partial structure of a second structure of a bioabsorbable stent according to embodiment 2 of the present invention;
FIG. 10 is a schematic view showing the structure of a bioabsorbable stent according to embodiment 2 of the present invention in the unfolded state;
FIG. 11 is a schematic view showing the structure of a bioabsorbable stent according to embodiment 2 of the present invention in a compressed state;
FIG. 12 is a schematic side view of a bioabsorbable stent according to embodiment 2 of the present invention;
fig. 13 is a schematic front view of a bioabsorbable stent according to embodiment 3 of the present invention;
FIG. 14 is a schematic side view of a second embodiment of a bioabsorbable stent according to example 3 of the present invention;
FIG. 15 is a schematic side view of a third embodiment of a bioabsorbable stent according to example 3 of the present invention;
FIG. 16 is a schematic front view of a third embodiment of a bioabsorbable stent according to embodiment 3 of the present invention;
FIG. 17 is a schematic front view of a first embodiment of a bioabsorbable stent according to example 4 of the present invention;
FIG. 18 is a schematic front view of a second embodiment of a bioabsorbable stent according to example 4 of the present invention;
fig. 19 is a schematic side view of a bioabsorbable stent according to embodiment 4 of the present invention.
Icon: 100-inner tube support; 101-a first cyclic unit; 102-a first bezel; 110-outer tube scaffold; 111-a second cyclic unit; 112-a second bezel; 120-connecting holes; 121-connecting columns; 200-tube rack; 201-supporting columns; 210-a support ring array; 211-first diamond; 212-reinforced diamond; 220-connecting ring columns; 221-second diamond; 230-connecting strips; 240-an inner layer support frame; 241-a support frame; 242-arc-shaped pieces; 243-a support hole; 300-a stent body; 301-connecting columns; 310-a cyclic unit; 311-trapezoid frame; 312-open end; 320-a ring column connection assembly; 321-connecting strips; 330-a second tier stent; 331-connecting holes; 332-support holes; 340-third layer of brackets; 341-support columns; 400-tube rack; 410-a ring structure; 412-V-shaped frame; 413-a first frame bar; 414-a second frame bar; 415—a first pointed end; 416-second pointed end; 417-a connection terminal; 420-a connection assembly; 421-connecting bars; 422-elastic strips; 430-auxiliary structure; 431-assist bar; 440-inner layer support frame; 441-a support frame; 442-arc-shaped piece; 443-supporting holes; 444-support columns.
Detailed Description
For the purpose of making the objects, technical solutions and advantages of the embodiments of the present invention more apparent, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention, and it is apparent that the described embodiments are some embodiments of the present invention, but not all embodiments of the present invention. The components of the embodiments of the present invention generally described and illustrated in the figures herein may be arranged and designed in a wide variety of different configurations.
Thus, the following detailed description of the embodiments of the invention, as presented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be made by those skilled in the art based on the embodiments of the invention without making any inventive effort, are intended to be within the scope of the invention.
It should be noted that: like reference numerals and letters denote like items in the following figures, and thus once an item is defined in one figure, no further definition or explanation thereof is necessary in the following figures.
In the description of the present invention, it should be noted that, if the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. indicate an azimuth or a positional relationship based on that shown in the drawings, or an azimuth or a positional relationship in which the inventive product is conventionally put in use, it is merely for convenience of describing the present invention and simplifying the description, and it is not indicated or implied that the apparatus or element referred to must have a specific azimuth, be constructed and operated in a specific azimuth, and thus should not be construed as limiting the present invention. Furthermore, the terms "first," "second," and the like in the description of the present invention, if any, are used for distinguishing between the descriptions and not necessarily for indicating or implying a relative importance.
Furthermore, the terms "horizontal," "vertical," and the like in the description of the present invention, if any, do not denote a requirement that the component be absolutely horizontal or overhang, but rather may be slightly inclined. As "horizontal" merely means that its direction is more horizontal than "vertical", and does not mean that the structure must be perfectly horizontal, but may be slightly inclined.
In the description of the present invention, it should also be noted that, unless explicitly stated and limited otherwise, the terms "disposed," "mounted," "connected," and "connected" should be interpreted broadly, and for example, "connected" may be a fixed connection, a removable connection, or an integral connection; can be mechanically or electrically connected; can be directly connected or indirectly connected through an intermediate medium, and can be communication between two elements. The specific meaning of the above terms in the present invention will be understood in specific cases by those of ordinary skill in the art.
Example 1, refer to fig. 1-7.
The bioabsorbable stent provided in this embodiment,
as shown in fig. 1, the inner tube support comprises an inner tube support 100 and an outer tube support 110 sleeved on the periphery of the inner tube support 100, wherein the tube walls of the inner tube support 100 and the outer tube support 110 are hollow net structures;
the outer circumferential wall of the inner tube bracket 100 is provided with a plurality of hole groups at intervals along the circumferential direction, each hole group includes a plurality of connection holes 120 at intervals along the axial direction, each connection hole 120 extends along the radial direction;
the inner circumferential wall of the outer tube support 110 is provided with connection posts 121 extending in the radial direction, each connection hole 120 is correspondingly provided with one connection post 121, and each connection post 121 is correspondingly embedded and connected with one connection hole 120.
The existing bioabsorbable stent has the problem that the radial supporting force is insufficient, and compared with the existing bioabsorbable stent, the bioabsorbable stent has the advantages that the inner tube stent 100 and the outer tube stent 110 are arranged, the production cost is not greatly changed, but the radial supporting force can be effectively improved.
The distribution of the connection holes 120 and the connection posts 121 on the inner tube support 100 and the outer tube support 110 helps to balance the pulling force between the inner tube support 100 and the outer tube support 110 everywhere, and can maintain a balanced stable state in both the case of the inner tube support 100 and the outer tube support 110 being spread and being pressed to ensure that the radial supporting force is intact.
In one implementation of the present embodiment:
as shown in fig. 1, the radial length dimension of the connection hole 120 is smaller than the radial length dimension of the connection post 121;
the outer circumferential wall of the inner tube holder 100 and the inner circumferential wall of the outer tube holder 110 are disposed at an interval therebetween.
The interval sets up, on the one hand for guarantee that inlayer pipe support 100 and outer pipe support 110 have sufficient space of dodging to prop open smoothly and hold with pressing, on the other hand, avoid outer pipe support 110 oppression inlayer pipe support 100 all the time under natural state, cause inlayer pipe support 100's radial holding power impaired, thereby influence holistic holding power.
In one implementation of the present embodiment: as shown in figures 2 and 3 of the drawings,
as shown in fig. 4, the inner tube stent 100 includes a plurality of first annular units 101 arranged side by side in the axial direction; each first annular unit 101 comprises a plurality of first frames 102 which are sequentially connected along the circumferential direction and are in a regular hexagon shape; edges of two adjacent first frames 102 in each first annular unit 101 are connected in a superposition mode, and the two first frames 102 between the two adjacent first annular units 101 are connected correspondingly and correspondingly in sharp angles;
as shown in fig. 5, the outer tube support 110 includes a plurality of second annular units 111 arranged side by side in the axial direction; each second annular unit 111 includes a plurality of second frames 112 sequentially connected along the circumferential direction and having a hexagonal shape; the edges of two adjacent second frames 112 in each second annular unit 111 are connected in a superposition manner, and the two second frames 112 between the two adjacent second annular units 111 are connected in a corresponding manner and with corresponding sharp angles.
Compared with the prior bioabsorbable stent which adopts an arc-shaped structure, the hexagonal first frame 102 and the hexagonal second frame 112 can improve larger radial supporting force.
In one implementation of the present embodiment:
as shown in fig. 2 and 3, edges where two adjacent first frames 102 in the first annular unit 101 are connected in a superposition manner are arranged along the axial direction; the edges of the second annular element 111, which are connected to each other by two adjacent second rims 112, are also arranged in the axial direction. And the radial supporting force of each part is ensured to be balanced.
In one implementation of the present embodiment:
as shown in fig. 6 and 7, edges of the first annular unit 101, where two adjacent first rims 102 are connected in a superposed manner, extend along the axial direction and are circumferentially arranged along the circumferential direction; the edges of the second annular unit 111, which are connected by two adjacent second rims 112, extend in the axial direction and are circumferentially arranged.
The surrounding arrangement can increase the split force in the radial direction, thereby increasing the overall radial support force.
In one implementation of the present embodiment:
as shown in fig. 2, 3, 6 and 7, a connecting hole 120 is formed in the middle of an edge where two adjacent first frames 102 in the first annular unit 101 are overlapped and connected; one end of the edge, where two adjacent second frames 112 are connected in a superposition manner, in the second annular unit 111 is provided with a connecting column 121; the connection post 121 is connected to the connection hole 120, and the first annular unit 101 and the second annular unit 111 are disposed offset from each other in the axial direction.
The staggered arrangement enhances the support of the middle portion of the first frame 102 by the second frame 112, thereby enhancing the overall support force of the first frame 102.
Example 2, refer to fig. 8-12.
The bioabsorbable stent provided in this embodiment,
the device comprises a pipe bracket 200, wherein the pipe wall of the pipe bracket 200 is in a hollowed-out net structure;
the tube stand 200 includes a support ring row 210 and a connection ring row 220 sequentially spaced apart in an axial direction, and one connection ring row 220 is provided for two adjacent support ring rows 210;
the support ring row 210 includes a plurality of first diamond-shaped frames 211 distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, and the sharp corners of two adjacent first diamond-shaped frames 211 are connected with each other, as shown in fig. 8 and 9, and a plurality of reinforced diamond-shaped frames 212 with equal reduction are arranged in the first diamond-shaped frames 211; as shown in fig. 8 and 9, the connecting ring column 220 includes a plurality of second diamond-shaped elements 221 distributed along the circumferential direction and in which a pair of sharp corners are arranged toward the circumferential direction, and the sharp corners of two adjacent second diamond-shaped elements 221 are connected to each other;
as shown in fig. 10 and 11, the tip angle of the first diamond 211 facing in the circumferential direction is opposite to the tip angle of the second diamond 221 facing in the axial direction; the middle of each edge of each first diamond 211 is connected to the sharp corners of the adjacent four second diamond 221 by connecting bars 230.
The support ring array 210 can ensure and strengthen the overall radial support force of the tube support 200, strengthen the arrangement of the diamond-shaped frame 212, and further strengthen the overall radial support force. While the attachment ring array 220 is used to facilitate crimping of the entire structure to reduce the diameter of the tube holder 200 so as to be able to be fed into the interior of the organ.
In one implementation of the present embodiment:
as shown in fig. 12, the tube stand 200 is provided with a plurality of inner layer support frames 240 spaced apart in the axial direction;
each inner layer supporting frame 240 comprises a diamond-shaped supporting frame 241, the center of the supporting frame 241 coincides with the axial lead of the pipe bracket 200, and four corners of the supporting frame 241 are provided with supporting holes 243; the inner circumferential wall of the tube holder 200 is provided with a support column 201 that can be correspondingly connected to the support hole 243.
The diamond-shaped supporting frame 241 plays a role in supporting the pipe bracket 200 so as to enhance the radial supporting force of the pipe bracket 200; meanwhile, when the tube support 200 is pressed and held, the inner support 240 can be smoothly compressed, so that the diameter can be reduced, and the tube support can be sent into an organ after diameter reduction.
In one implementation of the present embodiment:
as shown in fig. 12, the outer sides of the four sharp corners of the support frame 241 are provided with arc pieces 242 extending in the circumferential direction and having outer side walls capable of fitting with the inner peripheral wall of the tube holder 200; the supporting hole 243 is disposed at the arc piece 242.
The arc-shaped piece 242 is used for realizing anastomosis between the inner support 240 and the inner peripheral wall of the tube support 200, so as to increase the effective contact area between the inner support 240 and the tube support 200, reduce the supporting force corresponding to the unit area, and avoid the excessive concentration of the supporting force, so that the inner support 240 can effectively support the tube support 200.
In one implementation of the present embodiment:
as shown in fig. 12, the outer side wall of the arc piece 242 is spaced apart from the inner peripheral wall of the tube holder 200. The interval sets up, on the one hand for guarantee that inlayer support frame 240 and pipe support 200 have sufficient space of dodging to prop open smoothly and hold with pressing, on the other hand, avoid pipe support 200 oppression inlayer support frame 240 all the time under natural state, cause inlayer support frame 240's radial holding power impaired, thereby influence holistic holding power.
In one implementation of the present embodiment:
as shown in fig. 10, four connection bars 230 around each of the first diamond-shaped frames 211 extend toward the center of the first diamond-shaped frame 211 and intersect. The connection bar 230 extends to the center of the first diamond 211, which can effectively enhance the connection strength between the first diamond 211 and the second diamond 221.
Embodiment 3, refer to fig. 13 to 16.
The bioabsorbable stent provided in this embodiment,
comprises a bracket main body 300 with a hollow net-shaped pipe wall;
as shown in fig. 13, the stent body 300 includes a plurality of ring units 310 and a plurality of ring-row connection assemblies 320; each ring-shaped unit 310 comprises a plurality of trapezoid frames 311 which are annularly distributed along the circumferential direction of the bracket main body 300 and are provided with opening ends 312, the opening width of each trapezoid frame 311 is gradually increased from the bottom end to the opening ends 312, the opening ends 312 of each trapezoid frame 311 are arranged towards the axial direction, the opening ends 312 of two adjacent trapezoid frames 311 in one ring-shaped unit 310 respectively face the two ends of the bracket main body 300, and the two side arms of one trapezoid frame 311 are respectively connected with the side arms of the adjacent trapezoid frame 311 in the same ring-shaped unit 310 in an overlapping manner;
the plurality of annular units 310 are arranged at intervals along the axial direction of the bracket main body 300, two adjacent annular units 310 are connected through an annular row connecting assembly 320, and the opening ends 312 of the trapezoid frames 311 between the two adjacent annular units 310 are correspondingly arranged towards each other;
each annular row connecting assembly 320 comprises a plurality of connecting bars 321 distributed annularly along the circumferential direction, two trapezoid frames 311 of which the opening ends 312 face one end of the bracket main body 300 in adjacent two annular units 310 are connected through the connecting bars 321, and the opening ends 312 of the two trapezoid frames 311 connected by the connecting bars 321 in the adjacent two annular row connecting assemblies 320 face opposite directions.
"the open end 312 of each trapezoid frame 311 is disposed toward the axial direction" means that it is open at an end toward the end of the holder main body 300. "the open ends 312 of the adjacent two trapezoidal frames 311 in one ring-shaped unit 310 face the both ends of the holder body 300, respectively" means facing opposite directions, one toward one end of the holder body 300 and the other toward the other end of the holder body 300. "the two side arms of one trapezoid frame 311 are respectively connected to the side arms of the adjacent trapezoid frame 311 in the same annular unit 310 in a superimposed manner", the directions in which the two side arms of the two trapezoid frames 311 are arranged at the positions are aligned, and the two side arms can be superimposed. "the open ends 312 of the trapezoid frames 311 between the adjacent two annular units 310 are disposed toward the respective correspondence", the open end 312 of each trapezoid frame 311 in one annular unit 310 corresponds one-to-one with the open end 312 of one trapezoid frame 311 in the adjacent annular unit 310. "open ends 312 in the adjacent two annular units 310 are both toward one end of the holder main body 300" are connected toward only one end thereof, and are unconnected toward the other end thereof; "the open ends 312 of the two trapezoid frames 311 to which the connecting bars 321 in the adjacent two annular row connecting members 320 are connected face opposite", the connecting bars 321 in one annular row connecting member 320 connect the trapezoid frame 311 with the open end 312 facing one end thereof, and the connecting bars 321 in the adjacent annular row connecting member 320 connect the trapezoid frame 311 with the open end 312 facing the other end thereof, so that it is possible to ensure that the stent body 300 has a sufficient radial supporting force while also having a compression effect.
Compared with the prior art adopting the arc shape and adopting the structure of the trapezoid frame 311, the radial supporting force is larger. The opposite orientation of the open ends 312 of the trapezoid frames 311 within each annular cell 310 ensures radial support of each annular cell 310.
In one implementation of the present embodiment:
as shown in fig. 14, the bioabsorbable stent further comprises a second layer stent 330, and the stent body 300 is sleeved on the outer circumference of the second layer stent 330;
the outer peripheral wall of the second-layer bracket 330 is provided with a plurality of connecting holes 331 at intervals, and the inner peripheral wall of the bracket main body 300 is provided with a plurality of connecting posts 301 which can be correspondingly clamped and matched with the connecting holes 331 at intervals.
The second-layer bracket 330 is provided with the connecting hole 331, the bracket main body 300 is provided with the connecting column 301, compared with the second-layer bracket 330 which is provided with the connecting column 301, the bracket main body 300 is provided with the connecting hole 331, and the supporting and limiting effects of the second-layer bracket 330 on the bracket main body 300 are reduced.
In one implementation of the present embodiment:
as shown in fig. 15 and 16, the bioabsorbable stent further comprises a third layer of stent 340, and the second layer of stent 330 is sleeved on the outer periphery of the third layer of stent 340;
the outer peripheral wall of the third layer of support 340 is provided with a plurality of support columns 341, and the inner peripheral wall of the second layer of support 330 is provided with a plurality of support holes 332 which can be correspondingly clamped and matched with the support columns 341 at intervals.
The radial supporting force of the holder body 300 is further enhanced by using the third-layer holder 340. The support holes 332 are formed in the second-layer support 330, the support columns 341 are respectively disposed on the support main body 300 and the third-layer support 340, and the support main body 300 and the third-layer support 340 apply a force to the inner side and the outer side of the second-layer support 330 from the second-layer support 330, so that not only can the radial overall support force be enhanced, but also the radial support force of the single second-layer support 330 can be not weakened.
In one implementation of the present embodiment:
as shown in fig. 14 and 15, the inner circumferential wall of the holder body 300 and the second-layer holder 330 are disposed at a distance, and the second-layer holder 330 and the third-layer holder 340 are disposed at a distance.
On the one hand, the support device is used for ensuring that the second-layer support 330 and the support main body 300 have enough avoiding space to be spread and held smoothly, and on the other hand, the support main body 300 is prevented from always pressing the second-layer support 330 in a natural state, so that the radial supporting force of the second-layer support 330 is damaged, and the whole supporting force is influenced.
In one implementation of the present embodiment:
as shown in fig. 14 and 15, the connection holes 331 and the connection posts 301 are distributed in an array along the circumferential direction;
the supporting columns 341 and the supporting holes 332 are distributed along the circumferential direction in an array manner, and one supporting hole 332 is correspondingly arranged between two adjacent connecting holes 331. The force of the holder body 300 and the third-layer holder 340 to the second-layer holder 330 is uniformly distributed along the circumferential surface of the second-layer holder 330.
Example 4, refer to fig. 17-19.
The bioabsorbable stent provided in this embodiment,
comprises a tube bracket 400 with a hollow net-shaped tube wall;
as shown in fig. 17, the tube stand 400 includes a plurality of ring structures 410 and a plurality of connection members 420, the plurality of ring structures 410 being spaced apart along an axial direction of the tube stand 400, adjacent ring structures 410 being connected by one connection member 420;
the annular structure 410 comprises a plurality of V-shaped frames 412 annularly distributed along the circumferential direction, the V-shaped frames 412 comprise two first frame strips 413 with equal length and two second frame strips 414 with equal length, and the length dimension of the first frame strips 413 is larger than that of the second frame strips 414; one end of the two first frame strips 413 is connected to form a first sharp angle end 415, one end of the two second frame strips 414 is connected to form a second sharp angle end 416, and the remaining two ends of the two first frame strips 413 are respectively correspondingly connected with the remaining two ends of the second frame strips 414 to form two connecting ends 417; the first sharp corner 415 and the second sharp corner 416 are both disposed toward and are oriented in unison with the axial direction of the tube holder 400;
each connection assembly 420 includes a plurality of connection bars 421 and a plurality of elastic bars 422 annularly distributed along the circumferential direction and arranged at intervals, each connection bar 421 and each elastic bar 422 are arranged to extend along the axial direction of the tube holder 400, the first pointed end 415 and the second pointed end 416 of adjacent sides of the adjacent two annular structures 410 are connected by the elastic bars 422, and the connection ends 417 of the adjacent two annular structures 410 are connected by the connection bars 421.
The two first frame strips 413 and the second frame strips 414 which are arranged in a V shape are arranged to form a V-shaped frame 412, and the angles of the first frame strips 413 and the second frame strips 414 can be adjusted, but because the lengths of the first frame strips 413 and the second frame strips 414 are inconsistent, the first frame strips 413 and the second frame strips 414 are blocked by each other when compressed, and are not easy to compress, so that enough radial supporting force can be provided for the pipe bracket 400, namely, the V-shaped frame 412 has the characteristic of triangle stability. The angles of the first frame strip 413 and the second frame strip 414 can be adjusted, and the pipe bracket 400 can realize the compression and diameter reduction treatment. The provision of the elastic strip 422, on the one hand, enhances the connection between the two annular structures 410 to enhance the radial support force, and, on the other hand, ensures that the V-shaped frame 412 is smoothly compressed while enhancing the radial support force.
In one implementation of the present embodiment:
as shown in fig. 18, one side of the first pointed end 415 of each V-shaped frame 412 is provided with an auxiliary structure 430;
the auxiliary structure 430 includes two auxiliary bars 431 having equal lengths; the length of each auxiliary bar 431 is equal to that of the second frame bar 414, each auxiliary bar 431 is arranged parallel to the auxiliary bar 431, one end of each auxiliary bar 431 is connected with the first sharp corner end 415, and the other end of each auxiliary bar 431 is connected with the connecting bar 421.
The auxiliary structure 430 further enhances the radial support of the V-shaped frame 412.
In one implementation of the present embodiment:
as shown in fig. 19, the tube stand 400 is provided with a plurality of inner layer support frames 440 spaced apart in the axial direction;
each inner layer supporting frame 440 comprises a diamond-shaped supporting frame 441, the center of the supporting frame 441 coincides with the axial lead of the pipe bracket 400, and four corners of the supporting frame 441 are provided with supporting holes 443;
the inner peripheral wall of the tube holder 400 is provided with support columns 444 capable of being correspondingly connected to the support holes 443.
The diamond-shaped supporting frame 441 plays a supporting role on the tube bracket 400 to enhance the radial supporting force of the tube bracket 400; meanwhile, when the tube support 400 is pressed and held, the inner support 440 can be smoothly compressed, so that the diameter can be reduced, and the tube support can be sent into the organ after the diameter is reduced.
In one implementation of the present embodiment:
as shown in fig. 19, the outer sides of the four sharp corners of the support frame 441 are provided with arc-shaped pieces 442 extending in the circumferential direction and the outer side walls of which can be fitted to the inner peripheral wall of the tube holder 400; the support hole 443 is provided to the arc 442.
The arc-shaped member 442 is used for realizing the anastomosis between the inner support frame 440 and the inner peripheral wall of the tube support 400, so as to increase the effective contact area between the inner support frame 440 and the tube support 400, reduce the supporting force corresponding to the unit area, and avoid the excessive concentration of the supporting force, so that the inner support frame 440 can effectively support the tube support 400.
In one implementation of the present embodiment:
as shown in fig. 19, the outer side wall of the arc 442 is spaced apart from the inner peripheral wall of the tube holder 400. The interval sets up for guarantee that inlayer support frame 440 and pipe support 400 have sufficient space of dodging to prop open smoothly and hold with pressing, avoid pipe support 400 oppression inlayer support frame 440 all the time under natural state, cause inlayer support frame 440's radial holding power impaired, thereby influence holistic holding power.
The above description is only of the preferred embodiments of the present invention and is not intended to limit the present invention, but various modifications and variations can be made to the present invention by those skilled in the art. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (3)

1. A bioabsorbable stent, characterized in that:
the pipe comprises a pipe bracket, wherein the pipe wall of the pipe bracket is of a hollowed-out net structure;
the pipe bracket comprises a supporting ring row and a connecting ring row which are sequentially and alternately distributed along the axial direction, and two adjacent supporting ring rows are provided with one connecting ring row;
the support ring column comprises a plurality of first diamond-shaped frames which are distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, the sharp corners of two adjacent first diamond-shaped frames which are arranged towards the circumferential direction are connected, and a plurality of reinforced diamond-shaped frames which are reduced in an equal-magnification manner are arranged in the first diamond-shaped frames; the connecting ring row comprises a plurality of second diamond-shaped frames which are distributed along the circumferential direction, wherein a pair of sharp corners are arranged towards the circumferential direction, and the sharp corners of two adjacent second diamond-shaped frames are connected towards the circumferential direction;
the sharp angle of the first diamond-shaped frame facing the circumferential direction is opposite to the sharp angle of the second diamond-shaped frame facing the axial direction; the middle part of each edge of each first diamond-shaped frame is connected with the sharp corners of the four adjacent second diamond-shaped frames through connecting bars;
the pipe support is provided with a plurality of inner layer support frames which are arranged at intervals along the axial direction;
each inner layer support frame comprises a diamond-shaped support frame, the center of the support frame is coincident with the axial lead of the pipe support, and four corners of the support frame are provided with support holes;
the inner peripheral wall of the pipe bracket is provided with a support column which can be correspondingly connected with the support hole;
four connecting strips around each first diamond-shaped frame extend towards the center of the first diamond-shaped frame and are intersected.
2. The bioabsorbable stent of claim 1, wherein:
arc-shaped pieces which extend along the circumferential direction and the outer side walls of which can be attached to the inner peripheral wall of the pipe bracket are arranged at the outer sides of the four sharp corners of the supporting frame;
the supporting hole is formed in the arc-shaped piece.
3. The bioabsorbable stent of claim 2, wherein:
the outer side wall of the arc-shaped piece and the inner peripheral wall of the pipe bracket are arranged at intervals.
CN201810979503.6A 2018-08-24 2018-08-24 Bioabsorbable stent Active CN109009591B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810979503.6A CN109009591B (en) 2018-08-24 2018-08-24 Bioabsorbable stent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810979503.6A CN109009591B (en) 2018-08-24 2018-08-24 Bioabsorbable stent

Publications (2)

Publication Number Publication Date
CN109009591A CN109009591A (en) 2018-12-18
CN109009591B true CN109009591B (en) 2024-02-27

Family

ID=64624962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810979503.6A Active CN109009591B (en) 2018-08-24 2018-08-24 Bioabsorbable stent

Country Status (1)

Country Link
CN (1) CN109009591B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2728440Y (en) * 2004-07-30 2005-09-28 北京有色金属研究总院 Aorta tectorial membrane stent
CN101006947A (en) * 2006-01-26 2007-08-01 太雄医疗器株式会社 Self-expandable shape memory alloy stent and method for fabricating the same
CN201879874U (en) * 2010-12-15 2011-06-29 姜卫剑 Self-expandable encephalic artery stent
CN103948454A (en) * 2014-04-30 2014-07-30 四川大学华西医院 Branch controllable integral blood vessel stent and implantation device thereof
CN107441614A (en) * 2017-01-18 2017-12-08 四川大学华西医院 Slidable multi-cavity drainage tube
CN209091762U (en) * 2018-08-24 2019-07-12 四川大学 Biological absorbable support

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167847B1 (en) * 2005-11-10 2020-10-14 Edwards Lifesciences CardiAQ LLC Heart valve prosthesis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2728440Y (en) * 2004-07-30 2005-09-28 北京有色金属研究总院 Aorta tectorial membrane stent
CN101006947A (en) * 2006-01-26 2007-08-01 太雄医疗器株式会社 Self-expandable shape memory alloy stent and method for fabricating the same
CN201879874U (en) * 2010-12-15 2011-06-29 姜卫剑 Self-expandable encephalic artery stent
CN103948454A (en) * 2014-04-30 2014-07-30 四川大学华西医院 Branch controllable integral blood vessel stent and implantation device thereof
CN107441614A (en) * 2017-01-18 2017-12-08 四川大学华西医院 Slidable multi-cavity drainage tube
CN209091762U (en) * 2018-08-24 2019-07-12 四川大学 Biological absorbable support

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
食管支架径向支撑性能;王果;倪中华;倪晓宇;龙志红;顾兴中;;东南大学学报(自然科学版)(第05期);全文 *
高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析;魏云波;赵丹阳;王敏杰;李红霞;;中国机械工程(第09期);全文 *

Also Published As

Publication number Publication date
CN109009591A (en) 2018-12-18

Similar Documents

Publication Publication Date Title
CN103930043A (en) Medical device fixation anchors
CN208523396U (en) A kind of municipal administration afforestation project tree support frame
ES554274A0 (en) A PROCEDURE FOR MOUNTING AN INFLATABLE BUILDING STRUCTURE SPECIALLY INTENDED FOR A PLANT HOSTEL
CN109009591B (en) Bioabsorbable stent
JP2013517913A5 (en)
CN209091762U (en) Biological absorbable support
CN109124838B (en) V-shaped degradable biological rack
CN109009590B (en) Biological trapezoid degradable support
CN109091275B (en) Biodegradable stent
CN108877315A (en) A kind of educational projector image display
WO2015161364A3 (en) Modular support frame
CN205584937U (en) Tree support device
CN203089467U (en) Novel vascular scaffold
CN108113782B (en) Vertebral body fusion cage
CN210114540U (en) Combined type bone-tonifying tablet and bone-tonifying tablet unit
CN209091764U (en) The trapezoidal biodegradable stent of biology
CN209091763U (en) V-arrangement degradable biological frame
CN201160924Y (en) Blood vessel stent
CN208105935U (en) A kind of building connecting rod easy to use
CN110063824A (en) A kind of vertebral artery stent
CN216495856U (en) Absorbable and developable vena cava filter screen
CN201168079Y (en) Blood vessel support
CN210159086U (en) Auxiliary positioning layer for probe and combined auxiliary fixing device
CN106794076A (en) Surgical appliance adhesive component
CN203308171U (en) Multifunctional tent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Yunbing

Inventor after: Chen Yu

Inventor after: Xiong Yan

Inventor after: Ye Chunyao

Inventor after: Jiang Wentao

Inventor after: Zhou Zhihong

Inventor after: Tian Xiaobao

Inventor before: Chen Yu

Inventor before: Xiong Yan

Inventor before: Ye Chunyao

Inventor before: Jiang Wentao

Inventor before: Wang Yunbing

Inventor before: Zhou Zhihong

Inventor before: Tian Xiaobao

GR01 Patent grant
GR01 Patent grant