CN109000488B - 一种点阵式换热器 - Google Patents

一种点阵式换热器 Download PDF

Info

Publication number
CN109000488B
CN109000488B CN201810642640.0A CN201810642640A CN109000488B CN 109000488 B CN109000488 B CN 109000488B CN 201810642640 A CN201810642640 A CN 201810642640A CN 109000488 B CN109000488 B CN 109000488B
Authority
CN
China
Prior art keywords
fluid
heat exchanger
split
lattice
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810642640.0A
Other languages
English (en)
Other versions
CN109000488A (zh
Inventor
栗永利
杨春笋
张辉
吕良忠
张锴
杜小泽
杨勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Publication of CN109000488A publication Critical patent/CN109000488A/zh
Application granted granted Critical
Publication of CN109000488B publication Critical patent/CN109000488B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及换热结构,提出一种点阵式换热器,包括:底板(3),所述底板(3)上设置有点阵式的分流体(4);用于输送高粘度流体的第一流体通道,所述第一流体通道包括第一流体入口(11)和第一流体出口(12);用于输送低粘度流体的第二流体通道,所述第二流体通道与所述第一流体通道上下布置,方向交错;其中,所述点阵式的分流体(4)从第一流体入口(11)到第一流体出口(12),将流入的第一流体交替进行分割和交汇。本发明的点阵式换热器对流体的加热和反应更加均匀。

Description

一种点阵式换热器
技术领域
本发明涉及换热结构,更具体地,涉及一种点阵式换热器。
背景技术
微通道换热器具有高比表面积,换热面积大,换热效率高,在短时间内可以达到换热效果。然而,由于微通道尺寸小,造成流体流经时,压力损失较大。当流体的粘度很大时,压降会大到,使得流体机械无法提供足够的压力让流体流动,也就是微通道换热器失效。为了达到加热高粘度流体的目的,通常直接在釜式反应器内加热,即无法达到连续生产的目的。
为了达到连续式生产,一般采用传统的套管式或平板式换热器加热高粘度流体。套管内间隙为毫米级。换热面积较小,加热时间长。而且,树脂的内部导热比较慢。而套管换热器,受热面集中在管壁,由于,树脂内部导热慢,因此树脂受热不均匀。为了乳化工艺的需要,在使用由良好导热金属材质的普通板式换热器加热树脂的情况下,如果使用油加热,壁面可迅速达到加热油的温度,由于流体的热导低,如果设计停留时间较短,很可能内部流体还没有开始升温。如果设计停留时间长,会造成能源与换热器管材的浪费。另外,工业上为了方便,使用电阻加热比用油热要更加方便。但是,电阻加热,容易造成流体内温度梯度太大,导致管壁附近流体局部受热过多,升温过快,从而会在加热过程中使部分树脂碳化,破坏化工生产。
发明内容
本发明要解决的是微微通道中高粘度树脂的强化换热问题。
本发明提出一种点阵式换热器,包括:底板,所述底板上设置有点阵式的分流体;用于输送高粘度流体的第一流体通道,所述第一流体通道包括第一流体入口和第一流体出口;用于输送低粘度流体的第二流体通道,所述第二流体通道与所述第一流体通道上下布置,方向交错;其中,所述点阵式的分流体从第一流体入口到第一流体出口,将流入的第一流体交替进行分割和交汇。
在另一个实施方式中,本发明提出一种点阵式换热器,包括:底板,所述底板上设置有点阵式的分流体;用于输送高粘度流体的第一流体通道,所述第一流体通道包括第一流体入口和第一流体出口;传热棒,所述传热棒与所述底板接触,并且所述传热棒与所述第一流体通道上下布置,方向交错;其中,所述点阵式的分流体从第一流体入口到第一流体出口,将流入的第一流体交替进行分割和交汇。
本发明的技术方案是微通道反应物在反应过程中利用板式换热器上的点阵柱子将反应流体进行分流作业,其次,换热器上面的柱子也能在反应过程中对流体进行加热。例如,点阵的分布式开始为N个并且均匀分布在微通道界面上,第二排是N+1个(N+2,N+3,N+4,N+5…等),前后两排形成叉式分布,前一个点阵柱子在对流体分流和换热后,后排的点阵柱子位于前排两根柱子的间隙后方,再次对流体进行分流,并在柱后混合,因此流体的混合更加均匀。尽管后面的点阵柱子越来越密集,同时,流体在流动过程中由于不断地对流体进行加热,流体的粘度随着温度的升高而降低,阻力变小,二者的结果是相互抵消。
附图说明
图1为本发明的换热器的一个实施方式的截面图。
图2为现有技术的换热器换热后竖直截面上的模拟效果图。
图3显示了图1所示的换热器在侧视角度下的剖面图。
图4为现有技术的换热器换热后水平截面上的模拟效果图。
图5为现有技术的换热器换热后水平截面上的模拟效果图。
图6为本发明的换热器换热后水平截面上的模拟效果图。
图7为本发明的换热器换热后水平截面上的模拟效果图。
图8为本发明的乳化装置的另一个实施方式的截面图。
附图标记
第一流体进口11,第一流体出口12;第一流体通道13;第二流体进口21;第二流体出口22;第二流体通道23;底板3;分流体4。
具体实施方式
下面参照附图描述本发明的实施方式,其中相同的部件用相同的附图标记表示。在不冲突的情况下,下述的实施例及实施例中的技术特征可以相互组合。
由于高粘度树脂导热系数低,因此,在换热过程中容易局部换热过高,而中心温度过低。如果以传统微通道加热,边界层会阻力太大。为此,本发明提出了一种点阵式换热器,通过布置点阵的方法来强化换热。
图1显示了本发明的换热器的一个实施方式的结构原理图,这是换热器的俯视角度下的图,且去除了换热器的上板,只保留了底板3。如图1所示,本发明的换热器具有两个流体通道,分别为在图中从左到右的第一通道和从上到下(也可以是从下到上)的第二通道。两个流体通道交叉处的底板3上具有点阵式的分流体4。第一流体通道具有第一流体进口11和第一流体出口12,第二流体通道具有第二流体进口21和第二流体出口22。第一通道用于输送高粘度的流体,例如油,树脂等。第二通道用于输送低粘度的流体,例如水。第一流体通道和第二流体通道分为上下层交叉通过,但两者内的流体并不交融。
所述点阵式的分流体4的布置如下:在底板3上,从第一流体进口11到第一流体出口12,一排排放置,密度逐步增加(因此,分流体4的尺寸逐步减小),每一排的前后距离逐步减少,而且前后排位置交错。
所述分流体例如为圆柱体或其他形状。以圆柱体为例,圆柱体尺寸直径例如200微米,高1毫米。如图1所示,从左到右,第一排圆柱体间距800微米,第二排600微米…一直到最后一排200微米,那么同一排的圆柱体之间的间距,相比于前一排逐渐减小。使得流体通过圆柱体后会分割成多股,然后,汇合后再被继续分割。通过如此过程,不断的分割不断的汇合,使得流体进行混合。并且,圆柱体有扰动作用,达到降低温度梯度的目的,特别是在流量高的情况下更加明显。
同时圆柱体用于给流体加热,圆柱体的热从换热器的上板和底板3传导而来。上下换热面(上板和底板)与圆柱体可以是一体的。并且,制造材料为导热良好的材料(例如铜),因此,上板和底板3的热能迅速地传导到圆柱体,可以认为圆柱体与上板和底板3同温。
由于圆柱体间距开始较大,对应的温度低,粘度大,因此压降也比较小。后排圆柱体间距较小,对应的温度高,粘度小,因此压降也比较小。并且,在流动过程中,在每个换热段(每排圆柱体)的压降比较均衡。使得在强化换热的同时,保证了低的流动阻力。
图2显示了图1所示的换热器的侧视图(在第一流体进口11一侧看)。两侧的是第二流体进口21和第二流体出口22。可以设置多层底板3,从而可以设置多层点阵分流体4,如此,则形成上下交错的第一流体通道13和第二流体通道23。
图3显示了图1所示的换热器在侧视角度下的剖面图在(第二流体进口21一侧看)。两侧的是第一流体进口11和第一流体出口12。第一流体通道13和第二流体通道23上下交错。第二流体通道23用于输送水,因此不用分割。
本发明进行了模拟实验,模拟实例:微通道高1毫米,宽1厘米,长约4毫米。内尺寸为:第一排,10个直径200微米的圆柱间隔800微米分布在1厘米的宽度上,第二排间隔600微米,第三排间隔400微米,第四排间隔200微米排列。排间距为1毫米。当树脂流量为1.4e-3kg/s,流经4排点阵通道。加热面可以由流体供热,也可以由电阻加热提供。
如果在没有设立柱子的同样尺寸的通道。表层很快达到壁面温度,由于内部导热低,靠近壁面的树脂成为阻碍内部树脂加热的“隔热带”。内部温度较低。温度梯度明显,见图4-5。特别是在电阻加热时,容易局部受热过高,而整体温度低,甚至会使得局部碳化。管壁温度为140摄氏度。当内有点阵时,点阵,使得温度分布均匀。见图6-7。
图4-5显示了现有技术的换热器的模拟效果,加热时,树脂的树脂界面的温度展示。模拟条件为:流量1.4e-3kg/s,进口温度20度,壁面温度140摄氏度。图4-5中,Y表示距离树脂入口处的距离。可以看出,即使到3.3毫米处,树脂的内部依然加热不均匀,外部因温度过高而碳化,内部温度却没达到要求。
图6-7显示了本发明的换热器的模拟效果,流量1.4e-3kg/s,进口温度20摄氏度,壁面温度140摄氏度。Y表示距离树脂入口处的距离。可以看出,在3.3毫米处,树脂的内部温度是均匀的。
本发明的换热器采用渐变的通道的方法。在低温时,通道较大,温度分布不均匀。随后,温度逐渐增大,通过立柱,进行多次分割,加强混合,使得温度的分布均匀。
本发明利用点阵式换热器结合微反应器增大高粘度流体的反应效果。需要说明的是,本文所述的点阵通道以及点阵的布置尺寸为一种特殊形式。针对不同流体可以变化尺寸。
图8显示了本发明的点阵式换热器的另一实施方式的结构图。其与图1所示的实施方式相似,第一流体通道具有第一流体进口11和第一流体出口12。第一流体通道用于输送高粘度流体,例如油。与图1所示的区别在于供热方式由电阻棒代替,电阻棒由外部电路加热。每个供热层由两个圆柱形导热电阻棒构成,分别插在预留的两个孔中。热量由圆柱壁传导至每一层被加热层的板上。优点在于,电阻加热方便,占地小,升温快,可加热范围较大,缺点是传热壁面温度不易控制。
以上所述的实施例,只是本发明较优选的具体实施方式,本领域的技术人员在本发明技术方案范围内进行的通常变化和替换都应包含在本发明的保护范围内。

Claims (4)

1.一种点阵式换热器,其特征在于,包括:
底板(3),所述底板(3)上设置有点阵式的分流体(4),前后两排分流体形成叉式分布,从第一流体入口(11)到第一流体出口(12),在流体的流向方向,后一排分流体比前一排分流体更密,分流体前后排的距离随着流体方向变得越来越短;
用于输送高粘度流体的第一流体通道,所述第一流体通道包括第一流体入口(11)和第一流体出口(12);
用于输送低粘度流体的第二流体通道,所述第二流体通道与所述第一流体通道上下布置,方向交错;
其中,所述点阵式的分流体(4)从第一流体入口(11)到第一流体出口(12),将流入的第一流体交替进行分割和交汇。
2.根据权利要求1所述的点阵式换热器,其特征在于,
所述点阵式换热器包括多组换热单元,其中每一组换热单元包括底板(3)、所述第一流体通道和所述第二流体通道。
3.一种点阵式换热器,其特征在于,包括:
底板(3),所述底板(3)上设置有点阵式的分流体(4),前后两排分流体形成叉式分布,从第一流体入口(11)到第一流体出口(12),在流体的流向方向,后一排分流体比前一排分流体更密,分流体前后排的距离随着流体方向变得越来越短;
用于输送高粘度流体的第一流体通道,所述第一流体通道包括第一流体入口(11)和第一流体出口(12);
圆柱形导热电阻棒,所述圆柱形导热电阻棒与所述底板(3)接触,并且所述圆柱形导热电阻棒与所述第一流体通道上下布置,方向交错;
其中,所述点阵式的分流体(4)从第一流体入口(11)到第一流体出口(12),将流入的第一流体交替进行分割和交汇。
4.根据权利要求3所述的点阵式换热器,其特征在于,
所述点阵式换热器包括多组换热单元,其中每一组换热单元包括底板(3)、所述第一流体通道。
CN201810642640.0A 2017-09-14 2018-06-21 一种点阵式换热器 Active CN109000488B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017108259677 2017-09-14
CN201710825967.7A CN107702566A (zh) 2017-09-14 2017-09-14 一种点阵式换热器

Publications (2)

Publication Number Publication Date
CN109000488A CN109000488A (zh) 2018-12-14
CN109000488B true CN109000488B (zh) 2024-05-28

Family

ID=61171634

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201710825967.7A Pending CN107702566A (zh) 2017-09-14 2017-09-14 一种点阵式换热器
CN201810642640.0A Active CN109000488B (zh) 2017-09-14 2018-06-21 一种点阵式换热器
CN201820958463.2U Active CN208688296U (zh) 2017-09-14 2018-06-21 一种针对高粘度流体的微结构换热器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710825967.7A Pending CN107702566A (zh) 2017-09-14 2017-09-14 一种点阵式换热器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201820958463.2U Active CN208688296U (zh) 2017-09-14 2018-06-21 一种针对高粘度流体的微结构换热器

Country Status (1)

Country Link
CN (3) CN107702566A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702566A (zh) * 2017-09-14 2018-02-16 华北电力大学 一种点阵式换热器
CN111003697B (zh) * 2019-12-16 2023-06-13 瓮福达州化工有限责任公司 一种高纯磷酸漂白工艺

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080233A1 (de) * 2002-03-26 2003-10-02 Peter Prechtl Mikroreaktor und mikrowärmeübertrager
WO2004042303A2 (en) * 2002-11-01 2004-05-21 Cooligy, Inc. Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
JP2007095732A (ja) * 2005-09-27 2007-04-12 Seiko Epson Corp マイクロチャンネル構造体、熱交換システム及び電子機器
JP2007155321A (ja) * 2005-12-01 2007-06-21 Modine Mfg Co 回収熱交換器のような小型の高温熱交換器
CN101001516A (zh) * 2005-11-14 2007-07-18 国际商业机器公司 冷却装置、***和方法
CN201297878Y (zh) * 2008-10-30 2009-08-26 西安石油大学 内外翅片扁管换热器
WO2010017853A1 (de) * 2008-08-12 2010-02-18 Gea Air Treatment Gmbh Rohrbündelwärmetauscher mit veränderlich gewähltem rohrabastand
CA2739325A1 (en) * 2008-10-10 2010-04-15 Velocys Inc. Process and apparatus employing microchannel process technology
CN101858698A (zh) * 2009-04-10 2010-10-13 三花丹佛斯(杭州)微通道换热器有限公司 微通道热交换器
CN102384692A (zh) * 2010-09-01 2012-03-21 珠海格力电器股份有限公司 集流管及具有该集流管的换热器
EP2431700A2 (de) * 2010-09-17 2012-03-21 Karlsruher Institut für Technologie Kreuzstrom-Mikrowärmeübertrager
CN102425964A (zh) * 2011-11-07 2012-04-25 太原理工大学 板式换热器
EP2447659A2 (en) * 2010-10-28 2012-05-02 Samsung Electronics Co., Ltd. Heat exchanger and fin for the same
CN102564205A (zh) * 2012-01-16 2012-07-11 杭州沈氏换热器有限公司 微通道换热器的分流结构
CN102652249A (zh) * 2009-12-11 2012-08-29 日本碍子株式会社 热交换器
CN102706201A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种换热器的微通道结构
TW201309993A (zh) * 2011-04-12 2013-03-01 Altex Tech Corp 微通道熱交換器及反應器
CN103335549A (zh) * 2013-07-11 2013-10-02 华北电力大学 一种相分离微通道冷凝器
CN103364093A (zh) * 2012-04-09 2013-10-23 珠海格力电器股份有限公司 温度传感器固定装置、微通道换热器及空调器
CN104266514A (zh) * 2014-09-23 2015-01-07 大连理工大学 一种整体式换热器及其加工方法
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉
CN105547019A (zh) * 2015-12-15 2016-05-04 西安交通大学 一种非均匀分布肋片的高温高压板式换热器
CN105698563A (zh) * 2016-04-08 2016-06-22 厦门大学 一种具有分流-汇流结构的微通道换热器及其制造方法
CN105823360A (zh) * 2016-04-22 2016-08-03 浙江大学 含错排热管阵列的板式换热器
CN105865089A (zh) * 2016-04-19 2016-08-17 华北电力大学 一种针肋壁面微通道换热器
CN106918258A (zh) * 2017-04-17 2017-07-04 杭州沈氏节能科技股份有限公司 一种蓄热换热器
CN109237977A (zh) * 2017-07-10 2019-01-18 美的集团股份有限公司 换热模块及换热器
CN208688296U (zh) * 2017-09-14 2019-04-02 华北电力大学 一种针对高粘度流体的微结构换热器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892802B2 (en) * 2000-02-09 2005-05-17 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Crossflow micro heat exchanger
US20050183851A1 (en) * 2001-10-25 2005-08-25 International Mezzo Technologies, Inc. High efficiency flat panel microchannel heat exchanger
US20110226448A1 (en) * 2008-08-08 2011-09-22 Mikros Manufacturing, Inc. Heat exchanger having winding channels
DE102012208771A1 (de) * 2012-05-24 2013-11-28 Behr Gmbh & Co. Kg Wärmetauscher zum Temperieren eines ersten Fluids unter Verwendung eines zweiten Fluids

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080233A1 (de) * 2002-03-26 2003-10-02 Peter Prechtl Mikroreaktor und mikrowärmeübertrager
WO2004042303A2 (en) * 2002-11-01 2004-05-21 Cooligy, Inc. Interwoven manifolds for pressure drop reduction in microchannel heat exchangers
JP2007095732A (ja) * 2005-09-27 2007-04-12 Seiko Epson Corp マイクロチャンネル構造体、熱交換システム及び電子機器
CN101001516A (zh) * 2005-11-14 2007-07-18 国际商业机器公司 冷却装置、***和方法
JP2007155321A (ja) * 2005-12-01 2007-06-21 Modine Mfg Co 回収熱交換器のような小型の高温熱交換器
WO2010017853A1 (de) * 2008-08-12 2010-02-18 Gea Air Treatment Gmbh Rohrbündelwärmetauscher mit veränderlich gewähltem rohrabastand
CA2739325A1 (en) * 2008-10-10 2010-04-15 Velocys Inc. Process and apparatus employing microchannel process technology
CN201297878Y (zh) * 2008-10-30 2009-08-26 西安石油大学 内外翅片扁管换热器
CN101858698A (zh) * 2009-04-10 2010-10-13 三花丹佛斯(杭州)微通道换热器有限公司 微通道热交换器
CN102652249A (zh) * 2009-12-11 2012-08-29 日本碍子株式会社 热交换器
CN102384692A (zh) * 2010-09-01 2012-03-21 珠海格力电器股份有限公司 集流管及具有该集流管的换热器
EP2431700A2 (de) * 2010-09-17 2012-03-21 Karlsruher Institut für Technologie Kreuzstrom-Mikrowärmeübertrager
EP2447659A2 (en) * 2010-10-28 2012-05-02 Samsung Electronics Co., Ltd. Heat exchanger and fin for the same
TW201309993A (zh) * 2011-04-12 2013-03-01 Altex Tech Corp 微通道熱交換器及反應器
CN102425964A (zh) * 2011-11-07 2012-04-25 太原理工大学 板式换热器
CN102564205A (zh) * 2012-01-16 2012-07-11 杭州沈氏换热器有限公司 微通道换热器的分流结构
CN103364093A (zh) * 2012-04-09 2013-10-23 珠海格力电器股份有限公司 温度传感器固定装置、微通道换热器及空调器
CN102706201A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种换热器的微通道结构
CN103335549A (zh) * 2013-07-11 2013-10-02 华北电力大学 一种相分离微通道冷凝器
CN104266514A (zh) * 2014-09-23 2015-01-07 大连理工大学 一种整体式换热器及其加工方法
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉
CN105547019A (zh) * 2015-12-15 2016-05-04 西安交通大学 一种非均匀分布肋片的高温高压板式换热器
CN105698563A (zh) * 2016-04-08 2016-06-22 厦门大学 一种具有分流-汇流结构的微通道换热器及其制造方法
CN105865089A (zh) * 2016-04-19 2016-08-17 华北电力大学 一种针肋壁面微通道换热器
CN105823360A (zh) * 2016-04-22 2016-08-03 浙江大学 含错排热管阵列的板式换热器
CN106918258A (zh) * 2017-04-17 2017-07-04 杭州沈氏节能科技股份有限公司 一种蓄热换热器
CN109237977A (zh) * 2017-07-10 2019-01-18 美的集团股份有限公司 换热模块及换热器
CN208688296U (zh) * 2017-09-14 2019-04-02 华北电力大学 一种针对高粘度流体的微结构换热器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
微通道换热器的特性分析及其应用前景;苏尚美;张亚男;成方园;侯雪梅;;区域供热;20071015(第05期);全文 *
梯形硅基微通道热沉流体流动与传热特性研究;夏国栋;柴磊;齐景智;;北京工业大学学报;20110715(第07期);全文 *

Also Published As

Publication number Publication date
CN208688296U (zh) 2019-04-02
CN109000488A (zh) 2018-12-14
CN107702566A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Yuan et al. Experimental and numerical investigation of heat and mass transfer in non-uniform wavy microchannels
CN109104844B (zh) 一种微通道冷板
US9693487B2 (en) Heat management and removal assemblies for semiconductor devices
CN109000488B (zh) 一种点阵式换热器
RU2535187C1 (ru) Пластинчатый теплообменник с шахматным расположением каналов
CN104567509B (zh) 一种翅片型换热单元及制作方法及含有该单元的换热器
CN108993343B (zh) 一种微通道反应器
CN102706201A (zh) 一种换热器的微通道结构
Wong et al. Nucleate flow boiling enhancement on engineered three-dimensional porous metallic structures in FC-72
CN104841339A (zh) 一种用于合成气制乙二醇工艺的新型加氢反应器
CN103415192A (zh) 蒸汽腔热管/微通道冷板复合结构均温装置
JP2016025354A (ja) 伝熱板
CN110935407A (zh) 一种微通道反应器及其制造方法
CN202869337U (zh) 一种微型槽道热管
JP2008207086A (ja) マイクロリアクタ
CN102313401A (zh) 微通道换热器
RU2584081C1 (ru) Микроканальный теплообменник
EP2489945A2 (de) Wärmespeicher
CN108548436A (zh) 基于仿生的点阵式微小交错肺泡换热器芯体及换热器
CN204395961U (zh) 一种具有内置换热挡板的聚甲氧基二甲醚搅拌式反应器
EP2765382A1 (de) Wärmetauscher und Wärmemanagementsystem mit einem solchen Wärmetauscher
CN102717903A (zh) 蜂窝型不锈钢胀板热沉
CN111862792A (zh) 显示模组及显示装置
CN115682796B (zh) 一种3d打印多孔介质冷板及其制备工艺
RU165848U1 (ru) Теплообменник "труба в трубе"

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant