CN108983193A - 快速非搜索的地面运动目标参数估计方法 - Google Patents

快速非搜索的地面运动目标参数估计方法 Download PDF

Info

Publication number
CN108983193A
CN108983193A CN201810847452.1A CN201810847452A CN108983193A CN 108983193 A CN108983193 A CN 108983193A CN 201810847452 A CN201810847452 A CN 201810847452A CN 108983193 A CN108983193 A CN 108983193A
Authority
CN
China
Prior art keywords
signal
frequency
target
parameter
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810847452.1A
Other languages
English (en)
Inventor
朱圣棋
王磊
贺雄鹏
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810847452.1A priority Critical patent/CN108983193A/zh
Publication of CN108983193A publication Critical patent/CN108983193A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提出了一种快速非搜索的地面运动目标参数估计方法,主要解决现有方法补偿效果差、估计精度低的问题,实现对目标运动参数的精确估计和目标的重聚焦。其实现方案是:使用azimuth‑deramp匹配滤波函数对接收信号进行匹配滤波,消除谱***;再依次通过SOKT变换和相位差分处理补偿距离弯曲和距离走动;由IFFT和FFT变换得到的峰值坐标估计出多普勒模糊数和二阶运动参数;使用match匹配函数对接收信号进行匹配滤波,再依次进行KT变换、IFFT和FFT变换,并由峰值坐标估计出一阶运动参数。本方法补偿效果好,计算效率高,参数估计精度高,可用于地面运动目标在SAR图像中的重聚焦。

Description

快速非搜索的地面运动目标参数估计方法
技术领域
本发明属于雷达技术领域,特别涉及一种快速非搜索的目标参数估计方法,可用于地面运动目标在SAR图像中的重聚焦。
背景技术
传统的合成孔径雷达SAR可以在全天时、全天候条件下获得静态场景的图像,当前已在民用和军事领域广泛使用。但当目标发生移动时,会出现新的多普勒分量,引起距离走动和距离弯曲,导致移动目标在SAR图像中产生错位甚至无法显示。因此,为了准确估计运动目标参数,需要对距离走动和距离弯曲进行良好的补偿以实现重聚焦。
佩里等人提出KT变换方法,该方法在低信噪比环境下显示出良好的补偿性能,可在移动目标一阶参数未知的情况下同时补偿多个目标的距离走动。但在实际应用中,由于脉冲重复频率有限,快速移动的目标经常会发生多普勒模糊,而KT方法无法解决多普勒模糊问题,其性能会显著下降。为了解决多普勒模糊问题,提出了一种通过搜索运动目标的线性轨迹和速度来实现距离-方位解耦合的Radon-FFT方法。此后,zheng等人提出了Deramp-Keystone变换,该方法可以在不搜索多普勒模糊数的情况下,对多普勒模糊情况下目标的距离弯曲进行补偿。然而实践发现该方法对距离走动和距离弯曲的补偿仍不够理想,且计算效率较低,有必要进行进一步的补偿处理。
发明内容
本发明的目的在于针对上述现有技术的不足,提出一种快速非搜索的地面运动目标参数估计方法,以提高计算效率,提升补偿效果。
本发明的技术方案是,使用azimuth-deramp匹配滤波-二阶Keystone变换-相位差分PD技术,补偿距离弯曲和距离走动,修正多普勒频偏和多普勒展宽,实现一、二阶运动参数的准确估计和运动目标的重聚焦,其实现步骤包括如下:
(1)对基于SAR平台几何模型的接收信号做数学变形和化简,得到关于频率变化量f和慢时间tm的接收信号S1(f,tm);
(2)利用azimuth-deramp匹配函数对接收信号S1(f,tm)进行匹配滤波,消除多普勒谱***,得到匹配后的信号S′1(f,tm);
(3)对匹配后的信号S′1(f,tm)进行二阶Keystone变换,实现距离弯曲补偿,得到关于频率变化量f和新的慢时间ηm的信号S2(f,ηm);
(4)对距离弯曲补偿信号S2(f,ηm)进行相位差分PD处理,得到一阶相位信号S3(f,ηm);
(5)对一阶相位信号S3(f,ηm)执行f域IFFT变换和ηm域FFT变换,实现距离走动补偿,得到关于快时间t和频率fa的峰值检测信号S4(t,fa);
(6)对峰值检测信号S4(t,fa)进行检波,估计出多普勒模糊数和目标的二阶运动参数
(7)利用match匹配滤波函数对接收信号S1(f,tm)进行匹配滤波和一阶Keystone变换,以对距离弯曲和多普勒频偏进行补偿,得到关于频率变化量f和新慢时间变量τm的无频偏信号S′4(f,τm);
(8)对无频偏信号S′4(f,τm)执行f域IFFT变换和τm域FFT变换,得到包含一阶运动参数信息的峰值检测信号S5(t,fa);
(9)对包含一阶运动参数信息的峰值检测信号S5(t,fa)进行检波,估计出目标的一阶运动参数
本发明与现有技术相比具有如下优点:
本发明由于使用匹配滤波技术、Keystone变换和相位差分PD技术,因而运算过程仅涉及加法、复数乘法、IFFT和FFT,使得计算效率得到了显著提升;
本发明由于使用非搜索算法,因而避免了对多普勒模糊数和一阶、二阶运动参数的搜索,使得雷达***的复杂度降低;
仿真结果表明,本发明能有效抑制多运动目标场景下的交叉项干扰。
附图说明
图1为本发明的使用场景图;
图2为本发明的实现流程图;
图3为用本发明方法对多运动目标场景下交叉项的抑制效果图;
图4为本发明在模拟环境下对地面运动目标的成像效果图;
图5为本发明在真实环境下对地面运动目标的成像效果图。
具体实施方式
参照图1,本发明的使用场景包括机载SAR平台和第i个地面运动目标,其中SAR平台为飞机,用于探测地面的汽车,飞机的俯仰角为零、速度为v,目标在tm时间内从a位置移动到b位置,其顺行速度和跨行速度分别为vai和vci
参照图2,本发明的实现步骤如下:
步骤1,对信号S(t,tm)做数学变形并化简,得到化简后的接收回波信号S1(f,tm)。
(1a)雷达接收机在tm时刻接收到K个目标的回波信号S(t,tm):
式中,A0,i为振幅,tm为慢时间,Ri(tm)为飞机与第i个运动目标之间的距离,rect(x)为区间[-1/2,1/2]上值为1的窗函数,μ为调频率,Tp为发射信号的脉冲持续时间,t为快时间,Ta为脉冲间隔,c为光速,Ri(tm)为飞机与第i个运动目标之间的距离,其中H为平台高度,Yi为飞机飞行轨迹在地面上的投影到第i个运动目标的距离;
(1b)对Ri(tm)作泰勒级数展开并忽略高阶项:
式中,R0i为零时刻飞机到第i个运动目标的距离,a1i和a2i分别为目标的一阶运动参数和二阶运动参数,可表示为:
(1c)对a1i进行分解:
式中,vb,i表示基带速度,Mamb,i表示多普勒模糊数,PRF为脉冲重复频率;
(1d)结合(1a)、(1b)和(1c)得到化简后的接收回波信号S1(f,tm),表示如下:
式中,A1,i为压缩后的振幅,fc为中心频率。
信号S1(f,tm)中的f-tm耦合项导致距离走动,耦合项导致距离弯曲,tm项和项引起多普勒频偏和展宽。
步骤2,对化简后的接收回波信号S1(f,tm)进行方位角-deramp匹配滤波,得到匹配后信号S′1(f,tm)。
(2a)选择如下azimuth-deramp匹配滤波函数:
式中,f为频率变化量,fc为中心频率,Rb表示从飞机到中心线的最近倾斜距离,tm为慢时间;
(2b)通过azimuth-deramp匹配滤波函数对接收回波信号S1(f,tm)进行匹配滤波,得到匹配后的信号S′1(f,tm):
式中,A1,i为匹配后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,μ为调频率,Tp为发射信号的脉冲持续时间,Ta为脉冲间隔,c为光速,R0i为零时刻SAR平台与第i个目标的距离,vb,i为基带速度,Mamb,i为多普勒模糊数,PRF为脉冲重复频率。
通过上述azimuth-deramp匹配滤波处理,补偿了运动目标的部分距离弯曲,降低了目标方位角带宽,消除了方位角谱***现象。
步骤3,对匹配后的信号S′1(f,tm)进行二阶Keystone变换,得到无距离弯曲信号S2(f,ηm)。
(3a)二阶Keystone变换表达式如下:
式中,f为频率变化量,fc为中心频率,tm为慢时间变量,ηm表示新的慢时间变量;
(3b)将二阶Ketstone变换表达式带入匹配后的信号S′1(f,tm)中,得到关于f和新慢时间变量ηm的距离弯曲补偿信号S2(f,ηm):
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,μ为调频率,Tp为发射信号的脉冲持续时间,Ta为脉冲间隔,c为光速,R0i为零时刻SAR平台与第i个目标的距离,λ为波长,vb,i为基带速度,PRF为脉冲重复频率,Mamb,i为多普勒模糊数。
通过上述二阶Keystone变换,补偿了目标的距离弯曲。
步骤4,对距离弯曲补偿信号S2(f,ηm)进行相位差分PD处理,得到一阶相位信号S3(f,ηm)。
(4a)相位差分PD处理的表达式如下:
式中,x(ηm)为线性调频信号,τ0为固定滞后时间,*为共轭操作,τ0为差分间隔,fc为中心频率。
(4b)对距离弯曲补偿信号S2(f,ηm)进行相位差分PD处理,得到一阶相位信号S3(f,ηm):
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,f为频率变化量,μ为调频率,Tp为发射信号的脉冲持续时间,ηm为新的慢时间,Ta为脉冲间隔,λ为波长,vb,i为基带速度,c为光速,Mamb,i为多普勒模糊数,PRF为脉冲重复频率,S3,cross(f,ηm)为交叉项,项远小于π/4,可以直接忽略。
通过上述相位差分PD处理,降低了信号相位的阶数,补偿了目标的距离走动。
步骤5,根据一阶相位信号S3(f,ηm),获得包含二阶运动参数信息的峰值检波信号S4(t,fa)。
对一阶相位信号S3(f,ηm)进行f域IFFT变换和ηm域FFT变换,得到含交叉项的峰值检波信号S4(t,fa):
式中,t为快时间,fa为频率,ηm为新的慢时间变量,A3,i为振幅,λ为波长,vb,i为基带速度,τ0为差分间隔,B为信号带宽,c为光速,Mamb,i为多普勒模糊数,PRF为脉冲重复频率,Ta为脉冲间隔,S4,cross(t,fa)是f域IFFT变换和ηm域FFT变换操作后的交叉项。
步骤6,对包含二阶运动参数信息的峰值检波信号S4(t,fa)进行检波,估计目标的二阶运动参数。
(6a)对包含二阶运动参数信息的峰值检波信号S4(t,fa)进行检波,得知波峰位于处,由该波峰坐标估计出目标运动参数和多普勒模糊数
式中,表示舍入操作,λ为波长,为频率的估计值,τ0为差分间隔,c为光速,为快时间t的估计值,PRF为脉冲重复频率;
(6b)根据目标运动参数估计值估计出目标二阶运动参数的
其中,Rb表示从雷达平台到条带中心线的最近倾斜距离,v为飞机的飞行速度。
步骤7,对步骤1中化简后的接收回波信号S1(f,tm)进行match匹配滤波和一阶Keystone变换,得到无频偏信号S′4(f,τm)。
(7a)由目标运动参数估计值构造match匹配滤波函数:
式中,f为频率变化量,fc为中心频率,tm为慢时间,c为光速,为多普勒模糊数,PRF为脉冲重复频率,为目标二阶运动参数的估计值;
(7b)一阶Keystone变换表达式如下:
(f+fc)tm=fcτm
式中,τm为新的慢时间变量;
(7c)对化简后的接收回波信号S1(f,tm)进行match匹配滤波,得到匹配后的信号S″1(f,tm):
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,μ为调频率,Tp为发射信号的脉冲持续时间,Ta为脉冲间隔,R0i为零时刻SAR平台与第i个目标的距离,vb,i为基带速度;
(7d)将一阶Keystone变换表达式带入match匹配滤波后的信号S″1(f,tm),得到无频偏信号S′4(f,τm):
通过上述match匹配滤波和一阶Keystone变换处理,补偿了目标的距离走动、距离弯曲以及多普勒频偏和展宽。
步骤8,根据无频偏信号S′4(f,τm),获得包含一阶运动参数信息的峰值检波信号S5(t,fa)。
对无频偏信号S′4(f,τm)进行f域IFFT变换和τm域FFT变换,得到包含一阶运动参数信息的峰值检波信号S5(t,fa):
式中,A4,i为积分振幅,t为快时间,fa为频率,A4,i为振幅,B为信号带宽,R0i为零时刻SAR平台与第i个目标的距离,Ta为脉冲间隔,vb,i为基带速度,λ为波长。
步骤9,估计目标的一阶运动参数。
对包含一阶运动参数信息的峰值检波信号S5(t,fa)进行检波,得知波峰位于(fa=-2vb,i/λ,t=2R0i/c)处,由该波峰坐标估计出运动目标的基带速度和一阶运动参数如下
式中,为基带速度的估计值,λ为波长,PRF为脉冲重复频率,为多普勒模糊数的估计值。
本发明的效果可由以下仿真结果进一步说明:
仿真实验1,验证本发明方法对交叉项的抑制效果。
1.1)参数设置
SAR平台相应仿真参数如下:
脉冲重复频率为600Hz,载波频率是10GHz,信号带宽是200MHz,采样频率为400MHz,SAR平台的飞行速度为120米/秒,SAR平台的高度是6000米,地面垂直飞行跟踪距离为6000米,方位天线尺寸是0.6米。
假设场景中有三个运动目标,分别用T1、T2和T3表示,这三个目标的运动参数和等效运动参数如表1所示。
表1目标运动参数表
1.2)仿真内容
采用上述参数设置,使用本发明方法处理接收回波信号,观察目标成像效果的变化情况,结果如图3所示,其中:
图3(a)为目标的快时间-慢时间图,图中三个目标的运动轨迹均为曲率不为零的斜线,说明三个目标都存在距离走动和距离弯曲;
图3(b)为目标的多普勒谱,由于T1和T3的多普勒谱跨越两个PRF,所以其方位角谱发生了***,而T2的多普勒谱在一个PRF内,其方位角谱未出现***;
图3(c)为二阶Keystone变换后目标快时间-慢时间图,图中三个目标的轨迹均为曲率为零的斜线,说明所有目标的距离弯曲都得到了补偿;
图3(d)为相位差分PD处理后得到的峰值图,由于目标能量的连续积累,形成了三个明显的峰值,每一个峰值都代表一个目标,而其余峰值点远低于这三点,这说明交叉项得到了很好的抑制。
由图3(d)可以看出,在多运动目标场景下,本发明方法能精确估计出目标的运动参数,有效地抑制交叉项并显示目标位置。
根据峰值坐标估计出目标的运动参数,结果如表2所示。
表2目标运动参数估计值表
对比表1和表2可以看出,使用本发明方法得到的目标参数估计值与真实值的误差在0.01以内,这说明本发明方法具有良好的参数估计性能。
仿真实验2,验证在模拟环境下本发明方法对地面运动目标的成像效果。
2.1)参数设置
模拟环境下SAR平台的仿真参数如下:
脉冲重复频率为600Hz,载波频率为10GHz,信号带宽为60MHz,采样频率为120MHz,平台飞行速度为120米/秒,脉冲持续时间为1μs,最近的倾斜范围为850公里,该模拟环境中存在高斯噪声;
假设场景中有三个运动目标,分别用T1、T2和T3表示,这三个目标的运动参数和距离压缩信噪比如表3所示。
表3目标运动参数表
目标1 目标2 目标3
跨行速度(m/s) vc1=10 vc2=-15 vc3=-15
顺行速度(m/s) va1=10 va2=30 va3=-30
距离压缩信噪比(dB) SNR1=1 SNR2=1 SNR3=2
2.2)仿真内容
采用2.1中的参数设置,在模拟环境下使用本发明方法对目标的接收回波信号进行处理,仿真结果如图4所示。其中:
图4(a)为使用本方法前目标的快时间-慢时间图,该图中三个目标的运动轨迹均为曲率不为零的斜线,说明三个目标都存在距离走动和距离弯曲,由于模拟环境存在高斯噪声,整个图中都充满了高斯噪声点;
图4(b)为使用本发明方法处理接收信号后得到的目标峰值图,该图中出现了三个明显的波峰,每一个波峰对应一个目标;
图4(c)为使用本发明方法处理接收信号后运动目标T1的最终成像结果,可以看出目标的峰值很明显,最终成像结果比较好;
图4(d)为使用现有改进的二维频率匹配滤波方法处理接收信号后运动目标T1的成像结果,可以看出,目标没有明确的峰值,其位置发生了扩散,成像效果较差;
对比图4(c)和图4(d),可以看出,在含高斯噪声的模拟环境下,本发明方法相比于现有方法具有更好的聚焦性能。
仿真实验3,验证真实环境下本发明方法对地面运动目标的成像效果。
3.1)参数设置
真实环境下SAR平台的仿真参数如下:
该机载SAR工作于x波段,脉冲重复频率为1000Hz,载波频率为8.85GHz,信号带宽为40MHz,采样频率为60MHz,平台飞行速度为120米/秒,脉冲持续时间为10μs,条带中心距离是9000米。
3.2)仿真内容
采用3.1中的参数设置,在真实环境下,使用本发明方法对目标的接收回波信号进行处理,观察目标的成像效果,并给出两种现有方法的处理结果作为比较,仿真结果如图5所示,其中:
图5(a)所示为对接收信号进行化简并执行FFT变换后地面运动目标的成像情况,可以看到,在强地面杂波背景下,运动目标被严重干扰;
图5(b)所示为抑制地面杂波后目标的成像情况,用红色圆圈标记其中一个运动目标,可以看出目标的成像效果依然很差;
图5(c)为被标记目标的快时间-慢时间图,由于发生了距离走动,该运动目标跨越了多个距离单元;
图5(d)为使用本发明方法处理接收回波信号后得到的峰值图,波峰位置即为目标;
图5(e)为图5(d)所示峰值图在多普勒维的截面图,根据峰值坐标估计出目标的等效一阶运动参数为11.255m/s,二阶运动参数为0.6563m/s2,跨行速度为-7.51m/s;
图5(f)为使用现有deramp-keystone法处理接收回波信号后目标的聚焦效果图,该图中目标的位置发生了扩散,聚焦形状为条带状,聚焦性能不好;
图5(g)为使用现有二维频率匹配滤波法处理接收回波信号后目标的聚焦效果图,该图中目标的位置发生了扩散,聚焦形状为宽条带状,聚焦性能不好;
图5(h)为目标重新定位的结果,可以看出,由于目标发生了距离弯曲和距离走动,其位置偏离了公路,根据跨行速度估计值计算出距离偏移为ΔX=970,通过补偿目标的距离偏移量实现了对目标的重聚焦。
对比图5(f)、图5(g)和图5(e),可以看出deramp-keystone法和二维频率匹配滤波法对目标的聚焦效果很差,相比之下,本发明方法在真实环境下对地面运动目标成像效果更佳、补偿效果更理想。
综上所述,仿真实验验证了本发明的正确性、有效性和可靠性。
以上描述仅是本发明的一个具体实例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修改和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

Claims (10)

1.一种快速非搜索的地面运动目标参数估计方法,其特征在于,包括:
(1)对基于SAR平台几何模型的接收信号做数学变形和化简,得到关于频率变化量f和慢时间tm的接收信号S1(f,tm);
(2)利用azimuth-deramp匹配函数对接收信号S1(f,tm)进行匹配滤波,消除多普勒谱***,得到匹配后的信号S′1(f,tm);
(3)对匹配后的信号S′1(f,tm)进行二阶Keystone变换,实现距离弯曲补偿,得到关于频率变化量f和新的慢时间ηm的信号S2(f,ηm);
(4)对距离弯曲补偿信号S2(f,ηm)进行相位差分PD处理,得到一阶相位信号S3(f,ηm);
(5)对一阶相位信号S3(f,ηm)执行f域IFFT变换和ηm域FFT变换,实现距离走动补偿,得到关于快时间t和频率fa的峰值检测信号S4(t,fa);
(6)对峰值检测信号S4(t,fa)进行检波,估计出多普勒模糊数和目标的二阶运动参数
(7)利用match匹配滤波函数对接收信号S1(f,tm)进行匹配滤波和一阶Keystone变换,以对距离弯曲和多普勒频偏进行补偿,得到关于频率变化量f和新慢时间变量τm的无频偏信号S′4(f,τm);
(8)对无频偏信号S′4(f,τm)执行f域IFFT变换和τm域FFT变换,得到包含一阶运动参数信息的峰值检测信号S5(t,fa);
(9)对包含一阶运动参数信息的峰值检测信号S5(t,fa)进行检波,估计出目标的一阶运动参数
2.如权利要求1所述的方法,其特征在于,在(1)中对基于SAR平台几何模型的接收信号做数学变形和化简,按如下步骤进行:
(1a)设Ri(tm)为tm时刻SAR平台与第i个目标的距离,对Ri(tm)进行泰勒展开并保留前三项,得到:
式中,R0i为零时刻SAR平台与第i个目标的距离,a1i为一阶运动参数,a2i为二阶运动参数;
(1b)对一阶运动参数a1i进行分解,得到:
式中,vb,i表示基带速度,Mamb,i表示多普勒模糊数;
(1c)结合Ri(tm)的泰勒展开式、a1i的分解式和原接收信号,得到的接收信号S1(f,tm),表示如下:
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,f为频率变化量,μ为调频率,Tp为发射信号的脉冲持续时间,tm为慢时间,Ta为脉冲间隔,fc为中心频率,R0i为零时刻SAR平台与第i个目标的距离,vb,i为基带速度,a2i为目标的二阶运动参数,Mamb,i为多普勒模糊数,c为光速,PRF为脉冲重复频率。
3.如权利要求1所述方法,其特征在于,步骤(2)中得到的匹配后信号S′1(f,tm),表示如下:
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,f为频率变化量,μ为调频率,Tp为发射信号的脉冲持续时间,tm为慢时间,Ta为脉冲间隔,c为光速,fc为中心频率,R0i为零时刻SAR平台与第i个目标的距离,vb,i为基带速度,Mamb,i为多普勒模糊数,PRF为脉冲重复频率。
4.如权利要求1所述方法,其特征在于,步骤(3)得到的距离弯曲补偿信号S2(f,ηm),表示如下:
式中,f为频率变化量,μ为调频率,ηm为新的慢时间,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,Tp为发射信号的脉冲持续时间,Ta为脉冲间隔,c为光速,fc为中心频率,R0i为零时刻SAR平台与第i个目标的距离,λ为波长,vb,i为基带速度,PRF为脉冲重复频率,Mamb,i为多普勒模糊数。
5.如权利要求1所述方法,其特征在于,步骤(4)中得到的一阶相位信号S3(f,ηm),表示如下:
式中,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,f为频率变化量,μ为调频率,Tp为发射信号的脉冲持续时间,ηm为新的慢时间,Ta为脉冲间隔,λ为波长,vb,i为基带速度,τ0为差分间隔,c为光速,Mamb,i为多普勒模糊数,PRF为脉冲重复频率,fc为中心频率,S3,cross(f,ηm)为交叉项。
6.如权利要求1所述方法,其特征在于,步骤(5)中得到的峰值检波信号S4(t,fa),表示如下:
式中,t为快时间,fa为频率,A3,i为振幅,λ为波长,vb,i为基带速度,τ0为差分间隔,B为信号带宽,c为光速,Mamb,i为多普勒模糊数,PRF为脉冲重复频率,Ta为脉冲间隔,S4,cross(t,fa)为交叉项。
7.如权利要求1所述的方法,其特征在于,步骤(6)中得到的目标二阶运动参数表示如下:
式中,为运动参数aequ,i的估计值,v为SAR平台的速度,Rb为雷达平台到条带中心线的最近斜距。
8.如权利要求1所述的方法,其特征在于,步骤(7)中得到的无频偏信号S′4(f,τm),表示如下:
式中,f为频率变化量,τm为新的慢时间变量,A1,i为压缩后的振幅,rect(x)为区间[-1/2,1/2]上值为1的窗函数,μ为调频率,Tp为发射信号的脉冲持续时间,tm为慢时间,Ta为脉冲间隔,c为光速,fc为中心频率,R0i为零时刻SAR平台与第i个目标的距离,vb,i为基带速度。
9.如权利要求1所述的方法,其特征在于,步骤(8)中得到包含一阶运动参数信息的的峰值检波信号S5(t,fa),表示如下:
式中,t为快时间,fa为频率,A4,i为振幅,B为信号带宽,R0i为零时刻SAR平台与第i个目标的距离,Ta为脉冲间隔,vb,i为基带速度,λ为波长。
10.如权利要求1所述的方法,其特征在于,步骤(9)中得到的目标一阶运动参数表示如下:
式中,为基带速度的估计值,λ为波长,PRF为脉冲重复频率,为多普勒模糊数的估计值。
CN201810847452.1A 2018-07-27 2018-07-27 快速非搜索的地面运动目标参数估计方法 Pending CN108983193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810847452.1A CN108983193A (zh) 2018-07-27 2018-07-27 快速非搜索的地面运动目标参数估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810847452.1A CN108983193A (zh) 2018-07-27 2018-07-27 快速非搜索的地面运动目标参数估计方法

Publications (1)

Publication Number Publication Date
CN108983193A true CN108983193A (zh) 2018-12-11

Family

ID=64552060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810847452.1A Pending CN108983193A (zh) 2018-07-27 2018-07-27 快速非搜索的地面运动目标参数估计方法

Country Status (1)

Country Link
CN (1) CN108983193A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221264A (zh) * 2019-05-21 2019-09-10 中国人民解放军战略支援部队信息工程大学 基于周期Keystone变换的多普勒模糊目标相参检测方法及装置
CN111398913A (zh) * 2020-04-07 2020-07-10 电子科技大学 一种基于双prf的视频sar动目标回波过滤方法
CN112764020A (zh) * 2020-02-28 2021-05-07 加特兰微电子科技(上海)有限公司 解速度模糊、确定对象移动速度的方法、装置及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503223A1 (en) * 2003-07-30 2005-02-02 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm
CN102998674A (zh) * 2012-10-29 2013-03-27 中国人民解放军空军装备研究院侦察情报装备研究所 多通道sar地面慢动目标检测方法及装置
EP2574957A1 (fr) * 2011-09-30 2013-04-03 Thales Procédé d'estimation de la fréquence doppler non ambigue d'une cible mobile, notamment marine, et radar mettant en oeuvre le procédé
CN106970371A (zh) * 2017-04-28 2017-07-21 电子科技大学 一种基于Keystone和匹配滤波的目标检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1503223A1 (en) * 2003-07-30 2005-02-02 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm
EP2574957A1 (fr) * 2011-09-30 2013-04-03 Thales Procédé d'estimation de la fréquence doppler non ambigue d'une cible mobile, notamment marine, et radar mettant en oeuvre le procédé
CN102998674A (zh) * 2012-10-29 2013-03-27 中国人民解放军空军装备研究院侦察情报装备研究所 多通道sar地面慢动目标检测方法及装置
CN106970371A (zh) * 2017-04-28 2017-07-21 电子科技大学 一种基于Keystone和匹配滤波的目标检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIONGPENGHE等: "Fast non-searching method for ground moving target refocusing and motion parameters estimation", 《DIGITAL SIGNAL PROCESSING》 *
陈一畅等: "一种基于SAR稀疏采样数据的动目标运动参数估计方法", 《电子与信息学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221264A (zh) * 2019-05-21 2019-09-10 中国人民解放军战略支援部队信息工程大学 基于周期Keystone变换的多普勒模糊目标相参检测方法及装置
CN110221264B (zh) * 2019-05-21 2021-04-16 中国人民解放军战略支援部队信息工程大学 基于周期Keystone变换的多普勒模糊目标相参检测方法及装置
CN112764020A (zh) * 2020-02-28 2021-05-07 加特兰微电子科技(上海)有限公司 解速度模糊、确定对象移动速度的方法、装置及相关设备
CN111398913A (zh) * 2020-04-07 2020-07-10 电子科技大学 一种基于双prf的视频sar动目标回波过滤方法
CN111398913B (zh) * 2020-04-07 2022-08-05 电子科技大学 一种基于双prf的视频sar动目标回波过滤方法

Similar Documents

Publication Publication Date Title
CN107966688B (zh) 基于相位干涉技术的宽带雷达目标速度解模糊方法
CN110412558A (zh) 基于tdm mimo的解车载fmcw雷达速度模糊方法
CN1078949C (zh) 减轻脉冲多普勒雷达中距离一多普勒模糊的设备和方法
CN106443671A (zh) 基于调频连续波的sar雷达动目标检测与成像方法
CN109507669B (zh) 基于相参累积的地面微弱运动目标参数估计方法
CN108427115B (zh) 合成孔径雷达对运动目标参数的快速估计方法
CN108469608B (zh) 一种运动平台雷达多普勒质心精确估计方法
CN103364783B (zh) 基于单通道sar的运动目标径向速度无模糊估计方法
CN105487060B (zh) 一种双通道四斜率调制的多目标提取方法
CN102707269B (zh) 一种机载雷达距离走动校正方法
CN104749570B (zh) 一种移不变机载双基合成孔径雷达目标定位方法
CN108490443B (zh) 基于解析解及NUFFT的多子阵合成孔径声纳ωk成像算法
CN109856635A (zh) 一种csar地面动目标重聚焦成像方法
CN112162281A (zh) 一种多通道sar-gmti图像域两步处理方法
CN102288963A (zh) 基于子孔径参数估计的双基地isar图像融合方法
CN102121990B (zh) 基于空时分析的逆合成孔径雷达的目标转速估计方法
CN102998672A (zh) 基于相干化处理的步进频率isar成像方法
CN108983193A (zh) 快速非搜索的地面运动目标参数估计方法
CN107271997B (zh) 机载多通道cssar地面运动目标运动参数估计方法
CN104950307B (zh) 一种机载三通道sar‑gmti的精确定位方法
CN106597437A (zh) 高频机载调频连续波sar运动补偿及成像处理方法
CN109946659B (zh) 一种车载毫米波雷达线性调频连续波运动频率扩展校正方法
CN105572668B (zh) 一种基于Radon变换的运动目标径向速度估计方法
CN101620272A (zh) 一种逆合成孔径雷达的目标转速估计方法
CN106054154B (zh) 一种基于icpf的机动目标的步进频率信号高分辨率成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181211