CN108983187B - 基于ewc的在线雷达目标识别方法 - Google Patents

基于ewc的在线雷达目标识别方法 Download PDF

Info

Publication number
CN108983187B
CN108983187B CN201810757440.XA CN201810757440A CN108983187B CN 108983187 B CN108983187 B CN 108983187B CN 201810757440 A CN201810757440 A CN 201810757440A CN 108983187 B CN108983187 B CN 108983187B
Authority
CN
China
Prior art keywords
resolution range
range profile
batch
data
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810757440.XA
Other languages
English (en)
Other versions
CN108983187A (zh
Inventor
陈渤
刘应祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810757440.XA priority Critical patent/CN108983187B/zh
Publication of CN108983187A publication Critical patent/CN108983187A/zh
Application granted granted Critical
Publication of CN108983187B publication Critical patent/CN108983187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/417Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于EWC的在线雷达目标识别方法,属于雷达技术领域,其主要思路为:确定第p批原始雷达高分辨距离像训练数据Sp的目标类别lp和第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp;p=1,2,…,P,P>1;建立卷积神经网络模型,得到训练好的卷积神经网络;然后得到Sp中m个数据的Fisher信息矩阵;确定第1批原始雷达高分辨距离像测试数据T1的目标类别Tl1至第P批原始雷达高分辨距离像测试数据TP的目标类别TlP,以及第1批原始雷达高分辨距离像测试数据的预测目标类别l′1至第P批原始雷达高分辨距离像测试数据的预测目标类别l′P;进而得到第1个类别识别正确目标至第
Figure DDA0001727067930000011
个类别识别正确目标,
Figure DDA0001727067930000012
将此时得到的
Figure DDA0001727067930000013
个类别识别正确目标为一种基于EWC的在线雷达目标识别结果。

Description

基于EWC的在线雷达目标识别方法
技术领域
本发明属于雷达技术领域,特别涉及一种基于EWC的在线雷达目标识别方法,即基于弹性权重巩固(Elastic Weight Consolidation,EWC)的在线雷达目标识别方法,适用于在线学习雷达目标识别任务。
背景技术
随着现代战争先进技术的发展,雷达目标识别技术的需求愈加强烈;雷达高分辨距离像(High Resolution Range Profile,HRRP)是用宽带雷达信号获取的目标散射点子回波在雷达射线上投影的向量和的幅度波形,高分辨距离像HRRP样本反映着在一定雷达视角时,目标上散射体(如机头、机翼、机尾方向舵、进气孔、发动机等等)的雷达散射截面积(RCS)沿雷达视线(RLOS)的分布情况,体现了散射点的相对几何关系;因此,HRRP样本包括了目标丰富的结构信息,比如目标尺寸,散射点结构等,对目标识别与分类很有价值。
基于深度学***移、比例缩放、倾斜或者共他形式的变形具有高度不变性。
目前,由于雷达的特殊性,需要在线对不断获取的数据进行识别;随着数据的增加,许多算法在对新数据的训练识别过程中会对以往的数据特征产生遗忘,导致对以往数据的识别能力迅速下降。
发明内容
针对上述现有技术存在的不足,本发明的目的在于提出一种基于EWC的在线雷达目标识别方法,该种基于EWC的在线雷达目标识别方法利用高分辨距离像HRRP对目标的特征进行提取和识别,特别是利用弹性权重巩固(Elastic Weight Consolidation,EWC)来防止当前数据训练过程中对以往数据特征的遗忘,使得雷达在对当前数据训练识别的同时还能保证对以往数据的识别能力,并且保留以往数据的特征。
本发明的技术思路:通过HRRP数据集进行短时傅里叶变换后的数据,训练端到端的卷积神经网络模型,并在每批数据训练中加入EWC提高网络模型对数据特征的记忆能力,保证对当前数据识别能力的同时保持对以往数据特征的识别能力。
为达到上述技术目的,本发明采用如下技术方案予以实现。
一种基于EWC的在线雷达目标识别方法,包括以下步骤:
步骤1,确定第p批原始雷达高分辨距离像训练数据Sp和第p批原始雷达高分辨距离像测试数据Tp,以及确定第p批原始雷达高分辨距离像训练数据Sp的目标类别lp和第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp;p=1,2,…,P,P>1;
步骤2,建立卷积神经网络模型,并根据第p批原始雷达高分辨距离像训练数据Sp,得到训练好的卷积神经网络;
步骤3,根据训练好的卷积神经网络,得到第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵;m≥1;
步骤4,根据第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵,确定第p'+1批数据更新后的卷积神经网络模型Mp'+1;p'=1,2,3,…,P-1,p'+1=2,3,…,P,p'的初始值为1,p'+1的初始值为2;
步骤5,令p'的值加1,重复步骤4,直到p'=P-1,p'+1=P,进而得到第P批数据更新后的卷积神经网络模型MP,然后将p'的值初始化为1;
步骤6,确定第1批原始雷达高分辨距离像测试数据T1的目标类别Tl1至第P批原始雷达高分辨距离像测试数据TP的目标类别TlP,并根据第P批数据更新后的卷积神经网络模型MP,得到第1批原始雷达高分辨距离像测试数据的预测目标类别l1′至第P批原始雷达高分辨距离像测试数据的预测目标类别l′P
步骤7,若le′与Tle相等,e=1,2,…,P,则说明识别出了第e批原始雷达高分辨距离像训练数据中的目标,并记为第e'个类别识别正确目标,e'的初始值为1,并令e'的值加1;若le′与Tle不相等,则说明第e批原始雷达高分辨距离像测试数据的目标类别识别错误,舍弃第批原始雷达高分辨距离像测试数据的目标类别识别错误时的结果;
令e分别取1至P,进而得到第1个类别识别正确目标至第
Figure GDA0003623644840000031
个类别识别正确目标,
Figure GDA0003623644840000032
将此时得到的
Figure GDA0003623644840000033
个类别识别正确目标作为一种基于EWC的在线雷达目标识别结果。
本发明与现有技术相比具有如下优点:
第一,本发明解决了传统神经网络不能时序处理多个任务的缺点,提出了实用有效的方法使得在时序训练模型过程中保证了先前任务的重要性,使得在学习新的任务的同时保持了对以往任务的记忆性和识别能力。
第二,本发明利用深度网络模型结构提取雷达高分辨距离像特征,对于大批量的雷达高分辨距离像数据而言,可以自动学习数据中的特征,特别是数据的高维特征进行识别,提高了运算效率。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是本发明的一种基于EWC的在线雷达目标识别方法实现流程图;
图2a是Yark-42飞机的实测场景图;
图2b是Cessna Citation S/Ⅱ飞机的实测场景图;
图2c是An-26飞机的实测场景图;
图3是本发明对三类飞机任务A识别的性能变化曲线图;
图4是本发明对三类飞机任务B识别的性能变化曲线图。
具体实施方式
参照图1,为本发明的一种基于EWC的在线雷达目标识别方法实现流程图;其中所述基于EWC的在线雷达目标识别方法,包括以下步骤:
步骤1,获取训练样本和测试样本,对数据初始化。
确定高分辨雷达,所述高分辨雷达接收其检测范围内目标回波数据,然后从所述目标回波数据中随机抽取N个数据作为第p批原始雷达高分辨距离像训练数据Sp,在所述目标回波数据中除去抽取的N个数据外再随机抽取N'个数据,作为第p批原始雷达高分辨距离像测试数据Tp,p=1,2,…,P,P表示获取原始雷达高分辨距离像训练数据和原始雷达高分辨距离像测试数据的总批数。
(1a)第p批原始雷达高分辨距离像训练数据Sp={s1,s2,…,sn,…,sN},其中sn表示第p批原始雷达高分辨距离像训练数据Sp中第n个距离像,sn=[sn1,sn2,…,sni,…,snD]T,[·]T表示矩阵的转置,sni表示第p批原始雷达高分辨距离像训练数据Sp中第n个距离像在第i个距离单元内的值,n=1,2,…,N,N表示第p批原始雷达高分辨距离像训练数据Sp包括的距离像总个数,即第p批原始雷达高分辨距离像训练数据Sp包括的训练样本总个数,i=1,2,…,D,D表示第p批原始雷达高分辨距离像训练数据Sp中每个高分辨距离像包括的距离单元总个数(即单个样本向量维度)。
(1b)计算第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn
Figure GDA0003623644840000041
(1c)将第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心搬移至其重心Wn,并计算得到移动后第n个高分辨距离像在第i个距离单元处的值xni,其表达式为:
Figure GDA0003623644840000042
其中,FFT表示快速傅里叶变换,IFFT表示逆快速傅里叶变换,sni表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像在第i个距离单元的值,Cn表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心,
Figure GDA0003623644840000043
φ[Wn]表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn所对应的相位,φ[Cn]表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心Cn所对应的相位,a表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心Cn所在距离单元与第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn所在距离单元之间的距离,e表示指数函数,j表示虚数单位。
(1d)令i取1至D,重复执行(1c),进而分别得到移动后第n个高分辨距离像在第1个距离单元处的值xn1至移动后第n个高分辨距离像在第D个距离单元处的值xnD,记为移动后第n个高分辨距离像xn,xn=[xn1,xn2,…,xni,…,xnD],然后将i的值初始化为1。
(1e)令n分别取1至N,重复执行(1c)和(1d),进而分别得到移动后第1个高分辨距离像x1至移动后第N个高分辨距离像xN,记为移动后第p批原始雷达高分辨距离像训练数据Xp,Xp={x1,x2,…,xn,…,xN},xn=[xn1,xn2,…,xni,…,xnD]。
以1,2,…,D作为横坐标,以x1,x2,…,xn,…,xN作为纵坐标,将移动后第p批原始雷达高分辨距离像训练数据Xp绘制成二维平面图,记为第p个样本回波波形图,根据第p个样本回波波形图对第p批原始雷达高分辨距离像训练数据Sp添加目标类别,记为第p批原始雷达高分辨距离像训练数据Sp的目标类别lp
(1f)第p批原始雷达高分辨距离像测试数据Tp,Tp={t1,t2,…,tn′,…,tN′},其中tn′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个距离像,tn=[tn′1,tn′2,…,tn′i′,…,tn′D′]T,[·]T表示矩阵的转置,sn′i′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个距离像在第i′个距离单元的值,n′=1,2,…,N′,N′表示第p批原始雷达高分辨距离像测试数据Tp包括的距离像总个数,即第p批原始雷达高分辨距离像测试数据Tp包括的训练样本总个数,i′=1,2,…,D′,D′表示第p批原始雷达高分辨距离像测试数据Tp中每个高分辨距离像包括的距离单元总个数(即单个样本向量维度)。
(1g)计算第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′
Figure GDA0003623644840000051
(1h)将第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心搬移至其重心Wn′,并计算得到移动后第n′个高分辨距离像在第i′个距离单元处的值xn′i′′,其表达式为:
Figure GDA0003623644840000061
其中,FFT表示快速傅里叶变换,IFFT表示逆快速傅里叶变换,tn′i′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像在第i′个距离单元的值,Cn′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心,
Figure GDA0003623644840000062
φ[Wn′]表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′所对应的相位,φ[Cn′]表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心Cn′所对应的相位,a表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心Cn′所在距离单元与第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′所在距离单元之间的距离,e表示指数函数,j表示虚数单位。
(1i)令i′取1至D′,重复执行(1h),进而分别得到移动后第n′个高分辨距离像在第1个距离单元处的值xn′1′至移动后第n′个高分辨距离像在第D′个距离单元处的值xn′D′′,记为移动后第n′个高分辨距离像xn′′,xn′=[xn′1′,xn′2′,…,xn′i′′,…,xn′D′′],然后将i′的值初始化为1。
(1j)令n′分别取1至N′,重复执行(1h)和(1i),进而分别得到移动后第1个高分辨距离像x1′至移动后第N′个高分辨距离像xN′′,记为移动后第p批原始雷达高分辨距离像测试数据Tp′,Tp′={x1′,x2′,…,xn′′,…,xN′′},xn′=[xn′1′,xn′2′,…,xn′i′′,…,xn′D′′]。
以1,2,…,D作为横坐标,以xn′1′,xn′2′,…,xn′i′′,…,xn′D′′作为纵坐标,将移动后第p批原始雷达高分辨距离像测试数据Tp′绘制成二维平面曲线图,记为第p个样本回波曲线图,根据第p个样本回波曲线图对第p批原始雷达高分辨距离像测试数据Tp添加目标类别,记为第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp
步骤2,建立卷积神经网络模型。
该卷积神经网络模型由三层卷积层和两层全连接层构成,其构建步骤如下:
(2a)构建第一层卷积层:该第一层卷积层用于对移动后第p批原始雷达高分辨距离像训练数据Xp进行一维卷积,第一层卷积层中包括C1个卷积核,且将第一层的C1个卷积核记为
Figure GDA0003623644840000071
用于与移动后第p批原始雷达高分辨距离像训练数据Xp进行卷积;
Figure GDA0003623644840000072
的大小设置为M1×1×C1,其中M1表示第一层卷积层中每个卷积核窗口的大小,1≤M1≤D。
设置第一层卷积层的卷积步长为L1,1≤L1≤D-1,为了减少下采样过程,通常设置L1=2;将移动后第p批原始雷达高分辨距离像训练数据Xp与第一层卷积层中的C1个卷积核分别进行卷积,得到第一层卷积层C1个卷积后的结果,并记为第一层卷积层的C1个特征图
Figure GDA0003623644840000073
计算公式如下:
Figure GDA0003623644840000074
其中,
Figure GDA0003623644840000075
表示第一层卷积层的C1个特征图,Xp表示移动后第p批原始雷达高分辨距离像训练数据,
Figure GDA0003623644840000076
表示第一层卷积层中的C1个卷积核,
Figure GDA0003623644840000077
表示第一层卷积层的全1偏置,*表示卷积操作,f()表示激活函数,f(z1)=max(0,z1),
Figure GDA0003623644840000078
max()表示求取最大值操作。
(2b)构建第二层卷积层:第二层卷积层包含C2个卷积核,并将第二层卷积层的C2个卷积核定义为
Figure GDA0003623644840000079
用于与第一层卷积层的C1个特征图
Figure GDA00036236448400000710
进行卷积,第二层卷积层的C2个卷积核
Figure GDA00036236448400000711
大小设置为M2×C1×C2,其中M2为第二层卷积层中每个卷积核窗口的大小,
Figure GDA00036236448400000712
设置第二层卷积层的卷积步长为L2
Figure GDA00036236448400000713
本实施例中设置L2=2。
将第一层卷积层的C1个特征图
Figure GDA00036236448400000714
与第二层卷积层的C2个卷积核
Figure GDA00036236448400000715
分别进行卷积,得到第二层卷积层C2个卷积后的结果,并记为第二层卷积层的C2个特征图
Figure GDA00036236448400000716
其计算公式如下:
Figure GDA00036236448400000717
其中,
Figure GDA00036236448400000718
表示第二层卷积层的全1偏置,*表示卷积操作,f()表示激活函数,
Figure GDA00036236448400000719
(2c)构建第三层卷积层:该第三层卷积层用于对第二层卷积层的C2个特征图
Figure GDA00036236448400000720
进行卷积,第三层卷积层的卷积核包含C3个卷积核,第三层卷积层的卷积核定义为
Figure GDA00036236448400000721
且第三层卷积层的卷积核
Figure GDA0003623644840000081
的大小设置为M3×C2×C3,其中M3表示第三层卷积层中每个卷积核窗口的大小,
Figure GDA0003623644840000082
设置第三层卷积层的卷积步长为L3
Figure GDA0003623644840000083
本实施例中设置L3=2。
将第二层卷积层的C2个特征图
Figure GDA0003623644840000084
与第三层卷积层的卷积核
Figure GDA0003623644840000085
分别进行卷积,得到第三层卷积层C3个卷积后的结果,并记为第三层卷积层的C3个特征图
Figure GDA0003623644840000086
其计算公式如下:
Figure GDA0003623644840000087
其中,
Figure GDA0003623644840000088
表示第三层卷积层的全1偏置,*表示卷积操作,f()表示激活函数,
Figure GDA0003623644840000089
(2d)构建第四层全连接层:先将第三层卷积层的C3个特征图
Figure GDA00036236448400000810
分别拉长变换为长度为
Figure GDA00036236448400000811
的列向量,进而得到拉长变换后的C3个列向量,每个列向量包括
Figure GDA00036236448400000812
个神经元从而得到拉长变换后的
Figure GDA00036236448400000813
个神经元;第四层全连接层设置有h个神经元,用于将拉长变换后的C3个列向量与第四层全连接层的权值矩阵
Figure GDA00036236448400000814
和第四层全连接层的全1偏置
Figure GDA00036236448400000815
进行非线性处理变换,得到第四层全连接层非线性变换后的数据结果
Figure GDA00036236448400000816
其计算表达式为:
Figure GDA00036236448400000817
其中,
Figure GDA00036236448400000818
表示由拉长变换后的
Figure GDA00036236448400000819
个神经元与第四层全连接层的h个神经元相连接的权值矩阵,
Figure GDA00036236448400000820
表示第四层全连接层的全1偏置,·表示矩阵相乘,f()表示激活函数,
Figure GDA00036236448400000821
(2e)构建第五层全连接层:第五层全连接层设置有h′个神经元,用于将第四层全连接层输出的第四层全连接层非线性变换后的数据结果
Figure GDA00036236448400000822
与该第五层全连接层的权值矩阵
Figure GDA00036236448400000823
和第五层全连接层的全1偏置
Figure GDA00036236448400000824
进行线性变换,得到第五层全连接层线性变换后的数据结果
Figure GDA00036236448400000825
其中,所述第五层全连接层线性变换后的数据结果
Figure GDA00036236448400000826
其计算表达式为:
Figure GDA00036236448400000827
其中,W5表示由第四层全连接层的h个神经元与第五层全连接层的h′个神经元相连接构成的h×h′维矩阵,
Figure GDA0003623644840000091
表示第五层全连接层的全1偏置。
得到第五层全连接层线性变换后的数据结果
Figure GDA0003623644840000092
后,说明卷积神经网络构建完成,记为训练好的卷积神经网络。
步骤3,计算EWC的Fisher信息矩阵。
从第五层全连接层线性变换后的数据结果
Figure GDA0003623644840000093
中随机抽取m个数据,分别计算抽取的m个数据对所有卷积层和全连接的参数
Figure GDA0003623644840000094
的一阶偏导数,并对每个一阶偏导数结果计算其平方并求和,得到m个数据的一阶导函数平方和,每个数据的一阶导函数平方和都为对应数据的Fisher信息矩阵,进而得到第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵,其中第p批原始雷达高分辨距离像训练数据Sp中第j个数据的Fisher信息矩阵为Fpj,其公式如下:
Figure GDA0003623644840000095
其中,
Figure GDA0003623644840000096
表示第五层全连接层线性变换后的数据结果
Figure GDA0003623644840000097
中第j个数据,j=1,...,m,Fpj表示第p批原始雷达高分辨距离像训练数据Sp中第j个数据的Fisher信息矩阵,用于下一批数据更新卷积神经网络模型。
步骤4,获取第p'+1批原始雷达高分辨距离像训练数据Sp+1、第p'+1批原始雷达高分辨距离像训练数据Sp'+1的目标类别lp'+1;p'=1,2,3,…,P-1,p'+1=2,3,…,P,p'的初始值为1,p'+1的初始值为2。
然后计算第p'+1批原始雷达高分辨距离像训练数据Sp'+1的EWC损失函数LOSSp'+1为:
Figure GDA0003623644840000098
其中,λ为权重系数,取值通常为(0,1);Qp'+1为第p'+1批原始雷达高分辨距离像训练数据Sp'+1的参数变化值,计算公式为:
Figure GDA0003623644840000101
通过后向传播算法利用第p'+1批原始雷达高分辨距离像训练数据Sp'+1的EWC损失函数LOSSp'+1对训练好的卷积神经网络进行更新训练,得到第p'+1批数据更新后的卷积神经网络模型Mp'+1
步骤5,令p'的值加1,重复步骤4,直到p'=P-1,p'+1=P,直到得到第P批数据更新后的卷积神经网络模型MP,然后将p'的值初始化为1。
步骤6,对于移动后第p批原始雷达高分辨距离像测试数据Tp′和第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp,令p的值分别取1至P,进而得到移动后第1批原始雷达高分辨距离像测试数据T1′至移动后第P批原始雷达高分辨距离像测试数据Tp′,以及第1批原始雷达高分辨距离像测试数据T1的目标类别Tl1至第P批原始雷达高分辨距离像测试数据TP的目标类别TlP
并将移动后第1批原始雷达高分辨距离像测试数据T1′至移动后第P批原始雷达高分辨距离像测试数据输入进训练好的卷积神经网络中,利用第P批数据更新后的卷积神经网络模型MP,分别对应得到第1批原始雷达高分辨距离像测试数据的预测目标类别l1′至第P批原始雷达高分辨距离像测试数据的预测目标类别l′P
步骤7,若le′与Tle相等,e=1,2,…,P,说明第e批原始雷达高分辨距离像测试数据的目标类别识别正确,即认为识别出了第e批原始雷达高分辨距离像训练数据中的目标,记为第e'个类别识别正确目标,e'的初始值为1,并令e'的值加1;若le′与Tle不相等,则说明第e批原始雷达高分辨距离像测试数据的目标类别识别错误,舍弃第批原始雷达高分辨距离像测试数据的目标类别识别错误时的结果。
令e分别取1至P,进而得到第1个类别识别正确目标至第
Figure GDA0003623644840000102
个类别识别正确目标,
Figure GDA0003623644840000103
将此时得到的
Figure GDA0003623644840000104
个类别识别正确目标作为一种基于EWC的在线雷达目标识别结果。
本发明的效果通过以下对三类飞机的实测数据仿真进一步说明:
获得原始雷达高分辨距离像的雷达实测数据,实测场景参照图2a、图2b和图2c所示,其中图2a是Yark-42飞机的实测场景图,图2b是Cessna Citation S/Ⅱ飞机的实测场景图,图2c是An-26飞机的实测场景图。
仿真的时候,将获取的原始高分辨距离像分为两类:训练集合Tr以及测试集合Te,其中训练集合Tr包含TrA和TrB。TrA为任务A的训练数据,TrB为任务B的训练数据;并且,训练集合TrA和TrB分别为高分辨距离像不同的方位角信息数据。
观察任务A和任务B的识别情况,结果如图3和图4所示,图3是本发明对三类飞机任务A识别的性能变化曲线图,图4是本发明对三类飞机任务B识别的性能变化曲线图。
从实验结果可以看出,当新任务到来时,模型不仅能够对当前新任务有良好的识别能力,如图4所示,而且依旧能够对先前任务有良好的识别能力,如见图3所示。
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (4)

1.一种基于EWC的在线雷达目标识别方法,其特征在于,包括以下步骤:
步骤1,确定第p批原始雷达高分辨距离像训练数据Sp和第p批原始雷达高分辨距离像测试数据Tp,以及确定第p批原始雷达高分辨距离像训练数据Sp的目标类别lp和第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp;p=1,2,…,P,P>1;
步骤2,建立卷积神经网络模型,并根据第p批原始雷达高分辨距离像训练数据Sp,得到训练好的卷积神经网络;
步骤3,根据训练好的卷积神经网络,得到第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵;m≥1;
步骤4,根据第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵,确定第p'+1批数据更新后的卷积神经网络模型Mp'+1;p'=1,2,3,…,P-1,p'+1=2,3,…,P,p'的初始值为1,p'+1的初始值为2;
步骤5,令p'的值加1,重复步骤4,直到p'=P-1,p'+1=P,进而得到第P批数据更新后的卷积神经网络模型MP,然后将p'的值初始化为1;
步骤6,确定第1批原始雷达高分辨距离像测试数据T1的目标类别Tl1至第P批原始雷达高分辨距离像测试数据TP的目标类别TlP,并根据第P批数据更新后的卷积神经网络模型MP,得到第1批原始雷达高分辨距离像测试数据的预测目标类别l1′至第P批原始雷达高分辨距离像测试数据的预测目标类别l′P
步骤7,若le′与Tle相等,e=1,2,…,P,则说明识别出了第e批原始雷达高分辨距离像训练数据中的目标,并记为第e'个类别识别正确目标,e'的初始值为1,并令e'的值加1;若le′与Tle不相等,则说明第e批原始雷达高分辨距离像测试数据的目标类别识别错误,舍弃第e批原始雷达高分辨距离像测试数据的目标类别识别错误时的结果;
令e分别取1至P,进而得到第1个类别识别正确目标至第
Figure FDA0003623644830000011
个类别识别正确目标,
Figure FDA0003623644830000012
将此时得到的
Figure FDA0003623644830000013
个类别识别正确目标作为一种基于EWC的在线雷达目标识别结果;
在步骤1中,所述第p批原始雷达高分辨距离像训练数据Sp和第p批原始雷达高分辨距离像测试数据Tp,其确定过程为:
确定高分辨雷达,所述高分辨雷达接收其检测范围内目标回波数据,然后从所述目标回波数据中随机抽取N个数据作为第p批原始雷达高分辨距离像训练数据Sp,在所述目标回波数据中除去抽取的N个数据外再随机抽取N'个数据,作为第p批原始雷达高分辨距离像测试数据Tp,p=1,2,…,P,P表示获取原始雷达高分辨距离像训练数据和原始雷达高分辨距离像测试数据的总批数;
所述确定第p批原始雷达高分辨距离像训练数据Sp的目标类别lp,其确定过程为:
(1a)第p批原始雷达高分辨距离像训练数据Sp={s1,s2,…,sn,…,sN},其中sn表示第p批原始雷达高分辨距离像训练数据Sp中第n个距离像,sn=[sn1,sn2,…,sni,…,snD]T,[·]T表示矩阵的转置,sni表示第p批原始雷达高分辨距离像训练数据Sp中第n个距离像在第i个距离单元内的值,n=1,2,…,N,N表示第p批原始雷达高分辨距离像训练数据Sp包括的距离像总个数,即第p批原始雷达高分辨距离像训练数据Sp包括的训练样本总个数,i=1,2,…,D,D表示第p批原始雷达高分辨距离像训练数据Sp中每个高分辨距离像包括的距离单元总个数;
(1b)计算第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn
Figure FDA0003623644830000021
(1c)将第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心搬移至其重心Wn,并计算得到移动后第n个高分辨距离像在第i个距离单元处的值xni,其表达式为:
Figure FDA0003623644830000022
其中,FFT表示快速傅里叶变换,IFFT表示逆快速傅里叶变换,sni表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像在第i个距离单元的值,Cn表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心,
Figure FDA0003623644830000031
φ[Wn]表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn所对应的相位,φ[Cn]表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心Cn所对应的相位,a表示第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的中心Cn所在距离单元与第p批原始雷达高分辨距离像训练数据Sp中第n个高分辨距离像sn的重心Wn所在距离单元之间的距离,e表示指数函数,j表示虚数单位;
(1d)令i取1至D,重复执行(1c),进而分别得到移动后第n个高分辨距离像在第1个距离单元处的值xn1至移动后第n个高分辨距离像在第D个距离单元处的值xnD,记为移动后第n个高分辨距离像xn,xn=[xn1,xn2,…,xni,…,xnD],然后将i的值初始化为1;
(1e)令n分别取1至N,重复执行(1c)和(1d),进而分别得到移动后第1个高分辨距离像x1至移动后第N个高分辨距离像xN,记为移动后第p批原始雷达高分辨距离像训练数据Xp,Xp={x1,x2,…,xn,…,xN},xn=[xn1,xn2,…,xni,…,xnD];
以1,2,…,D作为横坐标,以x1,x2,…,xn,…,xN作为纵坐标,将移动后第p批原始雷达高分辨距离像训练数据Xp绘制成二维平面图,记为第p个样本回波波形图,根据第p个样本回波波形图对第p批原始雷达高分辨距离像训练数据Sp添加目标类别,记为第p批原始雷达高分辨距离像训练数据Sp的目标类别lp
在步骤2中,所述训练好的卷积神经网络,是对建立的卷积神经网络模型进行训练后得到的结果,所述建立的卷积神经网络模型包括三层卷积层和两层全连接层,其训练过程为:
(2a)设置第一层卷积层的卷积步长为L1,1≤L1≤D-1,第一层卷积层中包括C1个卷积核,且将第一层的C1个卷积核记为
Figure FDA0003623644830000032
的大小设置为M1×1×C1,其中M1表示第一层卷积层中每个卷积核窗口的大小,1≤M1≤D;
将移动后第p批原始雷达高分辨距离像训练数据Xp与第一层卷积层中的C1个卷积核分别进行卷积,得到第一层卷积层C1个卷积后的结果,并记为第一层卷积层的C1个特征图
Figure FDA0003623644830000041
计算公式如下:
Figure FDA0003623644830000042
其中,
Figure FDA0003623644830000043
表示第一层卷积层的C1个特征图,
Figure FDA0003623644830000044
表示第一层卷积层的全1偏置,*表示卷积操作,f()表示激活函数,f(z1)=max(0,z1),
Figure FDA0003623644830000045
max()表示求取最大值操作;
(2b)第二层卷积层包含C2个卷积核,并将第二层卷积层的C2个卷积核定义为
Figure FDA0003623644830000046
第二层卷积层的C2个卷积核
Figure FDA0003623644830000047
大小设置为M2×C1×C2,其中M2为第二层卷积层中每个卷积核窗口的大小,
Figure FDA0003623644830000048
设置第二层卷积层的卷积步长为L2
Figure FDA0003623644830000049
将第一层卷积层的C1个特征图
Figure FDA00036236448300000410
与第二层卷积层的C2个卷积核
Figure FDA00036236448300000411
分别进行卷积,得到第二层卷积层C2个卷积后的结果,并记为第二层卷积层的C2个特征图
Figure FDA00036236448300000412
其计算公式如下:
Figure FDA00036236448300000413
其中,
Figure FDA00036236448300000414
表示第二层卷积层的全1偏置,f(z2)=max(0,z2),
Figure FDA00036236448300000415
(2c)第三层卷积层的卷积核包含C3个卷积核,第三层卷积层的卷积核定义为
Figure FDA00036236448300000416
且第三层卷积层的卷积核
Figure FDA00036236448300000417
的大小设置为M3×C2×C3,其中M3表示第三层卷积层中每个卷积核窗口的大小,
Figure FDA00036236448300000418
设置第三层卷积层的卷积步长为L3
Figure FDA00036236448300000419
将第二层卷积层的C2个特征图
Figure FDA00036236448300000420
与第三层卷积层的卷积核
Figure FDA00036236448300000421
分别进行卷积,得到第三层卷积层C3个卷积后的结果,并记为第三层卷积层的C3个特征图
Figure FDA00036236448300000422
其计算公式如下:
Figure FDA00036236448300000423
其中,
Figure FDA00036236448300000424
表示第三层卷积层的全1偏置,f(z3)=max(0,z3),
Figure FDA00036236448300000425
(2d)将第三层卷积层的C3个特征图
Figure FDA00036236448300000426
分别拉长变换为长度为
Figure FDA00036236448300000427
的列向量,进而得到拉长变换后的C3个列向量,每个列向量包括
Figure FDA00036236448300000428
个神经元从而得到拉长变换后的
Figure FDA0003623644830000051
个神经元;
第四层全连接层设置有h个神经元,用于将拉长变换后的C3个列向量与第四层全连接层的权值矩阵
Figure FDA0003623644830000052
和第四层全连接层的全1偏置
Figure FDA0003623644830000053
进行非线性处理变换,得到第四层全连接层非线性变换后的数据结果
Figure FDA0003623644830000054
其计算表达式为:
Figure FDA0003623644830000055
其中,
Figure FDA0003623644830000056
表示由拉长变换后的
Figure FDA0003623644830000057
个神经元与第四层全连接层的h个神经元相连接的权值矩阵,
Figure FDA0003623644830000058
表示第四层全连接层的全1偏置,·表示矩阵相乘,f()表示激活函数,f(z4)=max(0,z4),
Figure FDA0003623644830000059
(2e)第五层全连接层设置有h′个神经元,用于将第四层全连接层输出的第四层全连接层非线性变换后的数据结果
Figure FDA00036236448300000510
与该第五层全连接层的权值矩阵
Figure FDA00036236448300000511
和第五层全连接层的全1偏置
Figure FDA00036236448300000512
进行线性变换,得到第五层全连接层线性变换后的数据结果
Figure FDA00036236448300000513
其计算表达式为:
Figure FDA00036236448300000514
其中,W5表示由第四层全连接层的h个神经元与第五层全连接层的h′个神经元相连接构成的h×h′维矩阵,
Figure FDA00036236448300000515
表示第五层全连接层的全1偏置;
得到第五层全连接层线性变换后的数据结果
Figure FDA00036236448300000516
后,说明卷积神经网络构建完成,记为训练好的卷积神经网络;
在步骤3中,所述第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵,其过程为:
从第五层全连接层线性变换后的数据结果
Figure FDA00036236448300000517
中随机抽取m个数据,分别计算抽取的m个数据对所有卷积层和全连接的参数
Figure FDA00036236448300000518
的一阶偏导数,并对每个一阶偏导数结果计算其平方并求和,得到m个数据的一阶导函数平方和,每个数据的一阶导函数平方和都为对应数据的Fisher信息矩阵,进而得到第p批原始雷达高分辨距离像训练数据Sp中m个数据的Fisher信息矩阵,其中第p批原始雷达高分辨距离像训练数据Sp中第j个数据的Fisher信息矩阵为Fpj,其公式如下:
Figure FDA0003623644830000061
其中,
Figure FDA0003623644830000062
表示第五层全连接层线性变换后的数据结果
Figure FDA0003623644830000063
中第j个数据,j=1,...,m,Fpj表示第p批原始雷达高分辨距离像训练数据Sp中第j个数据的Fisher信息矩阵。
2.如权利要求1所述的一种基于EWC的在线雷达目标识别方法,其特征在于,在步骤1中,所述第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp,其确定过程为:
(1f)第p批原始雷达高分辨距离像测试数据Tp,Tp={t1,t2,…,tn′,…,tN′},其中tn′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个距离像,tn=[tn′1,tn′2,…,tn′i′,…,tn′D′]T,[·]T表示矩阵的转置,sn′i′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个距离像在第i′个距离单元的值,n′=1,2,…,N′,N′表示第p批原始雷达高分辨距离像测试数据Tp包括的距离像总个数,即第p批原始雷达高分辨距离像测试数据Tp包括的训练样本总个数,i′=1,2,…,D′,D′表示第p批原始雷达高分辨距离像测试数据Tp中每个高分辨距离像包括的距离单元总个数;
(1g)计算第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′
Figure FDA0003623644830000064
(1h)将第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心搬移至其重心Wn′,并计算得到移动后第n′个高分辨距离像在第i′个距离单元处的值xn′i′′,其表达式为:
Figure FDA0003623644830000065
其中,FFT表示快速傅里叶变换,IFFT表示逆快速傅里叶变换,tn′i′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像在第i′个距离单元的值,Cn′表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心,
Figure FDA0003623644830000071
φ[Wn′]表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′所对应的相位,φ[Cn′]表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心Cn′所对应的相位,a表示第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的中心Cn′所在距离单元与第p批原始雷达高分辨距离像测试数据Tp中第n′个高分辨距离像tn′的重心Wn′所在距离单元之间的距离,e表示指数函数,j表示虚数单位;
(1i)令i′取1至D′,重复执行(1h),进而分别得到移动后第n′个高分辨距离像在第1个距离单元处的值xn′1′至移动后第n′个高分辨距离像在第D′个距离单元处的值xn′D′′,记为移动后第n′个高分辨距离像xn′′,xn′=[xn′1′,xn′2′,…,xn′i′′,…,xn′D′′],然后将i′的值初始化为1;
(1j)令n′分别取1至N′,重复执行(1h)和(1i),进而分别得到移动后第1个高分辨距离像x1′至移动后第N′个高分辨距离像xN′′,记为移动后第p批原始雷达高分辨距离像测试数据Tp′,Tp′={x1′,x2′,…,xn′′,…,xN′′},xn′=[xn′1′,xn′2′,…,xn′i′′,…,xn′D′′];
以1,2,…,D作为横坐标,以xn′1′,xn′2′,…,xn′i′′,…,xn′D′′作为纵坐标,将移动后第p批原始雷达高分辨距离像测试数据Tp′绘制成二维平面曲线图,记为第p个样本回波曲线图,根据第p个样本回波曲线图对第p批原始雷达高分辨距离像测试数据Tp添加目标类别,记为第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp
3.如权利要求1所述的一种基于EWC的在线雷达目标识别方法,其特征在于,在步骤4中,所述第p'+1批数据更新后的卷积神经网络模型Mp'+1,其确定过程为:
首先获取第p'+1批原始雷达高分辨距离像训练数据Sp+1、第p'+1批原始雷达高分辨距离像训练数据Sp'+1的目标类别lp'+1;p'=1,2,3,…,P-1,p'+1=2,3,…,P,p'的初始值为1,p'+1的初始值为2;
然后计算第p'+1批原始雷达高分辨距离像训练数据Sp'+1的EWC损失函数LOSSp'+1为:
Figure FDA0003623644830000081
其中,λ为权重系数,取值通常为(0,1);Qp'+1为第p'+1批原始雷达高分辨距离像训练数据Sp'+1的参数变化值,计算公式为:
Figure FDA0003623644830000082
最终通过后向传播算法利用第p'+1批原始雷达高分辨距离像训练数据Sp'+1的EWC损失函数LOSSp'+1对训练好的卷积神经网络进行更新训练,得到第p'+1批数据更新后的卷积神经网络模型Mp'+1
4.如权利要求2或3所述的一种基于EWC的在线雷达目标识别方法,其特征在于,步骤6的确定过程为:
对于移动后第p批原始雷达高分辨距离像测试数据Tp′和第p批原始雷达高分辨距离像测试数据Tp的目标类别Tlp,令p的值分别取1至P,进而得到移动后第1批原始雷达高分辨距离像测试数据T1′至移动后第P批原始雷达高分辨距离像测试数据Tp′,以及第1批原始雷达高分辨距离像测试数据T1的目标类别Tl1至第P批原始雷达高分辨距离像测试数据TP的目标类别TlP
并将移动后第1批原始雷达高分辨距离像测试数据T1′至移动后第P批原始雷达高分辨距离像测试数据输入进训练好的卷积神经网络中,利用第P批数据更新后的卷积神经网络模型MP,分别对应得到第1批原始雷达高分辨距离像测试数据的预测目标类别l1′至第P批原始雷达高分辨距离像测试数据的预测目标类别l′P
CN201810757440.XA 2018-07-11 2018-07-11 基于ewc的在线雷达目标识别方法 Active CN108983187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810757440.XA CN108983187B (zh) 2018-07-11 2018-07-11 基于ewc的在线雷达目标识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810757440.XA CN108983187B (zh) 2018-07-11 2018-07-11 基于ewc的在线雷达目标识别方法

Publications (2)

Publication Number Publication Date
CN108983187A CN108983187A (zh) 2018-12-11
CN108983187B true CN108983187B (zh) 2022-07-15

Family

ID=64536851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810757440.XA Active CN108983187B (zh) 2018-07-11 2018-07-11 基于ewc的在线雷达目标识别方法

Country Status (1)

Country Link
CN (1) CN108983187B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126052A (zh) * 2021-03-08 2021-07-16 西安电子科技大学 基于逐级分段训练的高分辨距离像目标识别在线建库方法
CN113171102B (zh) * 2021-04-08 2022-09-02 南京信息工程大学 基于持续深度学习的ecg数据分类方法
CN114246563B (zh) * 2021-12-17 2023-11-17 重庆大学 基于毫米波雷达的心肺功能智能监测设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459668A (zh) * 2014-12-03 2015-03-25 西安电子科技大学 基于深度学习网络的雷达目标识别方法
CN107563411A (zh) * 2017-08-07 2018-01-09 西安电子科技大学 基于深度学习的在线sar目标检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080169939A1 (en) * 2007-01-11 2008-07-17 Dickens Charles E Early warning control system for vehicular crossing safety
US10095950B2 (en) * 2015-06-03 2018-10-09 Hyperverge Inc. Systems and methods for image processing
CN107728142B (zh) * 2017-09-18 2021-04-27 西安电子科技大学 基于二维卷积网络的雷达高分辨距离像目标识别方法
CN107784320B (zh) * 2017-09-27 2019-12-06 电子科技大学 基于卷积支持向量机的雷达一维距离像目标识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104459668A (zh) * 2014-12-03 2015-03-25 西安电子科技大学 基于深度学习网络的雷达目标识别方法
CN107563411A (zh) * 2017-08-07 2018-01-09 西安电子科技大学 基于深度学习的在线sar目标检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Overcoming catastrophic forgetting in neural networks;Kirkpatrick J等;《Proceedings of the National Academy of Sciences》;20170328;第114卷(第13期);第3521-3526页 *
基于Fisher的线性判别回归分类算法;曾贤灏等;《安阳工学院学报》;20150320(第02期);1-3页 *

Also Published As

Publication number Publication date
CN108983187A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN109086700B (zh) 基于深度卷积神经网络的雷达一维距离像目标识别方法
CN108229404B (zh) 一种基于深度学习的雷达回波信号目标识别方法
CN111160176B (zh) 基于融合特征的一维卷积神经网络地面雷达目标分类方法
CN110334741B (zh) 基于循环神经网络的雷达一维距离像识别方法
CN112001270B (zh) 基于一维卷积神经网络的地面雷达自动目标分类识别方法
CN108983187B (zh) 基于ewc的在线雷达目标识别方法
CN112965062B (zh) 基于lstm-dam网络的雷达距离像目标识别方法
CN104459668A (zh) 基于深度学习网络的雷达目标识别方法
CN110082738B (zh) 基于高斯混合和张量循环神经网络的雷达目标识别方法
CN107085733A (zh) 基于cnn深度学习的近岸红外舰船识别方法
CN112052762A (zh) 基于高斯原型的小样本isar图像目标识别方法
CN109948722B (zh) 一种识别空间目标的方法
CN110766084A (zh) 基于cae与hl-cnn的小样本sar目标识别方法
CN109239670B (zh) 基于结构嵌入和深度神经网络的雷达hrrp识别方法
CN113406623A (zh) 基于雷达高分辨距离像的目标识别方法、装置及介质
CN110223342B (zh) 一种基于深度神经网络的空间目标尺寸估计方法
CN109871907B (zh) 基于sae-hmm模型的雷达目标高分辨率距离像识别方法
CN111596292A (zh) 基于重要性网络和双向堆叠循环神经网络的雷达目标识别方法
CN109063750B (zh) 基于cnn和svm决策融合的sar目标分类方法
CN112835008B (zh) 基于姿态自适应卷积网络的高分辨距离像目标识别方法
CN111368653A (zh) 一种基于r-d图与深度神经网络的低空小目标检测方法
CN112946600B (zh) 基于wgan-gp的雷达hrrp数据库构建方法
CN114004152A (zh) 基于图卷积和循环神经网络的多风场风速时空预测方法
Choi et al. Information-maximizing adaptive design of experiments for wind tunnel testing
Liu et al. Incremental multitask SAR target recognition with dominant neuron preservation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant