CN108963744A - 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器 - Google Patents

一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器 Download PDF

Info

Publication number
CN108963744A
CN108963744A CN201810997038.9A CN201810997038A CN108963744A CN 108963744 A CN108963744 A CN 108963744A CN 201810997038 A CN201810997038 A CN 201810997038A CN 108963744 A CN108963744 A CN 108963744A
Authority
CN
China
Prior art keywords
laser
optical fiber
energy
ylf
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810997038.9A
Other languages
English (en)
Inventor
何卫锋
聂祥樊
李应红
李玉琴
杨竹芳
罗思海
孙浴峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN201810997038.9A priority Critical patent/CN108963744A/zh
Publication of CN108963744A publication Critical patent/CN108963744A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • H01S3/1024Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping for pulse generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及激光技术应用领域,尤其为一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器,由CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器、综合控制器组成。激光器利用CW光纤激光器和EOM调制器组成NP光纤种子源,触发低能量宽脉宽纳秒脉冲激光束;分别利用波形发生器、YLF+Glass固体放大器对脉冲激光束进行削波处理和多级能量放大;通过综合控制器协同控制CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器,激发宽脉宽高能量纳秒脉冲激光。整个激光器控制精度高、功能模块化、***集成化、通用性强,可用于不同深度粘接碳纤维复合材料和不同厚度涂层/薄膜等结构的界面结合力检测。

Description

一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激 光器
技术领域
本发明涉及激光技术应用领域,具体为一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器。
背景技术
激光冲击波结合力检测技术(Laser bond Inspection,LBI),是指利用高功率密度纳秒脉冲辐照在材料表面,材料表面贴覆的吸收保护层(铝箔、黑胶带等)吸收激光能量后发生***性气化蒸发,形成高温高压等离子体,等离子体继续吸收激光能量膨胀,在水流的约束作用下形成向材料内部传播的高压冲击波;冲击波首先以压缩波形式传播,但在背面反射后转变为拉伸波,当拉伸波应力值超过材料界面结合力,即会在该处发生层裂现象,从而根据拉伸波应力值和层裂现象判断界面结合力是否满足设计标准。该技术既可以检测碳纤维复合材料层间的粘接力,还可以检测涂层/薄膜的界面结合力。
根据固体内部激光冲击波传播规律可知,不同脉宽激光诱导的冲击波反射后会在不同深度处形成最大拉伸应力,所以激光脉宽直接决定了激光冲击波结合力检测的界面处置。因此,为满足不同深度粘接复合材料和不同厚度涂层/薄膜结合力检测需求,需要利用不同脉宽脉冲激光进行检测。美国US 2005/0120803专利中提出采用传统本振级结构,通过调节灯泵浦功率实现激光脉宽可调,但该方法下激光脉宽可调范围很小,且能量耗损较大;因此,急需发明一种脉宽可调的高能纳秒脉冲激光器。
发明内容
本发明的目的在于提供一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器,该激光器控制精度高、功能模块化、***集成化,可实现激光脉宽、波形、能量可调,可用于不同深度粘接复合材料和不同厚度涂层/薄膜等结构的界面结合力检测,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器,包括CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器和综合控制器,其特征在于:所述CW光纤激光器和EOM调制器共同组成NP光纤种子源,所述综合控制器通过控制总线分别与CW光纤激光器、EOM调制器、波形发生器和YLF+Glass固体放大器连接,具体操作如下:
1)利用CW光纤激光器和EOM调制器组成NP光纤种子源,可触发低能量宽脉宽纳秒脉冲激光束;
2)利用波形发生器对脉冲激光束进行削波处理,调整脉冲激光束的时间波形;
3)利用YLF+Glass固体放大器对脉冲激光束进行多级能量放大,调整脉冲激光束的能量大小;
4)通过激光器综合控制器对CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器进行协同控制,实现宽脉宽高能量纳秒脉冲激光束的输出。
本发明的特点如下:
1)激光器由CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器、综合控制器组成。
2)CW光纤激光器和EOM调制器组成NP光纤种子源,触发低能量宽脉宽纳秒脉冲激光束。
3)分别利用波形发生器、YLF+Glass固体放大器对脉冲激光束进行削波处理和多级能量放大。
4)激光器综合控制器协同控制CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器,激发宽脉宽高能量纳秒脉冲激光。
本发明具有以下有益效果:
本发明所述的一种用于激光冲击波结合力检测的可调脉宽高能激光器高度集成了CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器四大模块,并通过综合控制器进行协同控制,控制精度高、功能模块化、***集成化;可激发宽脉宽脉冲激光,并对波形、能量进行削波和放大,最终获得宽脉宽高能量纳秒脉冲激光,可实现激光脉宽、波形、能量可调,可用于不同深度粘接复合材料和不同厚度涂层/薄膜等结构的界面结合力检测。
附图说明
图1为本发明的激光器结构组成示意图。
1为CW光纤激光器、2为EOM调制器、3为波形发生器、4为YLF+Glass固体放大器、5为综合控制器、6为NP光纤种子源。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种技术方案:
一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器,包括CW光纤激光器1、EOM调制器2、波形发生器3、YLF+Glass固体放大器4和综合控制器5,CW光纤激光器1和EOM调制器2共同组成NP光纤种子源6,综合控制器5通过控制电路分别与CW光纤激光器1、EOM调制器2、波形发生器3和YLF+Glass固体放大器4连接,具体工作原理:
1)利用CW光纤激光器1和EOM调制器2组成NP光纤种子源6,可触发低能量宽脉宽纳秒脉冲激光束;
2)利用波形发生器3对脉冲激光束进行削波处理,调整脉冲激光束的时间波形;
3)利用YLF+Glass固体放大器4对脉冲激光束进行多级能量放大,调整脉冲激光束的能量大小;
4)通过激光器综合控制器5对CW光纤激光器1、EOM调制器2、波形发生器3、YLF+Glass固体放大器4进行协同控制,实现宽脉宽高能量纳秒脉冲激光束的输出。
特点优势:通过综合控制器将CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器四大模块集成化为一种宽脉宽高能量纳秒脉冲激光器,可激发宽脉宽低能量脉冲种子光,并对波形、能量进行削波和放大,最终获得宽脉宽高能量纳秒脉冲激光束。整个激光器控制精度高、功能模块化、***集成化、通用性强,可用于不同深度粘接复合材料和不同厚度涂层/薄膜等结构的界面结合力检测。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (1)

1.一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器,包括CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器和综合控制器,其特征在于:所述CW光纤激光器和EOM调制器共同组成NP光纤种子源,所述综合控制器通过控制总线分别与CW光纤激光器、EOM调制器、波形发生器和YLF+Glass固体放大器连接,具体工作原理如下:
1)利用CW光纤激光器和EOM调制器组成NP光纤种子源,可触发低能量宽脉宽纳秒脉冲激光束;
2)利用波形发生器对脉冲激光束进行削波处理,调整脉冲激光束的时间波形;
3)利用YLF+Glass固体放大器对脉冲激光束进行多级能量放大,调整脉冲激光束的能量大小;
4)通过激光器综合控制器对CW光纤激光器、EOM调制器、波形发生器、YLF+Glass固体放大器进行协同控制,实现宽脉宽高能量纳秒脉冲激光束的输出。
CN201810997038.9A 2018-08-29 2018-08-29 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器 Pending CN108963744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810997038.9A CN108963744A (zh) 2018-08-29 2018-08-29 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810997038.9A CN108963744A (zh) 2018-08-29 2018-08-29 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器

Publications (1)

Publication Number Publication Date
CN108963744A true CN108963744A (zh) 2018-12-07

Family

ID=64474775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810997038.9A Pending CN108963744A (zh) 2018-08-29 2018-08-29 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器

Country Status (1)

Country Link
CN (1) CN108963744A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697698A (zh) * 2020-11-27 2021-04-23 中国人民解放军空军工程大学 双光束协同的激光冲击波结合力检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099360B2 (en) * 2003-02-03 2006-08-29 Intel Corporation Method and apparatus to generate and monitor optical signals and control power levels thereof in a planar lightwave circuit
CN204256167U (zh) * 2014-09-09 2015-04-08 航天恒星科技有限公司 一种基于脉宽调制技术的激光探测装置
CN206412629U (zh) * 2017-01-22 2017-08-15 昆山华辰光电科技有限公司 脉宽可调的mopa光纤激光器
CN107069411A (zh) * 2017-03-30 2017-08-18 武汉华日精密激光股份有限公司 高能量皮秒激光脉冲pod控制***及方法
CN107492781A (zh) * 2017-09-30 2017-12-19 长春理工大学 1.7μm波段宽带皮秒脉冲多波长光纤光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099360B2 (en) * 2003-02-03 2006-08-29 Intel Corporation Method and apparatus to generate and monitor optical signals and control power levels thereof in a planar lightwave circuit
CN204256167U (zh) * 2014-09-09 2015-04-08 航天恒星科技有限公司 一种基于脉宽调制技术的激光探测装置
CN206412629U (zh) * 2017-01-22 2017-08-15 昆山华辰光电科技有限公司 脉宽可调的mopa光纤激光器
CN107069411A (zh) * 2017-03-30 2017-08-18 武汉华日精密激光股份有限公司 高能量皮秒激光脉冲pod控制***及方法
CN107492781A (zh) * 2017-09-30 2017-12-19 长春理工大学 1.7μm波段宽带皮秒脉冲多波长光纤光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林宏奂等: ""用于激光聚变驱动器的全光纤、全固化光脉冲产生***"", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697698A (zh) * 2020-11-27 2021-04-23 中国人民解放军空军工程大学 双光束协同的激光冲击波结合力检测装置及方法

Similar Documents

Publication Publication Date Title
O'keefe et al. Laser‐induced deformation modes in thin metal targets
Skeen et al. LASER‐INDUCED``BLOW‐OFF''PHENOMENA
CN106893855B (zh) 一种涡轮叶片主导边双面异步激光冲击强化方法
CN108817675B (zh) 一种基于电子动态调控的飞秒激光冲击强化增强的方法
CN110205477A (zh) 采用时序双激光脉冲提升激光诱导冲击波强度的激光冲击强化方法
CN107040315A (zh) 激光水下致声器
CN108963744A (zh) 一种用于激光冲击波结合力检测的可变脉宽高能纳秒脉冲激光器
US7710007B2 (en) Conversion of ultra-intense infrared laser energy into relativistic particles
CN110854658A (zh) 高重复频率1.5um人眼安全调Q微片激光器
Smith et al. Use of the Hugoniot elastic limit in laser shockwave experiments to relate velocity measurements
Nguyen et al. Influences of focusing conditions on dynamics of laser ablation at a solid–liquid interface
Renlund et al. Laser initiation of secondary explosives
Rosencwaig et al. Photoacoustic study of laser damage in thin films
Zheng et al. Enhancement of coupling coefficient of laser plasma propulsion by water confinement
Ashkin et al. Reflection and Guiding of Light at p‐n Junctions
Baton et al. Stimulated Brillouin scattering with a 1 ps laser pulse in a preformed underdense plasma
Shigemori et al. Feed-out of rear surface perturbation due to rarefaction wave in laser-irradiated targets
CN211556411U (zh) 高重复频率1.5um人眼安全调Q微片激光器
Hall et al. Recent advances in laser–plasma experiments using foams
Gilath et al. Spallation as an effect of laser-induced shock waves
US20230405874A1 (en) Monocrystalline silicon micro-nano dual-scale anti-reflection texture and preparation method therefor
CN104330316A (zh) 基于脉冲激光产生极窄加速度激励信号的方法
EP3510677B1 (en) Measurement device
Yu et al. Model for transmission of ultrastrong laser pulses through thin foil targets
CN110057789B (zh) 一种提升激光加载冲击波速度稳定性的结构靶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207