CN108956668A - 一种基于原位sem的裂纹尖端张开角度测量方法 - Google Patents

一种基于原位sem的裂纹尖端张开角度测量方法 Download PDF

Info

Publication number
CN108956668A
CN108956668A CN201810810268.XA CN201810810268A CN108956668A CN 108956668 A CN108956668 A CN 108956668A CN 201810810268 A CN201810810268 A CN 201810810268A CN 108956668 A CN108956668 A CN 108956668A
Authority
CN
China
Prior art keywords
ctoa
crack
sample
crack tip
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810810268.XA
Other languages
English (en)
Inventor
王晓钢
姜潮
黄生航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201810810268.XA priority Critical patent/CN108956668A/zh
Publication of CN108956668A publication Critical patent/CN108956668A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种基于原位SEM的裂纹尖端张开角度测量方法,包括以下步骤:试样准备:对试样进行机加工,达到所需的几何尺寸及表面粗糙度;装夹试样,扫描电镜成像:将试样装夹于原位试验机的试样台上,直至可清晰观察到试样表面;设置试验条件开始试验:设定原位试验机的加载参数,采用拉‑拉疲劳载荷预制裂纹;断裂试验和采集图像,计算CTOA值和测量裂纹长度a:获得CTOA‑Δa的演化趋势:将计算得到的CTOA和扫描电镜测得的裂纹扩展增量Δa绘制在同一个坐标系中,得到CTOA‑Δa的趋势图。本发明实现了CTOA的非接触测量,无需对试样表面进行特殊处理,过程中无复杂的试验操作步骤,后期处理方便,精度较高。

Description

一种基于原位SEM的裂纹尖端张开角度测量方法
技术领域
本发明涉及断裂力学研究,尤其涉及一种基于原位SEM的裂纹尖端张开角度(CTOA)测量方法。
背景技术
弹塑性断裂力学及其测试方法是评估延性材料断裂特性的重要研究手段。在工程实际中,对于飞机蒙皮、石油管道等薄壁、薄板结构,其断裂失效工况接近于低约束条件。对于这类问题,测定临界裂纹尖端张开角(Crack Tip Opening Angle,CTOA)被认为是一种非常适合用于评估该类材料与构件失效条件的断裂评估准则,并得到广泛的应用。裂纹尖端张开角在裂纹稳态扩展阶段达到临界值且保持恒定,该临界值可以用于表征材料的稳定裂纹扩展韧性,即断裂韧度。断裂韧度反映材料的抗裂纹扩展能力,断裂韧度越大,韧度越高。基于CTOA的理论判据为:CTOA≤CTOAC,当CTOA达到临界起始值CTOAC时,裂纹开始稳定扩展。
目前,CTOA的试验测试方法主要有直读法、3D显微形貌法、δ 5 间接测量法。直读法记录试验过程中的裂纹稳态扩展过程的图像,试验完毕后需测定采集的图像来计算CTOA,通过裂尖和裂尖后的定位点计算裂纹尖端张开角的平均值。3D显微形貌法通过试验后的法向分离测量断裂表面的高度,进而获得两个离散定义的数学表面,两个离散表面经最小二乘拟合出平均斜率进而求得裂纹尖端张开角。δ 5 间接测量法技术通过测量Fa曲线与F-δ 5 曲线,进而得出δ 5 a曲线,CTOA近似等于δ 5 a曲线的斜率。
现有试验测试方法在实际应用中普遍存在一定不足,因此受到不同程度的制约。直读法中,光学测量需准确识别裂纹尖端点,识别精度不够容易出现数据异常离散化;3D显微形貌法是在试验后对试样的裂纹面进行测量,不能实时地观察记录加载过程中CTOA的变化规律;δ 5 间接测量法需采用标准试样,试验过程中需采用柔度法并借助COD规来测量位移增量,程序比较复杂。
原位SEM试验技术是近年来发展起来的一种新型材料力学性能测试与研究手段,该技术为从微观尺度分析与表征材料疲劳与断裂失效行为提供了强有力的研究手段,为从机理层面揭示材料的物理失效过程提供了必要的技术支撑。所谓的原位SEM试验技术,即扫描电子显微镜(SEM)可实现在原位加载条件下实时观察试样在变形过程中的表面形貌与损伤演化,而且实时记录的SEM图像可与试样的宏观应力-应变曲线在时间上建立一一对应关系,便于进行断裂力学相关分析。本发明借助于原位SEM测试技术,开发一种基于Matlab的裂纹尖端张开角的自动测量和读取方法。该方法具有非接触、多尺度、高精度、操作简单等优点,可实时获取裂纹尖端变形形貌和裂纹尖端张开角,自动化程度高,测量结果准确、可靠,在材料性能研究中具有应用潜力。
发明内容
本发明主要内容为借助于原位SEM测试技术获取试样在原位加载下的SEM图像,然后利用基于Matlab语言的“CTOA计算方法”模型计算获取图像上对应的裂纹尖端张开角度。原位加载过程中,使用扫描电镜可以测量出图像中的裂纹长度a,扫描电镜可以根据一定的加载时间或裂纹增长量Δa依次采集多组图像。最后,根据“CTOA计算方法”模型计算得到的CTOA值和由扫描电镜测量出的裂纹长度a,即可获得CTOA-Δa的演化趋势。
该方法操作简单,直观,可广泛应用于材料的CTOA测量,可以显著提高效率。同时,使研究者在原位观察材料失效过程的同时,获得可定量表征其断裂韧性的参数,拓宽了原位测试技术的应用范围。
基于原位SEM试验技术的裂纹尖端张开角度的测量方法具体包括如下步骤:
步骤(1)试样准备:对试样进行机加工,达到所需的几何尺寸及表面粗糙度。
步骤(2)装夹试样,扫描电镜成像:将试样装夹于原位试验机的试样台上,调整扫描电镜的倍率和对比度,直至可清晰观察到试样表面;
步骤(3)设置试验条件开始试验:设定原位试验机的加载参数,采用拉-拉疲劳载荷预制裂纹。
步骤(4)断裂试验和采集图像:预制裂纹完毕后,采用单向拉伸载荷进行断裂试验,与此同时,扫描电镜每隔一定的加载时间对裂纹尖端进行图像采集。
步骤(5)计算CTOA值和测量裂纹长度a:试验完毕后,用扫描电镜依次测量图像中的裂纹长度a,并将图像依次输入到“CTOA计算方法”模型中计算对应的CTOA值。
步骤(6)获得CTOA-Δa的演化趋势:将计算得到的CTOA和扫描电镜测得的裂纹扩展增量Δa绘制在同一个坐标系中,得到CTOA-Δa的趋势图。
在步骤(1)中,试样采用单边缺口拉伸试样(Single Edge Notch Tensile),即SENT试样,缺口采用中走丝线切割加工。依次使用1000#和2000#的砂纸对试样打磨,随后用直径为3μm和0.5μm的金刚石抛光液抛光,清洗,以光学显微镜(约400X)下观察不到试样表面划痕为标准。
在步骤(2)中,调整扫描电镜的视野清晰度,以1000X下能清晰观察试样表面为标准。观测区域需包含裂尖,且包含裂尖后距离裂尖不小于1.5mm的区域。
在步骤(5)中, “CTOA计算方法”模型是基于Matlab语言编写的程序代码,通过对图像中的灰度值进行分析比较,求出两条裂纹线上若干个离散点的位置,对两条裂纹线上的点分别进行最小二乘拟合,可认为两条拟合直线之间夹角的大小即为CTOA值。
本发明与现有技术相比,具有以下优点及突出性效果:
(1)提供了一种原位观察裂纹扩展行为的试验手段。本发明中涉及的原位SEM试验技术,可以在介观尺度下实时观测材料的变形行为和裂纹扩展行为。有助于研究材料的微观变形行为和断裂机理。
(2)本发明中涉及的SEM成像***,相对于光学显微镜具有更高的分辨率和清晰度。
(3)具有非接触测量的优点,无需对试样表面进行特殊处理,过程中无复杂的试验操作步骤,后期处理方便,精度较高。试验过程中,可同步进行裂纹扩展速率研究和裂纹扩展路径分析等其他研究工作。
附图说明
图1为“CTOA计算方法”的原理流程图。
图2为“CTOA计算方法”的原理示意图。
图3为实例中SENT试样尺寸示意图。
图4为实例中扫描电镜采集的其中一张图像。
图5为实例中“CTOA计算方法”的输出图。
图6为实例中“CTOA计算方法”的输出图的局部放大图。
图7为实例中通过数据处理得到的CTOA-Δa的演化趋势图。
具体实施方式
本发明基于原位SEM测试技术获取试样在原位加载下的SEM图像,然后利用基于Matlab语言的“CTOA计算方法”模型计算获取图像上对应的裂尖端张开角度。使用扫描电镜测量出图像中的裂纹扩展量Δa,再结合由“CTOA计算方法”模型计算得到的CTOA值,即可获取CTOA-Δa的演化趋势。
图1为本发明的“CTOA计算方法”原理流程图,流程图中对“CTOA计算方法”按程序处理的先后顺序进行简要概述。
图2为本发明的“CTOA计算方法”原理示意图。“CTOA计算方法”的原理:导入裂纹尖端图像;调用Matlab中的im2bw函数,以设定的阈值将图像二值化,使得图像中的像素点只有两种灰度等级,灰度值大于阈值的像素点为1,灰度值小于阈值的像素点为0;选择裂尖点A和裂尖后1.5mm处点B,在y轴方向上,A→B区域即参与计算的区域;L是以A为起点的y轴方向线段,终点位于点B对应的x轴向线上,在线段L上均布n个点l i i=1~n;以l i 为起点,沿x轴正方向对像素点进行逐个扫描,当扫描到某个像素点的灰度等级和l i 的灰度等级不同时,该像素点即存在于裂纹线上的像素点,记录此像素点;随后从l i+1 点处开始扫描,以此类推,直到i=n;同理,以l i 为起点,沿x轴负方向扫描,直到i=n;至此,记录了以裂尖为起点,每条裂纹线上的n个像素点。分别将每条裂纹线上的像素点按最小二乘法进行直线拟合,计算两条直线间的夹角,即对应的CTOA值。
为了更好地理解本发明,下面结合实例对本发明作进一步的详细说明。本发明以单边缺口拉伸试样为例,对其加载疲劳载荷以预制裂纹,随后进行拉伸断裂试验。断裂试验过程中,扫描电镜观测试样表面裂纹尖端区域并采集裂纹尖端区域的图像。然后利用基于Matlab语言的“CTOA计算方法”模型计算获取图像上对应的裂尖端张开角度,再结合扫描电镜测量出的裂纹长度a,获得CTOA-Δa的演化趋势图。具体实施方式如下:
试样准备。本例选用材料为工程中常用的316L不锈钢,该材料具有很好的强度和延展性。将316L不锈钢进行机加工,试样为长度50mm,宽度10mm,厚度1mm,缺口长度1mm的单边缺口拉伸试样,试样尺寸示意图见图3。将加工好的试样用1000#和2000#的砂纸打磨,随后将试样置于抛光机上进行抛光,依次使用直径3μm和0.5μm的金刚石抛光液,磨抛过后用超声波清洗机清洗试样,然后烘干。
装夹试样,调节扫描电镜使清晰成像。将试样装夹在原位试验机的夹头上,将试样连同夹头整体置于扫描电镜真空箱中,使得试验过程处于扫描电镜的观察视场中。调整扫描电镜的焦距、对比度、像散,直至能在1000X下清晰观察到试样表面。
设置试验条件开始试验。使用拉-拉疲劳载荷对试样进行预制裂纹,应力比R=0.1,σ max=0.6σ y (σ max为最大名义应力,σ y 为屈服强度),最终预制裂纹长度为2mm,此时,裂纹总长度为3mm。
断裂试验和图像采集。预制裂纹完毕后,对试样施加轴向拉伸载荷进行断裂试验,试验采用位移控制,应变率为10-4/s。每40s暂停试验,扫描电镜采集裂纹尖端区域的清晰图像,倍率为14X-100X,直到试样发生断裂破坏。
计算CTOA值和测量裂纹扩展量Δa。试验完毕后,用扫描电镜依次测量出图像中的裂纹扩展量Δa,将图像依次输入到“CTOA计算方法”模型中计算对应的CTOA值。本例中选取其中一张图像,见图4,将此图的处理过程予以展示。图5为“CTOA计算方法”的输出图,该图像对应的CTOA值为23.91°。图6为输出图5的局部放大图,可以看到通过程序识别的裂纹面上的若干个离散点,以及由这些离散点拟合成的直线。由此,获得每幅图像对应的裂纹扩展量Δa和裂纹尖端张开角CTOA。进而得到裂纹稳定扩展过程中裂纹扩展量Δa与相应裂纹尖端张开角CTOA的关系,而CTOA趋于稳定状态时的下限值即被认为是裂纹尖端张开角的临界值CTOAC
获取CTOA-Δa的演化趋势。将计算得到的CTOA和扫描电镜测得的裂纹扩展增量Δa绘制在同一个坐标系中,可以得到CTOA-Δa的趋势图,如图7所示。由图7可以得到临界裂纹尖端张开角CTOAC,该临界值CTOAC可作为该材料(316L不锈钢)的一种断裂韧性,用于其在低约束工况下的断裂失效评估。
本发明提供了一种原位观察裂纹扩展行为的试验手段,可以在介观尺度下实时观测材料的变形行为和裂纹扩展行为。有助于研究材料的微观变形行为和断裂机理。
本发明中通过SEM成像***采集的裂纹尖端图像,具有高的分辨率和清晰度。
本发明实现了CTOA的非接触测量,无需对试样表面进行特殊处理,过程中无复杂的试验操作步骤,后期处理方便,精度较高。试验过程中,可同步进行裂纹扩展速率研究和裂纹扩展路径分析等其他研究工作。

Claims (8)

1.一种基于原位SEM的裂纹尖端张开角度测量方法,其特征在于,包括以下步骤:
(1) 试样准备:对试样进行机加工,达到所需的几何尺寸及表面粗糙度;
(2) 装夹试样,扫描电镜成像:将试样装夹于原位试验机的试样台上,调整扫描电镜的倍率和对比度,直至可清晰观察到试样表面;
(3)设置试验条件开始试验:设定原位试验机的加载参数,采用拉-拉疲劳载荷预制裂纹;
(4)断裂试验和采集图像:预制裂纹完毕后,采用单向拉伸载荷进行断裂试验,与此同时,扫描电镜每隔一定的加载时间对裂纹尖端进行图像采集;
(5)计算CTOA值和测量裂纹长度a:试验完毕后,用扫描电镜依次测量图像中的裂纹长度a,并将图像依次输入到“CTOA计算方法”模型中计算对应的CTOA值;
(6)获得CTOA-Δa的演化趋势:将计算得到的CTOA和扫描电镜测得的裂纹扩展增量Δa绘制在同一个坐标系中,得到CTOA-Δa的趋势图。
2.如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,在步骤(1)中,将加工好的试样用1000#和2000#的砂纸打磨,随后将试样置于抛光机上进行抛光,依次使用直径3μm和0.5μm的金刚石抛光液,磨抛过后用超声波清洗机清洗试样,然后烘干。
3.如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,在步骤(2)中,将试样装夹在原位试验机的夹头上,将试样连同夹头整体置于扫描电镜真空箱中,使得试验过程处于扫描电镜的观察视场中,调整扫描电镜的焦距、对比度、像散,直至能在1000X下清晰观察到试样表面。
4. 如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,在步骤(5)中, 所述“CTOA计算方法”模型是基于Matlab语言编写的程序代码,通过对图像中的灰度值进行分析比较,求出两条裂纹线上若干个离散点的位置,对两条裂纹线上的点分别进行最小二乘拟合,两条拟合直线之间夹角的大小即为CTOA值。
5.如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,在步骤(7)中,得到裂纹稳定扩展过程中裂纹扩展量Δa与相应裂纹尖端张开角CTOA的关系。
6. 如权利要求5所述的裂纹尖端张开角度测量方法,其特征在于,在步骤(7)中, CTOA趋于稳定状态时的下限值即认为是裂纹尖端张开角的临界值CTOAC
7.如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,所述“CTOA计算方法”模型是调用Matlab中的im2bw函数。
8.如权利要求1所述的裂纹尖端张开角度测量方法,其特征在于,所述“CTOA计算方法”模型以设定的阈值将图像二值化,使得图像中的像素点只有两种灰度等级,灰度值大于阈值的像素点为1,灰度值小于阈值的像素点为0。
CN201810810268.XA 2018-07-23 2018-07-23 一种基于原位sem的裂纹尖端张开角度测量方法 Pending CN108956668A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810810268.XA CN108956668A (zh) 2018-07-23 2018-07-23 一种基于原位sem的裂纹尖端张开角度测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810810268.XA CN108956668A (zh) 2018-07-23 2018-07-23 一种基于原位sem的裂纹尖端张开角度测量方法

Publications (1)

Publication Number Publication Date
CN108956668A true CN108956668A (zh) 2018-12-07

Family

ID=64463433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810810268.XA Pending CN108956668A (zh) 2018-07-23 2018-07-23 一种基于原位sem的裂纹尖端张开角度测量方法

Country Status (1)

Country Link
CN (1) CN108956668A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781517A (zh) * 2019-01-11 2019-05-21 东南大学 一种细观尺度下沥青胶浆与集料界面断裂力学参数获取试验夹具及其试验方法
CN110376226A (zh) * 2019-07-03 2019-10-25 浙江大学 一种涡轮发动机转子裂纹扩展特征确定方法
CN110967254A (zh) * 2019-12-25 2020-04-07 哈尔滨工业大学 一种研究金属基体与陶瓷膜层界面断裂行为的sem原位拉伸测试方法
CN111597740A (zh) * 2020-04-14 2020-08-28 扬州大学 一种基于介尺度超声畸窄带的收割机健康监测方法
CN111859616A (zh) * 2020-06-12 2020-10-30 中国石油天然气集团有限公司 一种高压天然气管道断裂临界尺寸及使用寿命评估方法
CN113411515A (zh) * 2021-06-18 2021-09-17 吉林大学 基于摄像头的tip头辅助定位***及其定位和信息采集处理方法
CN114152616A (zh) * 2021-10-14 2022-03-08 盐城工学院 一种裂纹图像识别***及其使用方法
CN114441336A (zh) * 2022-01-14 2022-05-06 中国石油大学(北京) 一种金属的CTOD-Δa阻力曲线的测试方法
CN117491142A (zh) * 2024-01-02 2024-02-02 西南科技大学 快速检测花岗岩颗粒表面破碎特征的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122150A (zh) * 2014-06-30 2014-10-29 武汉钢铁(集团)公司 一种高韧性管线钢快速裂纹尖端张开角间接测量方法
CN106289975A (zh) * 2016-08-12 2017-01-04 上海电气电站设备有限公司 材料微区断裂韧性的试验方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122150A (zh) * 2014-06-30 2014-10-29 武汉钢铁(集团)公司 一种高韧性管线钢快速裂纹尖端张开角间接测量方法
CN106289975A (zh) * 2016-08-12 2017-01-04 上海电气电站设备有限公司 材料微区断裂韧性的试验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.P.LI等: "Fracture mechanisms of a Mo alloyed CoCrFeNi high entropy alloy: In-situ SEM investigation", 《MATERIALS SCIENCE & ENGINEERING A》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781517A (zh) * 2019-01-11 2019-05-21 东南大学 一种细观尺度下沥青胶浆与集料界面断裂力学参数获取试验夹具及其试验方法
CN109781517B (zh) * 2019-01-11 2021-07-20 东南大学 一种细观尺度下沥青胶浆与集料界面断裂力学参数获取试验夹具及其试验方法
CN110376226B (zh) * 2019-07-03 2021-01-08 浙江大学 一种涡轮发动机转子裂纹扩展特征确定方法
CN110376226A (zh) * 2019-07-03 2019-10-25 浙江大学 一种涡轮发动机转子裂纹扩展特征确定方法
CN110967254A (zh) * 2019-12-25 2020-04-07 哈尔滨工业大学 一种研究金属基体与陶瓷膜层界面断裂行为的sem原位拉伸测试方法
CN110967254B (zh) * 2019-12-25 2021-01-08 哈尔滨工业大学 一种研究金属基体与陶瓷膜层界面断裂行为的sem原位拉伸测试方法
CN111597740A (zh) * 2020-04-14 2020-08-28 扬州大学 一种基于介尺度超声畸窄带的收割机健康监测方法
CN111597740B (zh) * 2020-04-14 2023-04-25 扬州大学 一种基于介尺度超声畸窄带的收割机健康监测方法
CN111859616A (zh) * 2020-06-12 2020-10-30 中国石油天然气集团有限公司 一种高压天然气管道断裂临界尺寸及使用寿命评估方法
CN113411515A (zh) * 2021-06-18 2021-09-17 吉林大学 基于摄像头的tip头辅助定位***及其定位和信息采集处理方法
CN114152616A (zh) * 2021-10-14 2022-03-08 盐城工学院 一种裂纹图像识别***及其使用方法
CN114441336A (zh) * 2022-01-14 2022-05-06 中国石油大学(北京) 一种金属的CTOD-Δa阻力曲线的测试方法
CN117491142A (zh) * 2024-01-02 2024-02-02 西南科技大学 快速检测花岗岩颗粒表面破碎特征的方法
CN117491142B (zh) * 2024-01-02 2024-03-12 西南科技大学 快速检测花岗岩颗粒表面破碎特征的方法

Similar Documents

Publication Publication Date Title
CN108956668A (zh) 一种基于原位sem的裂纹尖端张开角度测量方法
CN107894433B (zh) 一种定量表征复相材料主相组织晶粒尺寸的方法
CN106289975A (zh) 材料微区断裂韧性的试验方法
CN104777046B (zh) 基于小时间尺度的疲劳裂纹扩展机理测试方法
CN107748173A (zh) 一种流体微探应变的合金显微组织全视场统计表征方法
CN108931544B (zh) 用于原位电子背散射衍射研究的样品夹持装置及测试方法
KR20180127095A (ko) 미세홈이 있는 소형시편을 이용한 크리프 균열성장 물성 측정 장치 및 방법
JP4612585B2 (ja) フェライト鋼板の変形組織の評価方法
CN114910623A (zh) 一种金属材料微观结构多维信息全域高通量表征方法
US20050066741A1 (en) Ceramic ball bearing fracture test method
JP3064107B2 (ja) オーステナイト系耐熱鋼の高温損傷評価方法
CN106525584A (zh) 一种用于透射电子显微镜下原位力学加载工具的制备方法
JPH03267736A (ja) 脆性材料の破壊力学的疲労試験方法および装置
CN209432829U (zh) 一种水泥基自修复材料修复性能的评价装置
JP2015163840A (ja) 鋼材の腐食疲労寿命の評価方法
Fan et al. Surface characteristic of corroded cold-formed thin-walled steel in industrial environments
CN107271557B (zh) 一种基于超声扫描显微镜的钢洁净度评价方法
CN116106349A (zh) 一种扫描电镜图像定量分析α+β钛合金相比例的方法
Tomlinson et al. Thermoelastic investigations for fatigue life assessment
Szymczak Investigations of material behaviour under monotonic tension using a digital image correlation system
Nahm et al. Observation on the growth behavior of small surface cracks using remote measurement system
JP2007108095A (ja) 中性子照射部材診断方法および中性子照射部材診断装置
Srinivasan et al. Plane strain compression testing of Sanicro 28 by channel-die compression test: a direct microstructural observation
JPS63228062A (ja) 金属材料の余寿命予測法
JP3064110B2 (ja) オーステナイト系耐熱鋼の高温損傷評価方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207