CN108947102B - 一种用于污水深度脱氮及毒性削减的装置及其运行方法 - Google Patents

一种用于污水深度脱氮及毒性削减的装置及其运行方法 Download PDF

Info

Publication number
CN108947102B
CN108947102B CN201810654970.1A CN201810654970A CN108947102B CN 108947102 B CN108947102 B CN 108947102B CN 201810654970 A CN201810654970 A CN 201810654970A CN 108947102 B CN108947102 B CN 108947102B
Authority
CN
China
Prior art keywords
ozone
filter
tank
denitrification
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810654970.1A
Other languages
English (en)
Other versions
CN108947102A (zh
Inventor
黄辉
高依林
任洪强
张徐祥
彭冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810654970.1A priority Critical patent/CN108947102B/zh
Priority to US16/154,966 priority patent/US20190389756A1/en
Publication of CN108947102A publication Critical patent/CN108947102A/zh
Application granted granted Critical
Publication of CN108947102B publication Critical patent/CN108947102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/238Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using vibrations, electrical or magnetic energy, radiations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • C02F2209/235O3 in the gas phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/04Surfactants, used as part of a formulation or alone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种用于污水深度脱氮及毒性削减的装置及其运行方法,所述装置包括调节池、曝气生物滤池、臭氧反应池、臭氧发生扩散装置和反硝化生物滤池。本发明先利用曝气生物滤池中的微生物降解一部分难降解有机污染物及氨氮,降低后续臭氧反应池的臭氧用量,降低成本,利用臭氧降解残留有毒难降解有机污染物,再经电解池与反硝化生物滤池耦合的反应器处理,进一步去除难降解有机污染物和硝态氮,能够达到较好的深度脱氮及毒性削减效果,具有良好的应用前景。

Description

一种用于污水深度脱氮及毒性削减的装置及其运行方法
技术领域
本发明属于污水处理技术领域,具体涉及一种用于污水深度脱氮及毒性削减的装置及运行方法。
背景技术
目前,大部分污水经过一般的二级处理之后仍还有一定量的硝态氮和难生物降解有机污染物,硝态氮进入水体之后经过一定时间的累积可能会造成水华、赤潮等现象,严重影响水体环境,导致自然水体环境恶化、鱼虾数量减少;难生物降解的有机污染物可能有很强的的生物毒性,将影响受纳水体中微生物的生存,也可能影响到水中藻类、动物的细胞结构,导致生物变异,存在着很大的环境潜在影响。因此,必须重视对污水的深度脱氮和毒性削减处理,降低污水中硝态氮、难降解有机污染物含量,尽量减小对受纳水体的水环境影响。
污水的深度脱氮技术有厌氧氨氧化法、普通的活性污泥法、生物膜法进行组合等途径;污水的毒性削减可借助电化学高级氧化、光催化氧化、吸附、离子交换等多种途径进行。在现有的污水处理技术中,污水的深度脱氮、毒性削减依赖于复杂、繁多的处理工艺才能实现目标。目前多数的解决方法通过臭氧和生物反应结合起来处理废水,如:中国专利号:201711447463.2,公开日:2018年04月13日,公开了一份名称为臭氧处理及生物滤池连用废水处理***及方法,该发明涉及一种用于深度处理废水的难降解有机物的废水处理***,包括臭氧处理装置和生物滤池,能够有限去除废水中的难降解COD,但是进入臭氧处理装置中的难降解有机污染物较多,所需臭氧量较多,而臭氧产生装置提供的含臭氧的空气气流中臭氧含量较低,所以臭氧产生装置的能耗会相应增大,且***达不到深度脱氮的要求。因此,设计更加高效、简洁、操作更方便给的污水深度脱氮、毒性削减工艺显得尤为重要。
发明内容
本发明的目的在于克服现有的污水深度脱氮及毒性削减装置处理流程复杂、操作繁琐、臭氧利用率低、处理效果不佳等缺点,提供了一种用于污水深度脱氮及毒性削减的装置及运行方法。本发明将曝气生物滤池、臭氧反应池、电解池与反硝化滤池耦合的反应池联合起来处理污水,该装置对于污水中的难生物降解有机污染物和硝态氮有较好的去除效果,具有良好的应用前景。
本发明的技术方案为:一种用于污水深度脱氮及毒性削减的装置,包括药剂槽、调节池、曝气生物滤池、臭氧反应池、臭氧发生扩散装置、反硝化生物滤池;所述药剂槽的加药管深入调节池内,调节池通过管路连接至所述曝气生物滤池的底部,所述曝气生物滤池内部从上至下依次设有集水槽、滤料层、承托层一、曝气管,所述集水槽通过管路连接至臭氧反应池,臭氧反应池的内顶部竖向设有搅拌器,所述臭氧发生扩散装置包括臭氧发生器、催化剂储液箱、气液混合泵、超声波雾化扩散器、尾气收集破坏器,所述超声波雾化扩散器安装在臭氧反应池的内底部,所述气液混合泵的出口端与超声波雾化扩散器相连,气液混合泵的进气口端与所述臭氧发生器相连,气液混合泵的进液口端与含有液相催化剂的所述催化剂储液箱相连,用于将臭氧与液相催化剂混合后输送至超声波雾化扩散器进行破碎雾化,所述尾气收集破坏器连接在臭氧反应池的上方,反硝化生物滤池包括直流电源、阳极棒列、阴极棒列、填料层、承托层二、隔板,所述隔板纵向设置在反硝化生物滤池内部,并将反硝化生物滤池划分为阳极区和阴极区,所述填料层、承托层二分别从上至下设置在所述阳极区和阴极区内部,阳极区底部通过臭氧检测控流组件与臭氧反应池相连,阴极区底部连接有排水集管,所述阳极棒列包埋于阳极区内的填料层中,所述阴极棒列包埋于阴极区内的填料层中,所述直流电源的正、负极分别通过导线与阳极棒列、阴极棒列电性连接。
进一步地,所述曝气生物滤池的底部设有反冲洗进水管一,曝气生物滤池的顶部设有与所述集水槽相连的反冲洗出水管一;所述反硝化生物滤池的阳极区和阴极区均设有反冲洗进水管二和反冲洗进水管三,阴极区的顶部设有与所述排水集管相连的反冲洗出水管二。
进一步地,所述臭氧检测控流组件包括主管道、支管道、臭氧检测仪、时间控制流量阀、三通阀,所述主管道连接在臭氧反应池与反硝化生物滤池的阳极区之间,所述臭氧检测仪安装在主管道上,所述时间控制流量阀安装在臭氧检测仪的下游段,所述三通阀安装在时间控制流量阀的下游段,所述支管道的一端与三通阀的一个端口相通,另一端连接至臭氧检测仪上游段的主管道上。
进一步地,所述液相催化剂按照重量百分比计包括:22-31%双氧水、3-5%无泡表面活性剂、2-4%水性分散剂、8-11%水溶性壳聚糖、余量为纯水,双氧水可作为氧化臭氧的催化剂,无泡表面活性剂可降低液滴的表面张力,可时催化分解后的臭氧快速作用于污水,水性分散剂用于保持液相催化剂的均匀分散性,水溶性壳聚糖用于在超声破碎时形成包裹外膜,可延长臭氧及分解后的氧气在水中的停留时间,提高臭氧的利用率。
进一步地,所述滤料层和填料层为陶粒层,粒径为5-8mm,孔隙率为50-60%,所述承托层一、承托层二为鹅卵石层。
进一步地,所述臭氧检测仪的臭氧浓度检测最大阈值为0.30mg/L。
进一步地,所述调节池与曝气生物滤池之间、曝气生物滤池与臭氧反应池之间,及反冲洗进水管一、反冲洗进水管二和反冲洗进水管三上均设有水泵。
利用上述装置进行污水脱氮处理的方法,包括以下几个步骤:
S1:将污水引入所述调节池,打开所述药剂槽的阀门,加入NaOH溶液或稀盐酸,调pH至6.5-7.5,使污水满足曝气生物滤池中微生物的生长条件;
S2:污水经水泵提升进入曝气生物滤池,曝气生物滤池连续运行,水力停留时间为1-4h,好氧微生物去除一部分有机污染物和氨氮,减轻了后续臭氧反应池的处理负荷,也在一定程度上减少了后续臭氧的用量;
S3:曝气生物滤池的出水经水泵提升进入臭氧反应池,同时,臭氧发生器利用氧气或空气放电制备臭氧,与催化剂储液箱中的液相催化剂以气液体积比为10-30:1经所述气液混合泵混合均匀后,提升至所述超声波雾化扩散器,经超声波雾化扩散器超声破碎为包裹臭氧的微气泡,并扩散至臭氧反应池内的污水中,所述臭氧在污水中的含量为1-5mg/L,在所述搅拌器的搅拌下,水力停留时间为4-8h,通过臭氧对废水中剩余的有毒难降解有机污染物进行进一步的降解,提高废水的可生化性;
S4:通过臭氧检测仪对所述主管道内流出的污水进行检测,当剩余臭氧浓度超过0.30mg/L时,三通阀转向接通支管道到主管道的回路,并且控制时间控制流量阀延长废水在管中的停留时间,直至回流的污水中剩余臭氧浓度低于0.30mg/L时,三通阀转向连接主管道与反硝化生物滤池,使臭氧自发分解为氧气而含量降低,使废水中残余的臭氧不影响反硝化生物滤池中微生物的生存;
S5:臭氧反应池的出水由反硝化生物滤池下部进入阳极区,停留时间为15-20min,污水中剩余氨氮在硝化细菌和亚硝化细菌的作用下转化为硝酸盐氮,同时填料和微生物起到吸附降解有机物作用,之后从所述隔板溢流至阴极区,水力停留时间为15-30min,阴极棒列接收直流电源传递的电子,将电子传递到填料层中的微生物,微生物将硝态氮还原,进行反硝化深度脱氮;
S6:定期对曝气生物滤池和反硝化生物滤池进行反冲洗处理。
本发明的有益效果为:
(1)本发明的一种用于污水深度脱氮及毒性削减的装置主要包括曝气生物滤池、臭氧反应池和电解池与反硝化生物滤池耦合的反应池,利用各种工艺,能够达到深度脱氮及毒性削减的目的;
(2)本发明的一种用于污水深度脱氮及毒性削减的装置,曝气生物滤池对有机物和氨氮有较好的去除效果,减小了后续臭氧反应池的有机负荷,使所需臭氧量相对减少,降低成本,反硝化生物滤池的阳极区对废水中的有机物进一步去除,阴极区对废水中的硝态氮进一步去除,具有良好的应用前景;
(3)本发明设置的臭氧发生扩散装置利用臭氧与液相催化剂混合后,再经超声波雾化扩散器破碎,将包裹有臭氧及其催化剂的微气泡均匀分散到污水中,可大大提高臭氧的利用率。
附图说明
图1是本发明的整体结构示意图。
其中,1-药剂槽、2-调节池、3-曝气生物滤池、4-臭氧反应池、5-臭氧发生扩散装置、6-反硝化生物滤池、7-集水槽、8-滤料层、9-承托层一、10-曝气管、11-搅拌器、12-臭氧发生器、13-催化剂储液箱、14-气液混合泵、15-超声波雾化扩散器、16-尾气收集破坏器、17-直流电源、18-阳极棒列、19-阴极棒列、20-填料层、21-承托层二、22-隔板、23-臭氧检测控流组件、24-排水集管、25-反冲洗进水管一、26-反冲洗出水管一、27-反冲洗进水管二、28-反冲洗进水管三、29-反冲洗出水管二、30-主管道、31-支管道、32-臭氧检测仪、33-时间控制流量阀、34-三通阀、35-水泵。
具体实施方式
为进一步了解本发明的内容,下面结合附图与具体实施例对本发明作进一步的描述。
实施例1
如图1所示,一种用于污水深度脱氮及毒性削减的装置,包括药剂槽1、调节池2、曝气生物滤池3、臭氧反应池4、臭氧发生扩散装置5、反硝化生物滤池6;药剂槽1的加药管深入调节池2内,调节池2通过管路连接至曝气生物滤池3的底部,之间设有水泵35;曝气生物滤池3内部从上至下依次设有集水槽7、滤料层8、承托层一9、曝气管10,其中,滤料层8为陶粒层,厚度为20cm,粒径为5mm,空隙率大于50%,承托层一9为鹅卵石层,厚度为10cm,汽气水比为6,持续曝气使滤池中的溶解氧为3mg/L。其中,曝气生物滤池3的底部设有反冲洗进水管一25,反冲洗进水管一25上设有水泵35。曝气生物滤池3的顶部设有与集水槽7相连的反冲洗出水管一26;集水槽7通过管路连接至臭氧反应池4,之间设有水泵35,臭氧反应池4的内顶部竖向设有搅拌器11,臭氧发生扩散装置5包括臭氧发生器12、催化剂储液箱13、气液混合泵14、超声波雾化扩散器15、尾气收集破坏器16,超声波雾化扩散器15安装在臭氧反应池4的内底部,气液混合泵14的出口端与超声波雾化扩散器15相连,气液混合泵14的进气口端与臭氧发生器12相连,气液混合泵14的进液口端与含有液相催化剂的催化剂储液箱13相连,用于将臭氧与液相催化剂混合后输送至超声波雾化扩散器进行破碎雾化,其中,液相催化剂按照重量百分比计包括:22%双氧水、3%无泡表面活性剂、2%水性分散剂、8%水溶性壳聚糖、余量为纯水,双氧水可作为氧化臭氧的催化剂,无泡表面活性剂可降低液滴的表面张力,可时催化分解后的臭氧快速作用于污水,水性分散剂用于保持液相催化剂的均匀分散性,水溶性壳聚糖用于在超声破碎时形成包裹外膜,可延长臭氧及分解后的氧气在水中的停留时间,提高臭氧的利用率。尾气收集破坏器16连接在臭氧反应池4的上方。
如图1所示,反硝化生物滤池6包括直流电源17、阳极棒列18、阴极棒列19、填料层20、承托层二21、隔板22,填料层20为陶粒层,粒径为5mm,孔隙率为50%,承托层二21为鹅卵石层,厚度为10cm。隔板22纵向设置在反硝化生物滤池6内部,并将反硝化生物滤池6划分为阳极区和阴极区,其中,反硝化生物滤池6的阳极区和阴极区均设有反冲洗进水管二27和反冲洗进水管三28,阴极区的顶部设有与排水集管24相连的反冲洗出水管二29。反冲洗进水管二27和反冲洗进水管三28上均设有水泵35。填料层20、承托层二21分别从上至下设置在阳极区和阴极区内部,阳极区底部通过臭氧检测控流组件23与臭氧反应池4相连。如图1所示,臭氧检测控流组件23包括主管道30、支管道31、臭氧检测仪32、时间控制流量阀33、三通阀34,主管道30连接在臭氧反应池4与反硝化生物滤池6的阳极区之间,臭氧检测仪32安装在主管道30上,臭氧检测仪32的臭氧浓度检测最大阈值为0.30mg/L。时间控制流量阀33安装在臭氧检测仪32的下游段,三通阀34安装在时间控制流量阀33的下游段,支管道31的一端与三通阀34的一个端口相通,另一端连接至臭氧检测仪32上游段的主管道30上。阴极区底部连接有排水集管24,阳极棒列18包埋于阳极区内的填料层20中,阴极棒列19包埋于阴极区内的填料层20中,直流电源17的正负极分别通过导线与阳极棒列18、阴极棒列19电性连接。
利用本实施例的装置对丙烯腈废水生化尾水进行深度脱氮及毒性削减处理的方法,包括以下几个步骤:
S1:将污水引入调节池2,打开药剂槽1的阀门,加入NaOH溶液,调pH至7.0,使污水满足曝气生物滤池3中微生物的生长条件;
S2:污水经水泵35提升进入曝气生物滤池3,曝气生物滤池3连续运行,水力停留时间为1h,好氧微生物去除一部分有机污染物和氨氮,减轻了后续臭氧反应池4的处理负荷,也在一定程度上减少了后续臭氧的用量;
S3:曝气生物滤池3的出水经水泵35提升进入臭氧反应池4,同时,臭氧发生器12利用氧气或空气放电制备臭氧,与催化剂储液箱13中的液相催化剂以气液体积比为10:1经气液混合泵14混合均匀后,提升至超声波雾化扩散器15,经超声波雾化扩散器15超声破碎为包裹臭氧的微气泡,并扩散至臭氧反应池4内的污水中,臭氧在污水中的含量为1.5mg/L,在搅拌器11的搅拌下,水力停留时间为4h,通过臭氧对废水中剩余的有毒难降解有机污染物进行进一步的降解,提高废水的可生化性;
S4:通过臭氧检测仪32对主管道30内流出的污水进行检测,当剩余臭氧浓度超过0.30mg/L时,三通阀34转向接通支管道31到主管道30的回路,并且控制时间控制流量阀33延长废水在管中的停留时间,直至回流的污水中剩余臭氧浓度低于0.30mg/L时,三通阀34转向连接主管道30与反硝化生物滤池6,使臭氧自发分解为氧气而含量降低,使废水中残余的臭氧不影响反硝化生物滤池6中微生物的生存;
S5:臭氧反应池4的出水由反硝化生物滤池6下部进入阳极区,停留时间为15min,污水中剩余氨氮在硝化细菌和亚硝化细菌的作用下转化为硝酸盐氮,同时填料和微生物起到吸附降解有机物作用,之后从隔板22溢流至阴极区,水力停留时间为15min,阴极棒列19接收直流电源17传递的电子,将电子传递到填料层20中的微生物,微生物将硝态氮还原,进行反硝化深度脱氮;
S6:滤料表面附着的生物量从最初开始进水到第7天时,随装置运行时间的增加,观察到生物膜出现;在第8天时,滤料表面附着的生物量仍继续增加;到第13天时,滤料表面附着的生物量趋于稳定,表明此时滤料间隙的微生物量已达到容纳量。反硝化生物滤池中微生物逐渐增长,阴极有气泡产生。定期对曝气生物滤池3和反硝化生物滤池6进行反冲洗处理,去除积累的生物膜,防止滤料层堵塞。
水力负荷1m3/m2·h,使用该装置和方法处理污水的水质常规指标:
进水COD为100-130mg/L,TN为40-45mg/L,氨氮含量为25-30mg/L,NO3-N为18-22mg/L;
出水COD为20-30mg/L,TN为2.5-4.5mg/L,NO3-N为1.0-2.0mg/L。
本实施对废水还进行生物毒性检测,先对废水进行SPE提取和富集目标污染物,生物毒性测定方法为发光菌毒性法,发光菌抑制率由18.8%±6.5%降低到2.1%±8.5%;对废水中的丙烯腈进行检测,-Ln(C/C0)最终可达0.90-0.95。
实施例2
本实施例对含四环素的抗生素废水进行深度脱氮及毒性削减处理。其基本操作同实施例1,现将不同之处简述如下:
(1)其中,滤料层8为陶粒层,厚度为20cm,粒径为5mm,空隙率大于50%,承托层一9为鹅卵石层,厚度为10cm,气水比为15,持续曝气使滤池中的溶解氧为5mg/L。
(2)填料层20为陶粒层,粒径为8mm,孔隙率为50%,承托层二21为鹅卵石层,厚度为10cm。
(3)液相催化剂按照重量百分比计包括:25.7%双氧水、4.1%无泡表面活性剂、3.5%水性分散剂、9.8%水溶性壳聚糖、余量为纯水,双氧水可作为氧化臭氧的催化剂,无泡表面活性剂可降低液滴的表面张力,可时催化分解后的臭氧快速作用于污水,水性分散剂用于保持液相催化剂的均匀分散性,水溶性壳聚糖用于在超声破碎时形成包裹外膜,可延长臭氧及分解后的氧气在水中的停留时间,提高臭氧的利用率。
利用本实施例的装置对含四环素的抗生素废水进行深度脱氮及毒性削减处理的方法,包括以下几个步骤:
S1:将污水引入调节池2,打开药剂槽1的阀门,加入稀盐酸,调pH至7.2,使污水满足曝气生物滤池3中微生物的生长条件;
S2:污水经水泵35提升进入曝气生物滤池3,曝气生物滤池3连续运行,水力停留时间为4h,好氧微生物去除一部分有机污染物和氨氮,减轻了后续臭氧反应池4的处理负荷,也在一定程度上减少了后续臭氧的用量;
S3:曝气生物滤池3的出水经水泵35提升进入臭氧反应池4,同时,臭氧发生器12利用氧气或空气放电制备臭氧,与催化剂储液箱13中的液相催化剂以气液体积比为30:1经气液混合泵14混合均匀后,提升至超声波雾化扩散器15,经超声波雾化扩散器15超声破碎为包裹臭氧的微气泡,并扩散至臭氧反应池4内的污水中,臭氧在污水中的含量为5mg/L,在搅拌器11的搅拌下,水力停留时间为8h,通过臭氧对废水中剩余的有毒难降解有机污染物进行进一步的降解,提高废水的可生化性;
S4:通过臭氧检测仪32对主管道30内流出的污水进行检测,当剩余臭氧浓度超过0.30mg/L时,三通阀34转向接通支管道31到主管道30的回路,并且控制时间控制流量阀33延长废水在管中的停留时间,直至回流的污水中剩余臭氧浓度低于0.30mg/L时,三通阀34转向连接主管道30与反硝化生物滤池6,使臭氧自发分解为氧气而含量降低,使废水中残余的臭氧不影响反硝化生物滤池6中微生物的生存;
S5:臭氧反应池4的出水由反硝化生物滤池6下部进入阳极区,停留时间为20min,污水中剩余氨氮在硝化细菌和亚硝化细菌的作用下转化为硝酸盐氮,同时填料和微生物起到吸附降解有机物作用,之后从隔板22溢流至阴极区,水力停留时间为30min,阴极棒列19接收直流电源17传递的电子,将电子传递到填料层20中的微生物,微生物将硝态氮还原,进行反硝化深度脱氮;
S6:滤料表面附着的生物量从最初开始进水到第7天时,随装置运行时间的增加,观察到生物膜出现;在第12天时,滤料表面附着的生物量仍继续增加;到第18天时,滤料表面附着的生物量趋于稳定,表明此时滤料间隙的微生物量已达到容纳量。反硝化生物滤池中微生物逐渐增长,阴极有气泡产生。定期对曝气生物滤池3和反硝化生物滤池6进行反冲洗处理,去除积累的生物膜,防止滤料层堵塞。
水力负荷1m3/m2·h,使用该装置和方法处理污水的水质常规指标:
进水COD为130-140mg/L,TN为45-50mg/L,NO3 --N为19-22mg/L;
出水COD为25-30mg/L,TN为2.8-4.5mg/L,NO3 --N为1.0-1.5mg/L。
本实施例对废水还进行生物毒性的检测,先对废水进行SPE提取和富集目标污染物,生物毒性测定方法为发光菌毒性,发光菌抑制率由20.8±6.5降低到1.9±7.5;对废水中的四环素进行检测,-Ln(C/C0)最终可达0.90-0.95。
值得说明的是,对于本领域技术人员来说,在本发明构思及具体实施例启示下,能够从本发明公开内容及常识直接导出或联想到的一些变形,本领域普通技术人员将意识到也可采用其他方法,或现有技术中常用公知技术的替代,以及特征间的相互不同组合等等的非实质性改动,同样可以被应用,都能实现本发明描述的功能和效果,不再一一举例展开细说,均属于本发明保护范围。

Claims (2)

1.一种用于污水深度脱氮及毒性削减的装置,其特征在于,包括药剂槽(1)、调节池(2)、曝气生物滤池(3)、臭氧反应池(4)、臭氧发生扩散装置(5)和反硝化生物滤池(6);所述药剂槽(1)的加药管深入调节池(2)内,调节池(2)通过管路连接至所述曝气生物滤池(3)的底部,所述曝气生物滤池(3)内部从上至下依次设有集水槽(7)、滤料层(8)、承托层一(9)、曝气管(10),所述集水槽(7)通过管路连接至臭氧反应池(4),臭氧反应池(4)的内顶部竖向设有搅拌器(11),所述臭氧发生扩散装置(5)包括臭氧发生器(12)、催化剂储液箱(13)、气液混合泵(14)、超声波雾化扩散器(15)、尾气收集破坏器(16),所述超声波雾化扩散器(15)安装在臭氧反应池(4)的内底部,所述气液混合泵(14)的出口端与超声波雾化扩散器(15)相连,气液混合泵(14)的进气口端与所述臭氧发生器(12)相连,气液混合泵(14)的进液口端与含有液相催化剂的所述催化剂储液箱(13)相连,用于将臭氧与液相催化剂混合后输送至超声波雾化扩散器进行破碎雾化,所述尾气收集破坏器(16)连接在臭氧反应池(4)的上方,反硝化生物滤池(6)包括直流电源(17)、阳极棒列(18)、阴极棒列(19)、填料层(20)、承托层二(21)、隔板(22),所述隔板(22)纵向设置在反硝化生物滤池(6)内部,并将反硝化生物滤池(6)划分为阳极区和阴极区,所述填料层(20)、承托层二(21)分别从上至下设置在所述阳极区和阴极区内部,阳极区底部通过臭氧检测控流组件(23)与臭氧反应池(4)相连,阴极区底部连接有排水集管(24),所述阳极棒列(18)包埋于阳极区内的填料层(20)中,所述阴极棒列(19)包埋于阴极区内的填料层(20)中,所述直流电源(17)的正、负极分别通过导线与阳极棒列(18)、阴极棒列(19)电性连接;
所述曝气生物滤池(3)的底部设有反冲洗进水管一(25),曝气生物滤池(3)的顶部设有与所述集水槽(7)相连的反冲洗出水管一(26);所述反硝化生物滤池(6)的阳极区和阴极区均设有反冲洗进水管二(27)和反冲洗进水管三(28),阴极区的顶部设有与所述排水集管(24)相连的反冲洗出水管二(29);
所述臭氧检测控流组件(23)包括主管道(30)、支管道(31)、臭氧检测仪(32)、时间控制流量阀(33)、三通阀(34),所述主管道(30)连接在臭氧反应池(4)与反硝化生物滤池(6)的阳极区之间,所述臭氧检测仪(32)安装在主管道(30)上,所述时间控制流量阀(33)安装在臭氧检测仪(32)的下游段,所述三通阀(34)安装在时间控制流量阀(33)的下游段,所述支管道(31)的一端与三通阀(34)的一个端口相通,另一端连接至臭氧检测仪(32)上游段的主管道(30)上;
所述滤料层(8)和填料层(20)为陶粒层,粒径为5-8 mm,孔隙率为50-60%,所述承托层一(9)、承托层二(21)为鹅卵石层;
所述臭氧检测仪(32)的臭氧浓度检测最大阈值为0.30 mg/L;
所述调节池(2)与曝气生物滤池(3)之间、曝气生物滤池(3)与臭氧反应池(4)之间,及反冲洗进水管一(25)、反冲洗进水管二(27)和反冲洗进水管三(28)上均设有水泵(35)。
2.利用权利要求1所述的装置进行污水脱氮处理的方法,其特征在于,包括以下几个步骤:
S1:将污水引入所述调节池(2),打开所述药剂槽(1)的阀门,加入NaOH溶液或稀盐酸,调pH至6.5-7.5,使污水满足曝气生物滤池(3)中微生物的生长条件;
S2:污水经水泵(35)提升进入曝气生物滤池(3),曝气生物滤池(3)连续运行,水力停留时间为1-4 h,好氧微生物去除一部分有机污染物和氨氮,减轻了后续臭氧反应池(4)的处理负荷,也在一定程度上减少了后续臭氧的用量;
S3:曝气生物滤池(3)的出水经水泵(35)提升进入臭氧反应池(4),同时,臭氧发生器(12)利用氧气或空气放电制备臭氧,与催化剂储液箱(13)中的液相催化剂以气液体积比为10-30:1经所述气液混合泵(14)混合均匀后,提升至所述超声波雾化扩散器(15),经超声波雾化扩散器(15)超声破碎为包裹臭氧的微气泡,并扩散至臭氧反应池(4)内的污水中,所述臭氧在污水中的含量为1-5 mg/L,在所述搅拌器(11)的搅拌下,水力停留时间为4-8 h,通过臭氧对废水中剩余的有毒难降解有机污染物进行进一步的降解,提高废水的可生化性;
S4:通过臭氧检测仪(32)对所述主管道(30)内流出的污水进行检测,当剩余臭氧浓度超过0.30 mg/L时,三通阀(34)转向接通支管道(31)到主管道(30)的回路,并且控制时间控制流量阀(33)延长废水在管中的停留时间,直至回流的污水中剩余臭氧浓度低于0.30 mg/L时,三通阀(34)转向连接主管道(30)与反硝化生物滤池(6),使臭氧自发分解为氧气而含量降低,使废水中残余的臭氧不影响反硝化生物滤池(6)中微生物的生存;
S5:臭氧反应池(4)的出水由反硝化生物滤池(6)下部进入阳极区,停留时间为15-20min,污水中剩余氨氮在硝化细菌和亚硝化细菌的作用下转化为硝酸盐氮,同时填料和微生物起到吸附降解有机物作用,之后从所述隔板(22)溢流至阴极区,水力停留时间为15-30min,阴极棒列(19)接收直流电源(17)传递的电子,将电子传递到填料层(20)中的微生物,微生物将硝态氮还原,进行反硝化深度脱氮;
S6:定期对曝气生物滤池(3)和反硝化生物滤池(6)进行反冲洗处理。
CN201810654970.1A 2018-06-22 2018-06-22 一种用于污水深度脱氮及毒性削减的装置及其运行方法 Active CN108947102B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810654970.1A CN108947102B (zh) 2018-06-22 2018-06-22 一种用于污水深度脱氮及毒性削减的装置及其运行方法
US16/154,966 US20190389756A1 (en) 2018-06-22 2018-10-09 Apparatus and operating method for deep denitrification and toxicity reduction of wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810654970.1A CN108947102B (zh) 2018-06-22 2018-06-22 一种用于污水深度脱氮及毒性削减的装置及其运行方法

Publications (2)

Publication Number Publication Date
CN108947102A CN108947102A (zh) 2018-12-07
CN108947102B true CN108947102B (zh) 2021-02-23

Family

ID=64486418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810654970.1A Active CN108947102B (zh) 2018-06-22 2018-06-22 一种用于污水深度脱氮及毒性削减的装置及其运行方法

Country Status (2)

Country Link
US (1) US20190389756A1 (zh)
CN (1) CN108947102B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352271B2 (en) * 2019-06-26 2022-06-07 Central South University Method and device for sewage treatment
CN111003817A (zh) * 2019-12-31 2020-04-14 武汉益锦祥生物环保有限公司 一种生化池药剂或营养盐匀速投加***
CN113511719B (zh) * 2020-04-10 2023-01-03 中国石油化工股份有限公司 电催化内循环曝气生物滤池和废水的曝气方法
CN113511720A (zh) * 2020-04-10 2021-10-19 中国石油化工股份有限公司 电催化曝气生物滤池和废水的曝气方法
CN111453934A (zh) * 2020-05-07 2020-07-28 中韩杜科泵业(浙江)有限公司 一种智能型医疗废水处理设备
JP6836297B1 (ja) * 2020-06-09 2021-02-24 株式会社エム・イー・エス 感染性排水の処理システム
CN111675432B (zh) * 2020-06-16 2021-09-28 河海大学 一种流动式底泥基生物炭电化学反硝化滤装置
CN112079537B (zh) * 2020-09-27 2022-09-09 国源新材料(广州)有限公司 植绒废水短流程处理工艺
CN112408576B (zh) * 2020-11-03 2024-06-18 浙江浙能技术研究院有限公司 一种臭氧异相催化氧化综合试验平台及试验方法
CN112520940A (zh) * 2020-11-19 2021-03-19 南京谱华科技有限公司 一种光催化生物反应***
CN112679033A (zh) * 2020-11-19 2021-04-20 濮阳泓天威药业有限公司 一种新型污水氨氮去除反应器
CN114684925B (zh) * 2020-12-30 2023-03-24 中国石油化工股份有限公司 一种含氨废水短程硝化处理方法
CN112919738A (zh) * 2021-01-28 2021-06-08 安徽拓水环境工程科技有限公司 一种装配式深床滤池***及其工作方法
CN113754044B (zh) * 2021-09-13 2022-09-16 清华大学 提高制膜废水氨化率的装置、方法及应用
CN113716769A (zh) * 2021-09-15 2021-11-30 清华大学 用于处理含偏二甲肼的废水的设备
CN113735387B (zh) * 2021-09-28 2022-11-25 河南力诚环保科技有限公司 一种结构优化的垃圾渗滤液处理***
CN114477643A (zh) * 2022-02-14 2022-05-13 常州大学 一种新型顺酐废水深度处理***及其工艺
CN114873861B (zh) * 2022-05-30 2022-12-16 北京京西燃气热电有限公司 一种降低循环排污水中总氮及cod的方法
CN115611458A (zh) * 2022-10-13 2023-01-17 贵州中车绿色环保有限公司 一种酒厂废水处理方法
CN116693051B (zh) * 2023-05-11 2024-01-23 江苏南大华兴环保科技股份公司 一种化工园区废水安全排放治理***及方法
CN116903149A (zh) * 2023-06-09 2023-10-20 德威华泰科技股份有限公司 用生化及臭氧氧化耦合反应器装置来处理生化尾水的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755296A (en) * 1985-03-21 1988-07-05 Occidental Chemical Corporation Integrated biological-adsorption process for treating waste water
FR2671548B1 (fr) * 1991-01-16 1995-03-24 Omnium Traitement Valorisa Procede et dispositif d'oxydation des micropolluants organiques dans les eaux par le couple 03/h2o2.
US5445740A (en) * 1994-01-13 1995-08-29 Malone; Ronald F. Floating media biofilter
US5803982A (en) * 1996-10-15 1998-09-08 Ez Environmental Solutions Corporation Pressure washing apparatus with ozone generator
JP4947679B2 (ja) * 2002-07-22 2012-06-06 康介 千葉 Co2削減ラインアトマイジング排水処理法
US8962165B2 (en) * 2006-05-02 2015-02-24 The Penn State Research Foundation Materials and configurations for scalable microbial fuel cells
PL1910234T3 (pl) * 2005-07-25 2013-03-29 Zenon Tech Partnership Sposób oczyszczania wody pozostałej po odmulaniu instalacji FGD
US7585132B2 (en) * 2006-06-27 2009-09-08 James Imbrie Method for remediating a contaminated site
KR100839891B1 (ko) * 2007-07-03 2008-06-26 (주)범한엔지니어링 종합건축사 사무소 질산성 질소가 포함된 강변 여과수의 처리장치
US9045354B2 (en) * 2010-09-21 2015-06-02 Advanced Environmental Technologies, Llc Methods for enhanced oxidative and reductive remediation
CN102936083B (zh) * 2012-11-14 2014-08-20 北京赛科康仑环保科技有限公司 一种同时脱除废水中难降解有机物和总氮的装置及方法
US9896363B2 (en) * 2015-04-06 2018-02-20 Headworks Bio Inc. Moving bed biofilm reactor for waste water treatment system
CN105174621A (zh) * 2015-09-16 2015-12-23 杭州鼎隆环保科技有限公司 运用活性污泥处理废水的***及其方法
CN105668929B (zh) * 2016-03-04 2019-03-01 苏州苏沃特环境科技有限公司 一种印染废水处理及回用的技术***
CN106986440B (zh) * 2017-03-13 2020-07-17 西安建筑科技大学 一种地下水硝酸盐去除方法及反硝化反应器
CN207468401U (zh) * 2017-08-30 2018-06-08 安徽华骐环保科技股份有限公司 一种提标至优于地表ⅳ类水质的工业废水处理装置
CN107698094A (zh) * 2017-09-27 2018-02-16 中节能工程技术研究院有限公司 一种复合催化氧化耦合生物滤池废水处理集成装置及方法
CN107902851A (zh) * 2017-12-27 2018-04-13 苏伊士水务工程有限责任公司 臭氧处理及生物滤池联用废水处理***及方法

Also Published As

Publication number Publication date
CN108947102A (zh) 2018-12-07
US20190389756A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
CN108947102B (zh) 一种用于污水深度脱氮及毒性削减的装置及其运行方法
CN103112991B (zh) 焦化废水处理***及焦化废水处理方法
CN107777830B (zh) 一种高浓度难降解制药废水处理方法及***
WO2016117210A1 (ja) 窒素含有廃水の脱窒方法及び脱窒装置
US8465646B2 (en) Method and apparatus for treating nitrate waste liquid
CN104649524A (zh) 一种畜禽养殖污水处理方法
CN100528776C (zh) 用于畜禽类粪便污水处理的方法
CN105776766A (zh) 工业园区难生化降解废水的深度处理***
CN111646652A (zh) 一种用于低碳氮比污水的高效生物脱氮装置
CN103613196B (zh) 一种一体化生物脱氮装置及其处理废水的方法
CN110386731B (zh) 一种基于mbbr的主流自养脱氮***及方法
CN101676230A (zh) 催化铁内电解与悬浮填料生物膜一体化处理工业废水方法
CN111039521A (zh) 一种污水处理再生回用***及用其进行污水处理的方法
CN114315012A (zh) 一种应用于景区的粪污废水处理***及方法
CN104098221B (zh) 一种己内酰胺污水的处理方法
CN112299653A (zh) 餐厨废水的高效脱氮处理方法
CN204529596U (zh) 一种三维电催化耦合厌氧处理装置
CN102205996A (zh) 一种分室电解废水装置及其应用
CN111115822B (zh) 基于mbbr的pn/a一体化自养脱氮***及快速启动方法
CN115477439A (zh) 集成式一体化mbr污水处理设备
CN114573106A (zh) 一种升流式电辅助厌氧-好氧耦合生物膜反应器
CN211644776U (zh) 基于mbbr的pn/a一体化自养脱氮***
CN101549909A (zh) 垃圾渗滤液生物脱氮装置
CN217868539U (zh) 一种便于移动的污水处理设备
CN216639207U (zh) 一种含杂环化合物农药废水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant