CN108921141B - 一种基于深度自编码神经网络的脑电信号eeg特征提取方法 - Google Patents

一种基于深度自编码神经网络的脑电信号eeg特征提取方法 Download PDF

Info

Publication number
CN108921141B
CN108921141B CN201810936468.XA CN201810936468A CN108921141B CN 108921141 B CN108921141 B CN 108921141B CN 201810936468 A CN201810936468 A CN 201810936468A CN 108921141 B CN108921141 B CN 108921141B
Authority
CN
China
Prior art keywords
neural network
electroencephalogram
coding
layer
coding neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810936468.XA
Other languages
English (en)
Other versions
CN108921141A (zh
Inventor
陈禧琛
苏成悦
程俊淇
陈子森
杨东儒
魏溪卓
姚沛通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810936468.XA priority Critical patent/CN108921141B/zh
Publication of CN108921141A publication Critical patent/CN108921141A/zh
Application granted granted Critical
Publication of CN108921141B publication Critical patent/CN108921141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种基于深度自编码神经网络的脑电信号EEG特征提取方法,包括下述步骤:S1,设计颜色识别的脑电数据采集实验方案;设计一个周期有三张测试图片和三张全黑色的过渡图片,测试图片用时t1,过渡图片用时t2,每个周期中的测试图片分别为红、绿、蓝三原色,且红、绿、蓝三原色出现的顺序随机;本发明的自编码神经网络不要求信号是否具有平稳随机的条件,在自编码神经网络通过多次迭代训练,它能习得隐含在信号中的特征,并能在多次压缩和解压缩后还原出于原信号大致一致的EEG信号;避免了使用AR模型提取脑电信号特征中的阶数确定问题,而且使用深度自编码神经网络所提取的特征在颜色识别方面取得满意的结果。

Description

一种基于深度自编码神经网络的脑电信号EEG特征提取方法
技术领域
本发明涉及脑电特征提取和脑电颜色认知技术领域,具体涉及一种基于深度自编码神经网络的脑电信号EEG特征提取方法。
背景技术
脑电领域的相关研究可以追溯到20世纪末,Poulos M(1999)使用FFT提取脑电信号特征,并用LVQ神经网络进行身份识别分类;Poulos M(2002)使用线性AR模型提取脑电信号特征;Mohammadi G(2006)使用线性AR模型提取脑电信号特征,利用竞争神经网络进行分类;Palaniappan R(2007)使用脑电信号的功率作为特征;HTouyama(2009)使用PCA对脑电信号进行降维处理,使用降维后的脑电数据作为特征;Tangkraingkij P(2009)使用ICA提取脑电信号特征;La Rocca D(2012)使用AR模型提取脑电信号的特征;Liew S(2015)计算脑电信号的相干性、互相关、振幅均值作为特征;Mu Z(2016)使用模糊熵提取脑电信号的特征;上述的特征提取方法大多都是基于信息处理领域的信号处理算法,例如提取脑电信号中的AR参数、Fz-AR参数、功率谱(PSD)和模糊熵等,而这些特征提取算法往往需要脑电信号是一个平稳随机信号,而在实际中的脑电信号是非平稳随机信号;同时,在一些特征提取算法中存在模型定阶等问题,例如AR模型等,阶数的确定会影响特征提取的效果,而且阶数的确定大多数是基于人为确定。因此使用传统的特征提取算法来提取EEG的特征具有一定的缺陷。
通常采集到的EEG数据是一个多维时间序列集,即由各个头皮电极上的时间序列构成的数据集,因此EEG是一个高维度的数据集,而在选择哪些头皮电极数据来进行研究的问题中,在以往EEG论文的做法中有:(1)将每个头皮电极当做是独立的,对每个头皮电极的数据进行特征提取,最后再对每个头皮电极的实验结果进行平均,但是,这种做法忽略了每个头皮电极之间可能存在互相影响的关系;(2)按照经验或者穷举法来选择组合多个头皮电极,这种做法弥补了方法(1)的缺陷,但是,在实际应用过程中,这种做法所需要的时间远远小于(1),而且凭借经验选择的电极组合,缺乏一定的客观性和科学性。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于深度自编码神经网络的脑电信号EEG特征提取方法,该方法避免了使用AR模型提取脑电信号特征中的阶数确定问题,而且使用深度自编码神经网络所提取的特征在颜色识别方面取得满意的结果,解决了在考虑每个头皮电极之间可能存在互相影响关系的前提下,将高维度EEG信号在应用分类器中的维度问题,同时也研究出了与颜色认知最相关的脑电频段,可应用于脑电身份识别,进一步提高身份识别精度。
本发明的目的通过下述技术方案实现:
一种基于深度自编码神经网络的脑电信号EEG特征提取方法,包括下述步骤:
S1,设计颜色识别的脑电数据采集实验方案;
设计一个周期有三张测试图片和三张全黑色的过渡图片,测试图片用时t1,过渡图片用时t2,每个周期中的测试图片分别为红、绿、蓝三原色,且红、绿、蓝三原色出现的顺序随机,则一个周期用时3t1+3t2,每个被试者测试N个周期,共用时N(3t1+3t2);设置过渡图片的目的是为了消除在切换测试图片时产生的视觉残留;
S2,脑电数据的采集;
被试者静坐在电脑屏幕前,电脑屏幕按照S1的实验方案来显示图片,通过脑电采集设备对被试者在认知图片时产生的脑电信号进行采集,脑电采集设备的采样频率为vHz;
S3,脑电数据的预处理;
S3.1,剔除与实验无关和损坏的头皮电极,设剔除后的头皮电极数为k;
S3.2,利用FIR滤波器,从采集的原始脑电信号提取出Delta(0.5Hz-4Hz)、Theta(4Hz-8Hz)、Alpha(8Hz-14Hz)、Beta(14Hz-30Hz)、Gamma(30Hz-45Hz)和all(0.5Hz-45Hz)这六个频段的脑电数据;
S3.3,分别针对S3.2中六个频段的脑电数据做归一化处理,则六个频段的脑电数据归一化后形成k行t1×v列的脑电信号矩阵;
S4,建立深度自编码神经网络,并提取脑电信号的信号特征;
S4.1,分别从S3.3中各个频段的脑电数据中,提取出每个头皮电极的脑电数据,构建出k个训练集和测试集,用于训练和测试对应头皮电极的深度自编码神经网络;
S4.2,构建单个头皮电极的深度自编码神经网络,该深度自编码神经网络的结构如下:
(1)输入层:神经元个数为t1×v;
(2)编码层:神经元个数随着编码层层数的增加而减小,对输入层的数据进行压缩;
(3)解码层:神经元个数随着解码层层数的增加而增大,对最后一个编码层的输出数据进行解压;
(4)输出层:神经元个数为t1×v;
最后一个编码层和最后一个解码层的激活函数为tanh,具体公式如下:
Figure GDA0003169985250000041
其他编码层和解码层的激活函数为relu,具体公式如下:
relu(g)=max(0,g);
S4.3,训练深度自编码神经网络;
在深度自编码神经网络的训练过程中,深度自编码神经网络的输出等于深度自编码神经网络的输入,即深度自编码神经网络训练的目标是使得网络的输出等于网络的输入;
Figure GDA0003169985250000042
为深度自编码神经网络中第l层第j个神经元与第l+1层的第i个神经元之间的权重系数,
Figure GDA0003169985250000043
表示第l+1层的第i个神经元的偏置项,n为深度自编码神经网络的总层数,则深度自编码神经网络的参数为:
Figure GDA0003169985250000044
则在M个样本中,上式为深度自编码神经网络的整体代价函数,取代价函数J(w,b)最小值时的w,b作为训练完成的深度自编码神经网络的参数;
S4.4,利用训练完成的深度自编码神经网络提取脑电信号的信号特征;
设单个头皮电极所对应的深度自编码神经网络的最后一个编码层神经元个数为p;将单个头皮电极所对应的脑电信号输入到对应的深度自编码神经网络,可获得1×p的特征向量,因为在每个样本中有k个头皮电极,所以当经过k个深度自编码神经网络的特征提取后,每个样本可得到一个k×p的特征矩阵;
S5,建立三层BP神经网络分类器;
BP神经网络分类器的输入节点数为k×p,输出节点数为m,每个输出节点代表m种颜色中的一种;每个样本的标签为1×m的标签矩阵,第i个颜色样本的标签矩阵中第i个元素为1,其余为0;
第一层神经元的激活函数relu如下:
relu(g1)=max(0,g1),
第二层神经元的激活函数为softmax如下:
Figure GDA0003169985250000051
S6,颜色的识别;
S6.1,对于三层BP神经网络分类器,选择70%的样本作为训练集,30%的样本作为测试集;
S6.2,进行分类识别验证;三层BP神经网络分类器的输出矩阵的每个数值代表该测试样本属于每种颜色的概率,取概率最大的颜色作为该测试样本的颜色识别结果。
本发明与现有技术相比具有以下的有益效果:
(1)本发明的自编码神经网络不要求信号是否具有平稳随机的条件,在自编码神经网络通过多次迭代训练,它能习得隐含在信号中的特征,并能在多次压缩和解压缩后还原出于原信号大致一致的EEG信号;避免了使用AR模型提取脑电信号特征中的阶数确定问题,而且使用深度自编码神经网络所提取的特征在颜色识别方面取得满意的结果;
(2)本发明对每个电极分别用自编码神经网络进行信号压缩,提取压缩后的信号作为EEG特征,压缩后的EEG信号远小于原始EEG信号,从而减小分类算法的输入维度,而且还把每个头皮电极压缩后的EEG信号全部组合起来,放置到分类器中进行分类,从而解决了在考虑每个头皮电极之间可能存在互相影响关系的前提下,将高维度EEG信号在应用分类器中的维度问题;
(3)本发明选择以颜色认知为主题的脑电实验,并研究出了与颜色认知最相关的脑电频段,同时也可应用于脑电身份识别,进一步提高身份识别的精度。
附图说明
图1为本发明的特征提取方法和颜色识别流程图;
图2为本发明颜色识别的脑电数据采集实验方案示意图;
图3为本发明的深度自编码神经网络示意图;
图4为本发明的三层BP神经网络示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
如图1~4所示,一种基于深度自编码神经网络的脑电信号EEG特征提取方法,包括下述步骤:
步骤一,设计颜色识别的脑电数据采集实验方案;
设计一个周期有三张测试图片和三张全黑色的过渡图片,测试图片用时t1,过渡图片用时t2,每个周期中的测试图片分别为红、绿、蓝三原色,且红、绿、蓝三原色出现的顺序随机,则一个周期用时3t1+3t2,每个被试者测试N个周期,共用时N(3t1+3t2);设置过渡图片的目的是为了消除在切换测试图片时产生的视觉残留;
具体来说,设一个周期有3张测试图片和3张过渡图片(全黑),测试图片1s,过渡图片0.2s,每个周期中的测试图片为RGB三原色,即红绿蓝三原色,且每张测试图片出现的顺序随机,因此一个周期是3.6s,每个被试者测试200个周期,即720s(12min)。
步骤二,脑电数据的采集;
被试者静坐在电脑屏幕前,电脑屏幕按照步骤一的实验方案来显示图片,通过脑电采集设备对被试者在认知图片时产生的脑电信号进行采集,脑电采集设备的采样频率为vHz;
具体来说,脑电采集设备为Brain Product,Brain Amp MR Plus型放大器,采用64导电极帽连续记录脑电;参与实验的被试者个数为9个(5个男性,4个女性),他们的年龄在19岁到22岁之间,均无神经或精神上的疾病史,实验前亦无使用药物。
被试者静坐在电脑屏幕前,电脑屏幕按照所设计的颜色识别实验方案显示图片,通过脑电采集设备,对被试者在认知图片时产生的脑电信号进行采集。脑电采集设备的采样频率为500Hz。
步骤三,脑电数据的预处理;
(1)剔除与实验无关和损坏的头皮电极,设剔除后的头皮电极数为k;
(2)利用FIR滤波器,从采集的原始脑电信号提取出Delta(0.5Hz-4Hz)、Theta(4Hz-8Hz)、Alpha(8Hz-14Hz)、Beta(14Hz-30Hz)、Gamma(30Hz-45Hz)和all(0.5Hz-45Hz)这六个频段的脑电数据;
(3)针对步骤三(2)中六个频段的脑电数据做归一化处理,则六个频段的脑电数据归一化后形成k行t1×v列的脑电信号矩阵;
具体来说,剔除与本实验无关和损坏的头皮电极(′FP1′′FP2′′F4′′F8′′Fz′′Pz′′HEOL′′HEOR′′M2′′F6′),剔除后的头皮电极数为54;利用FIR滤波器,从采集的原始脑电信号提取出Delta(0.5Hz-4Hz)、Theta(4Hz-8Hz)、Alpha(8Hz-14Hz)、Beta(14Hz-30Hz)、Gamma(30Hz-45Hz)、all(0.5Hz-45Hz),这六个频段的脑电数据。针对每个频段的脑电数据做归一化处理,每个样本归一化后为54行500列的矩阵。
步骤四,建立深度自编码神经网络,并提取脑电信号的信号特征;
(1)分别从步骤三(3)中各个频段的脑电数据中,提取出每个头皮电极的脑电数据,构建出k个训练集和测试集,用于训练和测试对应头皮电极的深度自编码神经网络;具体来说,从每个样本中提取出每个头皮电极的数据,构建出54个训练集和测试集。
(2)构建单个头皮电极的深度自编码神经网络,该深度自编码神经网络的结构如下:
输入层:神经元个数为t1×v;
编码层:神经元个数随着编码层层数的增加而减小,对输入层的数据进行压缩;
解码层:神经元个数随着解码层层数的增加而增大,对最后一个编码层的输出数据进行解压;
输出层:神经元个数为t1×v;
最后一个编码层和最后一个解码层的激活函数为tanh,具体公式如下:
Figure GDA0003169985250000091
其他编码层和解码层的激活函数为relu,具体公式如下:
relu(g)=max(0,g);
具体来说,分别对54个头皮电极构建一个深度自编码神经网络。每个深度自编码神经网络的输入节点和输出节点数为500,编码层和解码层的层数为4,最后一层的编码层和最后一层的解码层的激活函数为tanh,其他层的激活函数为relu。
(3)训练深度自编码神经网络;
在深度自编码神经网络的训练过程中,深度自编码神经网络的输出等于深度自编码神经网络的输入,即深度自编码神经网络训练的目标是使得网络的输出等于网络的输入;具体来说,深度自编码神经网络的输入层节点数为500;
Figure GDA0003169985250000101
为深度自编码神经网络中第l层第j个神经元与第l+1层的第i个神经元之间的权重系数,
Figure GDA0003169985250000102
表示第l+1层的第i个神经元的偏置项,n为深度自编码神经网络的总层数,可以为9层,则深度自编码神经网络的参数为:
Figure GDA0003169985250000103
则在M个样本(此处的样本是指某一频段的某个头皮电极的训练集中的样本)中,上式为深度自编码神经网络的整体代价函数,取代价函数J(w,b)最小值时的w,b作为训练完成的深度自编码神经网络的参数;
(4)利用训练完成的深度自编码神经网络提取脑电信号的信号特征;
设单个头皮电极所对应的深度自编码神经网络的最后一个编码层神经元个数为p;将单个头皮电极所对应的脑电信号输入到对应的深度自编码神经网络,可获得1×p的特征向量,因为在每个样本中有k个头皮电极,所以当经过k个深度自编码神经网络的特征提取后,每个样本可得到一个k×p的特征矩阵;
具体来说,深度自编码神经网络最后一层编码层的神经元个数为14,则把每个样本中所对应的头皮电极数据输入到对应的深度自编码神经网络,并把对应的深度自编码神经网络的最后一层编码层的输出作为脑电信号的信号特征,最后,每个样本可得到一个54×14的特征矩阵。
步骤五,建立三层BP神经网络分类器;
BP神经网络分类器的输入节点数为k×p,输出节点数为m,每个输出节点代表m种颜色中的一种;每个样本(此处的样本是指某个频段的某份脑电数据)的标签为1×m的标签矩阵,第i个颜色样本(此处的样本是指某个频段的某份脑电数据)的标签矩阵中第i个元素为1,其余为0;
具体来说,BP神经网络分类器的输入节点数为756,输出节点数为3,每个输出节点分别代表红色、绿色和蓝色,每个样本的标签为1×3的标签矩阵;
第一层神经元的激活函数relu如下:
relu(g1)=max(0,g1),
第二层神经元的激活函数为softmax如下:
Figure GDA0003169985250000111
步骤六,颜色的识别;
(1)对于三层BP神经网络分类器,选择70%的样本(此处的样本是指对某个频段的每份脑电数据进行随机采样所得的样本)作为训练集,30%的样本(此处的样本是指对某个频段的每份脑电数据进行随机采样所得的样本)作为测试集;
为了使估计结果稳定可靠,实验重复进行多次,在保持数据分布的一致性和不重复选取样本的条件下,随机选取样本构建训练集和测试集,如下表1和表2所示::
表1:训练集情况
样本个数 总占比
红色样本 1260 70%
绿色样本 1260 70%
蓝色样本 1260 70%
表2:测试集情况
样本个数 总占比
红色样本 540 30%
绿色样本 540 30%
蓝色样本 540 30%
(2)进行分类识别验证;三层BP神经网络分类器的输出矩阵的每个数值代表该测试样本(此处的样本是指某个频段的某份脑电数据)属于每种颜色的概率,取概率最大的颜色作为该测试样本的颜色识别结果。
颜色识别情况如下表所示:
Red Green Blue
All 84.39% 76.28% 56.17%
Delta 76.83% 74.61% 47.06%
Theta 73.28% 72.94% 41.72%
Alpha 82.06% 86.33% 69.22%
Beta 87.06% 73.22% 63.67%
Gamma 75.17% 70.11% 33.33%
从实验的结果可得,红色识别率最高的频段是Beta(14Hz-30Hz),绿色识别率最高的频段是Alpha(8Hz-14Hz),蓝色识别率最高的频段是Alpha(8Hz-14Hz);
即与红色认知最相关的频段为Beta(14Hz-30Hz),与绿色认知最相关的频段为Alpha(8Hz-14Hz),与蓝色认知最相关的频段为Alpha(8Hz-14Hz);自编码神经网络不要求信号是否具有平稳随机的条件,在自编码神经网络通过多次迭代训练,它能习得隐含在信号中的特征,并能在多次压缩和解压缩后还原出于原信号大致一致的EEG信号;避免了使用AR模型提取脑电信号特征中的阶数确定问题,而且使用深度自编码神经网络所提取的特征在颜色识别方面取得满意的结果;对每个电极分别用自编码神经网络进行信号压缩,提取压缩后的信号作为EEG特征,压缩后的EEG信号远小于原始EEG信号,从而减小分类算法的输入维度,而且还把每个头皮电极压缩后的EEG信号全部组合起来,放置到分类器中进行分类,从而解决了在考虑每个头皮电极之间可能存在互相影响关系的前提下,将高维度EEG信号在应用分类器中的维度问题;选择以颜色认知为主题的脑电实验,并研究出了与颜色认知最相关的脑电频段,同时也可应用于脑电身份识别,进一步提高身份识别的精度。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种基于深度自编码神经网络的脑电信号EEG特征提取方法,其特征在于,包括下述步骤:
S1,设计颜色识别的脑电数据采集实验方案;
设计一个周期有三张测试图片和三张全黑色的过渡图片,测试图片用时t1,过渡图片用时t2,每个周期中的测试图片分别为红、绿、蓝三原色,且红、绿、蓝三原色出现的顺序随机,则一个周期用时3t1+3t2,每个被试者测试N个周期,共用时N(3t1+3t2);设置过渡图片的目的是为了消除在切换测试图片时产生的视觉残留;
S2,脑电数据的采集;
被试者静坐在电脑屏幕前,电脑屏幕按照S1的实验方案来显示图片,通过脑电采集设备对被试者在认知图片时产生的脑电信号进行采集,脑电采集设备的采样频率为vHz;
S3,脑电数据的预处理;
S3.1,剔除与实验无关和损坏的头皮电极,设剔除后的头皮电极数为k;
S3.2,利用FIR滤波器,从采集的原始脑电信号提取出Delta 0.5Hz-4Hz、Theta 4Hz-8Hz、Alpha 8Hz-14Hz、Beta 14Hz-30Hz、Gamma 30Hz-45Hz和all 0.5Hz-45Hz这六个频段的脑电数据;
S3.3,分别针对S3.2中六个频段的脑电数据做归一化处理,则六个频段的脑电数据归一化后形成k行t1×v列的脑电信号矩阵;
S4,建立深度自编码神经网络,并提取脑电信号的信号特征;
S4.1,分别从S3.3中各个频段的脑电数据中,提取出每个头皮电极的脑电数据,构建出k个训练集和测试集,用于训练和测试对应头皮电极的深度自编码神经网络;
S4.2,构建单个头皮电极的深度自编码神经网络,该深度自编码神经网络的结构如下:
(1)输入层:神经元个数为t1×v;
(2)编码层:神经元个数随着编码层层数的增加而减小,对输入层的数据进行压缩;
(3)解码层:神经元个数随着解码层层数的增加而增大,对最后一个编码层的输出数据进行解压;
(4)输出层:神经元个数为t1×v;
最后一个编码层和最后一个解码层的激活函数为tanh,具体公式如下:
Figure FDA0003169985240000021
其他编码层和解码层的激活函数为relu,具体公式如下:
relu(g)=max(0,g);
S4.3,训练深度自编码神经网络;
在深度自编码神经网络的训练过程中,深度自编码神经网络的输出等于深度自编码神经网络的输入,即深度自编码神经网络训练的目标是使得网络的输出等于网络的输入;
Figure FDA0003169985240000022
为深度自编码神经网络中第l层第j个神经元与第l+1层的第i个神经元之间的权重系数,n为深度自编码神经网络的总层数,则深度自编码神经网络的参数为:
Figure FDA0003169985240000031
则在M个样本中,上式为深度自编码神经网络的整体代价函数,取代价函数J(w,b)最小值时的w,b作为训练完成的深度自编码神经网络的参数;
S4.4,利用训练完成的深度自编码神经网络提取脑电信号的信号特征;
设单个头皮电极所对应的深度自编码神经网络的最后一个编码层神经元个数为p;将单个头皮电极所对应的脑电信号输入到对应的深度自编码神经网络,可获得1×p的特征向量,因为在每个样本中有k个头皮电极,所以当经过k个深度自编码神经网络的特征提取后,每个样本可得到一个k×p的特征矩阵;
S5,建立三层BP神经网络分类器;
BP神经网络分类器的输入节点数为k×p,输出节点数为m,每个输出节点代表m种颜色中的一种;每个样本的标签为1×m的标签矩阵,第i个颜色样本的标签矩阵中第i个元素为1,其余为0;
第一层神经元的激活函数relu如下:
relu(g1)=max(0,g1),
第二层神经元的激活函数为softmax如下:
Figure FDA0003169985240000032
S6,颜色的识别;
S6.1,对于三层BP神经网络分类器,选择70%的样本作为训练集,30%的样本作为测试集;
S6.2,进行分类识别验证;三层BP神经网络分类器的输出矩阵的每个数值代表该测试样本属于每种颜色的概率,取概率最大的颜色作为该测试样本的颜色识别结果。
CN201810936468.XA 2018-08-16 2018-08-16 一种基于深度自编码神经网络的脑电信号eeg特征提取方法 Active CN108921141B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810936468.XA CN108921141B (zh) 2018-08-16 2018-08-16 一种基于深度自编码神经网络的脑电信号eeg特征提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810936468.XA CN108921141B (zh) 2018-08-16 2018-08-16 一种基于深度自编码神经网络的脑电信号eeg特征提取方法

Publications (2)

Publication Number Publication Date
CN108921141A CN108921141A (zh) 2018-11-30
CN108921141B true CN108921141B (zh) 2021-10-19

Family

ID=64405710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810936468.XA Active CN108921141B (zh) 2018-08-16 2018-08-16 一种基于深度自编码神经网络的脑电信号eeg特征提取方法

Country Status (1)

Country Link
CN (1) CN108921141B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110414673B (zh) * 2019-07-31 2022-10-28 北京达佳互联信息技术有限公司 多媒体识别方法、装置、设备及存储介质
CN111338482B (zh) * 2020-03-04 2023-04-25 太原理工大学 一种基于监督自编码的脑控字符拼写识别方法及***
CN112890833A (zh) * 2021-01-21 2021-06-04 河南省轻工业学校 一种基于鸽脑电信号对不同颜色刺激模式的预测方法
CN112987695A (zh) * 2021-03-12 2021-06-18 北京航天自动控制研究所 飞行器健康预测方法
CN113768520B (zh) * 2021-09-18 2022-11-18 中国科学院自动化研究所 一种脑电检测模型的训练方法及装置
CN114748053A (zh) * 2022-03-07 2022-07-15 东北大学 一种基于fMRI高维时间序列的信号分类方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106447039A (zh) * 2016-09-28 2017-02-22 西安交通大学 基于自编码神经网络的无监督特征提取方法
CN106529476A (zh) * 2016-11-11 2017-03-22 重庆邮电大学 一种基于深层堆叠网络的脑电信号特征提取及分类方法
CN106691378A (zh) * 2016-12-16 2017-05-24 深圳市唯特视科技有限公司 一种基于脑电图数据的深度学习视觉分类方法
CN106951844A (zh) * 2017-03-10 2017-07-14 中国矿业大学 一种基于深度极速学习机的脑电信号分类方法及***
CN107169434A (zh) * 2017-05-10 2017-09-15 广东工业大学 一种具备排他性的脑电身份识别方法
CN107247893A (zh) * 2017-05-10 2017-10-13 广东工业大学 一种基于遗传算法降维的脑电身份识别方法
CN107616780A (zh) * 2016-07-14 2018-01-23 山东大学苏州研究院 一种利用小波神经网络的脑电检测方法及装置
CN107844755A (zh) * 2017-10-23 2018-03-27 重庆邮电大学 一种结合dae和cnn的脑电信号特征提取与分类方法
CN108021232A (zh) * 2017-11-09 2018-05-11 清华大学 一种大脑皮层电信号解码的方法和装置
CN108256629A (zh) * 2018-01-17 2018-07-06 厦门大学 基于卷积网络和自编码的eeg信号无监督特征学习方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0906029D0 (en) * 2009-04-07 2009-05-20 Nat Univ Ireland Cork A method of analysing an electroencephalogram (EEG) signal
US20140358025A1 (en) * 2013-05-29 2014-12-04 Keshab K. Parhi System and apparatus for seizure detection from EEG signals

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107616780A (zh) * 2016-07-14 2018-01-23 山东大学苏州研究院 一种利用小波神经网络的脑电检测方法及装置
CN106447039A (zh) * 2016-09-28 2017-02-22 西安交通大学 基于自编码神经网络的无监督特征提取方法
CN106529476A (zh) * 2016-11-11 2017-03-22 重庆邮电大学 一种基于深层堆叠网络的脑电信号特征提取及分类方法
CN106691378A (zh) * 2016-12-16 2017-05-24 深圳市唯特视科技有限公司 一种基于脑电图数据的深度学习视觉分类方法
CN106951844A (zh) * 2017-03-10 2017-07-14 中国矿业大学 一种基于深度极速学习机的脑电信号分类方法及***
CN107169434A (zh) * 2017-05-10 2017-09-15 广东工业大学 一种具备排他性的脑电身份识别方法
CN107247893A (zh) * 2017-05-10 2017-10-13 广东工业大学 一种基于遗传算法降维的脑电身份识别方法
CN107844755A (zh) * 2017-10-23 2018-03-27 重庆邮电大学 一种结合dae和cnn的脑电信号特征提取与分类方法
CN108021232A (zh) * 2017-11-09 2018-05-11 清华大学 一种大脑皮层电信号解码的方法和装置
CN108256629A (zh) * 2018-01-17 2018-07-06 厦门大学 基于卷积网络和自编码的eeg信号无监督特征学习方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CNN与CSP相结合的脑电特征提取与识别方法研究;孔祥浩等;《信号处理》;20180228;第34卷(第02期);全文 *
Deep Learning With Convolutional Neural Networks for EEG Decoding and Visualization;Schirrmeister et al;《HUMAN BRAIN MAPPING》;20171130;第38卷(第11期);全文 *
Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces;Zhang, Yu et al;《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》;20180731;第161卷;全文 *
基于免疫堆叠降噪自编码机网络的运动想象脑电信号识别;郝矿荣等;《控制与决策》;20180430;第33卷(第04期);全文 *
基于小波包和深度信念网络的脑电特征提取方法;电子测量与仪器学报;《电子测量与仪器学报》;20180131;第32卷(第01期);全文 *

Also Published As

Publication number Publication date
CN108921141A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108921141B (zh) 一种基于深度自编码神经网络的脑电信号eeg特征提取方法
CN108959895B (zh) 一种基于卷积神经网络的脑电信号eeg身份识别方法
CN110069958B (zh) 一种密集深度卷积神经网络的脑电信号快速识别方法
CN109171753B (zh) 一种基于深度自编码神经网络的脑电信号eeg身份识别方法
CN110353702A (zh) 一种基于浅层卷积神经网络的情感识别方法及***
CN114224342B (zh) 一种基于时空融合特征网络的多通道脑电信号情绪识别方法
CN109325410B (zh) 一种基于卷积神经网络的脑电信号eeg特征提取方法
CN112932502B (zh) 结合互信息通道选择与混合神经网络的脑电情感识别方法
CN113128552B (zh) 一种基于深度可分离因果图卷积网络的脑电情绪识别方法
CN112465069B (zh) 一种基于多尺度卷积核cnn的脑电情绪分类方法
CN111184509A (zh) 一种基于传递熵的情绪诱导脑电信号分类方法
CN112022153B (zh) 基于卷积神经网络的脑电信号检测方法
CN113180659B (zh) 一种基于三维特征和空洞全卷积网络的脑电情感识别方法
CN112515685A (zh) 基于时频共融的多通道脑电信号通道选择方法
CN114298216A (zh) 一种基于时间-频域融合Transformer的脑电视觉分类方法
CN112633195A (zh) 一种基于频域特征与深度学习的心肌梗塞识别分类方法
CN111832431A (zh) 一种基于cnn的情绪脑电分类方法
CN113243924A (zh) 基于脑电信号通道注意力卷积神经网络的身份识别方法
CN113017650A (zh) 一种基于功率谱密度图像的脑电特征提取方法和***
CN114145745B (zh) 基于图的多任务自监督情绪识别方法
CN116919422A (zh) 基于图卷积的多特征情感脑电识别模型建立方法及装置
CN117113015A (zh) 一种基于时空深度学习的脑电信号识别方法及装置
CN115017960A (zh) 一种基于时空联合mlp网络的脑电信号分类方法及应用
CN114081492A (zh) 一种基于可学习邻接矩阵的脑电情绪识别***
CN110916654B (zh) 一种脑活动状态的等级评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant