CN108917643A - 基于双光梳扫描测距的三维形貌测量***及方法 - Google Patents

基于双光梳扫描测距的三维形貌测量***及方法 Download PDF

Info

Publication number
CN108917643A
CN108917643A CN201810726961.9A CN201810726961A CN108917643A CN 108917643 A CN108917643 A CN 108917643A CN 201810726961 A CN201810726961 A CN 201810726961A CN 108917643 A CN108917643 A CN 108917643A
Authority
CN
China
Prior art keywords
ranging
light
dimensional
double light
combs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810726961.9A
Other languages
English (en)
Other versions
CN108917643B (zh
Inventor
赵显宇
张福民
曲兴华
汤国庆
赵宇航
李雯靓
周伦彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810726961.9A priority Critical patent/CN108917643B/zh
Publication of CN108917643A publication Critical patent/CN108917643A/zh
Application granted granted Critical
Publication of CN108917643B publication Critical patent/CN108917643B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于双光梳扫描测距的三维形貌测量***及方法,所述***包括:双光梳扫描测距光路模块,用于测量被测物z方向上的一维距离信息;旋转平移模块,用于夹持并移动被测物,同时提供被测物x方向和y方向上的二维距离信息;数据采集与三维信息处理模块,其连接所述双光梳扫描测距光路模块和旋转平移模块,用于采集并整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息,得到被测物的三维形貌信息。本发明的基于双光梳扫描测距的三维形貌测量***及方法测量的景深大,测量的速度快,一维距离信息的获取测采用绝对测距方式,不担心断光,可测量阶梯面,可用于多种工业测量。

Description

基于双光梳扫描测距的三维形貌测量***及方法
技术领域
本发明属于三维形貌测量技术领域,具体涉及一种基于双光梳扫描测距的三维形貌测量***及方法。
背景技术
三维形貌测量技术广泛用于制造业中的安装、缺陷检测、逆向工程等领域,现有的三维形貌测量技术主要有扫描式三维测量方案和凝视三维测量方案。凝视测量因为测量的面积和景深有限,一维测量精度也不够高,在某些精密形貌测量中还需要使用扫描式三维测量。而扫描式三维测量方案又大概分为增量测量和绝对测量。基于增量测量的干涉形貌测量法不适合测量带有阶梯面这种光程变化剧烈的被测物,还有在测量粗糙表面时会因为后向散射原因出现断光,从而导致整个测量过程中断。而绝对式三维形貌测量技术纵向测量不担心断光,对折射率变化不敏感,但现有的绝对式三维测量方案测量速度慢,测量非模糊范围小,在很多应用场合都无法使用。
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于双光梳扫描测距的三维形貌测量***及方法,以便解决上述问题的至少之一。
本发明是通过如下技术方案实现的:
作为本发明的一个方面,提供一种基于双光梳扫描测距的三维形貌测量***,包括:双光梳扫描测距光路模块,用于测量被测物在其出射激光方向上的一维距离信息,所述双光梳扫描测距光路模块的出射激光方向为z方向;旋转平移模块,用于夹持并移动被测物,同时提供被测物x方向和y方向上的二维距离信息;数据采集与三维信息处理模块,其连接所述双光梳扫描测距光路模块和所述旋转平移模块,用于采集并整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息,得到被测物的三维形貌信息。
优选地,所述双光梳扫描测距光路模块包括:主振光学频率梳,其经分束器分成参考光和测量光;以及本振光学频率梳,其通过分束器分成两束光,一束与所述主振光学频率梳的参考光汇合并送入光电探测器作为测距的参考信号,另一束与所述主振光学频率梳的测量光汇合并送入光电探测器作为测距的测量信号;其中,所述主振光学频率梳与所述本振光学频率梳的中心频率的频率差为f0,重复频率的频率差为Δfrep,f0与Δfrep保证拍频信号的频率全部为正实数;所述双光梳扫描测距光路模块的测距光路为迈克尔逊干涉光路。
优选地,所述旋转平移模块包括:旋转部分,包括:旋转台,其旋转平面垂直于所述双光梳扫描测距光路模块的出射激光;安装机构,其位于所述旋转台的靠近双光梳扫描测距光路模块的一侧,用于安装被测物;平移部分,用于固定所述旋转部分,并使所述旋转部分平移,包括:平移台,其平移方向平行于所述旋转台的旋转平面,为x方向;其中,所述旋转部分与所述平移部分同时工作,使所述双光梳扫描测距光路模块的出射激光在被测物表面呈螺旋状扫描。
优选地,所述旋转部分还包括旋转台控制电机,其位于所述旋转台的背对所述双光梳扫描测距光路模块的一侧,用于控制旋转台做匀角速度圆周运动。
优选地,所述平移部分还包括平移台控制电机,其连接所述平移台,用于控制所述平移台做匀速直线运动。
优选地,所述数据采集与三维信息处理模块包括数据采集部分,其采样率高于拍频信号的2倍;以及计算处理部分,其整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息。
优选地,所述双光梳扫描测距光路模块的测距的计算关系为:
其中,c是空气中光的传播速度,m是正整数,fa和fb是光频梳的不同频率成分,a和b为正整数且a>b,a-b=m,fa-fb=mΔfrep分别是Ja和Jb的测量光路和参考光路的相位差。
作为本发明的另一个方面,提供一种基于双光梳扫描测距的三维形貌测量方法,利用前述的基于双光梳扫描测距的三维形貌测量***,包括以下步骤:被测物固定在旋转台上,被测物的表面与旋转台的旋转表面保持平行;平移台在平移台控制电机的控制下做匀速直线运动,旋转台在旋转台控制电机的控制下做匀角速度圆周运动;双光梳扫描测距光路模块发射出的测量激光打在被测物上,在旋转平移台的运动下,所述测量激光在被测物表面呈螺旋运动,扫描整个样块表面;数据采集与三维信息处理模块采集平移台控制电机、旋转台控制电机的控制信号重构出被测物表面的x和y方向的二维信息,采集双光梳扫描测距光路模块的两个探测器的输出信号并解算出z方向的一维距离信息。
从上述技术方案可以看出,本发明的基于双光梳扫描测距的三维形貌测量***及方法具有以下有益效果:
(1)由于可以选取小的重复频率差,能够获得比较大的景深;
(2)由于最小拍频频率可以较高,对应的数据更新率可以很快,保证了***能达到较快的测量速度;
(3)一维距离信息的获取测采用相位法绝对测距方式,不担心断光。
附图说明
图1是本发明实施例中基于双光梳扫描测距的三维形貌测量***图;
图2为本发明实施例中基于双光梳扫描测距的三维形貌测量***的侧视图;
图3为本发明实施例中双光梳扫描测距光路模块图;
【附图元件说明】
1-准直器; 2-准直器;
3-准直器; 4-被测物;
5-半透半反镜; 6-半透半反镜;
7-半透半反镜; 8-半透半反镜;
9-光电探测器; 10-光电探测器;
11-主振光学频率梳; 12-本振光学频率梳;
13-双光梳扫描测距光路模块; 14-被测物;
15-旋转台; 16-旋转台控制电机;
17-旋转平移模块由平移台; 18-平移台控制电机;
19-数据采集与三维信息处理模块; 20-光纤耦合器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
一种基于双光梳扫描测距的三维形貌测量***及方法,所述***包括:双光梳扫描测距光路模块,用于测量被测物z方向上的一维距离信息;旋转平移模块,用于夹持并移动被测物,同时提供被测物x方向和y方向上的二维距离信息;数据采集与三维信息处理模块,其连接所述双光梳扫描测距光路模块和旋转平移模块,用于采集并整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息,得到被测物的三维形貌信息。本发明的基于双光梳扫描测距的三维形貌测量***及方法测量的景深大,测量的速度快,一维距离信息的获取测采用绝对测距方式,不担心断光,可测量阶梯面,可用于多种工业测量。
具体地,作为本发明的一个方面,提供一种基于双光梳扫描测距的三维形貌测量***,包括:双光梳扫描测距光路模块,用于测量被测物在其出射激光方向上的一维距离信息,所述双光梳扫描测距光路模块的出射激光方向为z方向;旋转平移模块,用于夹持并移动被测物,同时提供被测物x方向和y方向上的二维距离信息;数据采集与三维信息处理模块,其连接所述双光梳扫描测距光路模块和所述旋转平移模块,用于采集并整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息,得到被测物的三维形貌信息。
优选地,所述双光梳扫描测距光路模块包括:主振光学频率梳,其经分束器分成参考光和测量光;以及本振光学频率梳,其通过分束器分成两束光,一束与所述主振光学频率梳的参考光汇合并送入光电探测器作为测距的参考信号,另一束与所述主振光学频率梳的测量光汇合并送入光电探测器作为测距的测量信号;其中,所述主振光学频率梳与所述本振光学频率梳的中心频率的频率差为f0,重复频率的频率差为Δfrep,f0与Δfrep保证拍频信号的频率全部为正实数;所述双光梳扫描测距光路模块的测距光路为迈克尔逊干涉光路。
优选地,所述旋转平移模块包括:旋转部分,包括:旋转台,其旋转平面垂直于所述双光梳扫描测距光路模块的出射激光;安装机构,其位于所述旋转台的靠近双光梳扫描测距光路模块的一侧,用于安装被测物;平移部分,用于固定所述旋转部分,并使所述旋转部分平移,包括:平移台,其平移方向平行于所述旋转台的旋转平面,为x方向;其中,所述旋转部分与所述平移部分同时工作,使所述双光梳扫描测距光路模块的出射激光在被测物表面呈螺旋状扫描。
优选地,所述旋转部分还包括旋转台控制电机,其位于所述旋转台的背对所述双光梳扫描测距光路模块的一侧,用于控制旋转台做匀角速度圆周运动。
优选地,所述平移部分还包括平移台控制电机,其连接所述平移台,用于控制所述平移台做匀速直线运动。
优选地,所述数据采集与三维信息处理模块包括数据采集部分,其采样率高于拍频信号的2倍;以及计算处理部分,其整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息。
优选地,所述双光梳扫描测距光路模块的测距的计算关系为:
其中,c是空气中光的传播速度,m是正整数,fa和fb是光频梳的不同频率成分,a和b为正整数且a>b,a-b=m,fa-fb=mΔfrep分别是fa和fb的测量光路和参考光路的相位差。
优选地,所述基于双光梳扫描测距的三维形貌测量***的测量景深等于双光梳扫描测距的非模糊范围,通过以下公式计算:
其中,c是光在空气中的运行速度,frep是主振光梳的重复频率。
作为本发明的另一个方面,提供一种基于双光梳扫描测距的三维形貌测量方法,利用前述的基于双光梳扫描测距的三维形貌测量***,包括以下步骤:被测物固定在旋转台上,被测物的表面与旋转台的旋转表面保持平行;平移台在平移台控制电机的控制下做匀速直线运动,旋转台在旋转台控制电机的控制下做匀角速度圆周运动;双光梳扫描测距光路模块发射出的测量激光打在被测物上,在旋转平移台的运动下,所述测量激光在被测物表面呈螺旋运动,扫描整个样块表面;数据采集与三维信息处理模块采集平移台控制电机、旋转台控制电机的控制信号重构出被测物表面的x和y方向的二维信息,采集双光梳扫描测距光路模块的两个探测器的输出信号并解算出z方向的一维距离信息。
以下结合具体实施例和附图,对本发明提供的基于双光梳扫描测距的三维形貌测量***及方法作进一步的详细说明。
实施例
图1是本发明实施例中基于双光梳扫描测距的三维形貌测量***图。图2为本发明实施例中基于双光梳扫描测距的三维形貌测量***的侧视图。如图1、图2所示,本发明双光梳扫描测距光路模块13、旋转平移模块和数据采集与三维信息处理模块19联合工作示意图,旋转平移模块由平移台17和旋转台15及平移台控制电机18和旋转台控制电机16组成。平移台17的平移方向平行于旋转台15的旋转平面,而旋转平面垂直于所述双光梳扫描测距光路模块的出射激光。平移台17在平移台控制电机18的控制下做匀速直线运动,旋转台15在旋转台控制电机16的控制下做匀角速度圆周运动。被测物14被固定在旋转台15上,被测物14的表面与旋转台15的旋转表面保持平行。双光梳扫描测距光路模块13发射出的测量激光打在被测物14上,在旋转平移台的运动下,测量光在被测物表面呈螺旋运动,最终扫描整个样块表面。平移台控制电机18、旋转台控制电机16和双光梳扫描测距光路模块13的两个探测器的输出信号都送入数据采集与三维信息处理模块19中,该模块计算平移台控制电机18和旋转台控制电机16的控制信号重构出被测物表面的x和y方向二维信息,再采集到的双光梳扫描测距光路模块13的两个探测器的输出信号并解算出z方向的一维距离信息,z方向的一维测距信息根据下面公式计算:
其中,c是空气中光的传播速度,m是正整数,fa和fb是光频梳的不同频率成分,a和b为正整数且a>b,a-b=m,fa-fb=mΔfrep分别是fa和fb的测量光路和参考光路的相位差。而测量的景深等于上述双光学频率梳快速测距的非模糊范围,而测距的非模糊范围取决于主振光梳的重复频率,具体的非模糊范围可以通过以下公式计算:
其中,c是光在空气中的运行速度,frep是主振光梳的重复频率。
图3为本发明实施例中双光梳扫描测距光路模块图。如图3所述,本发明的双光梳扫描测距光路模块,包含一个主振光学频率梳11和本振光学频率梳12,两路光学频率梳有一个中心频率差f0和重复频率差为Δfrep。主振光学频率梳发出的光从光纤出射,经过准直器1变成空间光,再经过半透半反镜5分成两束空间光,一路作为测量光经半透半反镜8打到被测物4上,另一路作为参考光;本振光学频率梳12发出的光经一个1×2光纤耦合器20分成两路,其中一路通过准直器2变成空间光,再通过一个半透半反镜6与上述主振光学频率梳11的参考光汇合打入光电探测器9作为测距的参考信号;主振光学频率梳11的测量光从被测物4反射后经半透半反镜8与本振光学频率梳12经准直镜3发出的光在半透半反镜7上汇合一同打入光电探测器10上作为测距的测量信号。经过设置两路光学频率梳的中心频率差f0和重复频率差Δfrep,使得两路光频梳拍频信号的频率全部为正实数。
综上所述,基于双光梳扫描测距的三维形貌测量***及方法测量的景深比较大,测量的速度快,一维距离信息的获取测采用绝对测距方式,不担心断光,可测量阶梯面,可用于多种工业测量。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于双光梳扫描测距的三维形貌测量***,其特征在于,包括:
双光梳扫描测距光路模块,用于测量被测物在其出射激光方向上的一维距离信息,所述双光梳扫描测距光路模块的出射激光方向为z方向;
旋转平移模块,用于夹持并移动被测物,同时提供被测物x方向和y方向上的二维距离信息;
数据采集与三维信息处理模块,其连接所述双光梳扫描测距光路模块和所述旋转平移模块,用于采集并整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息,得到被测物的三维形貌信息。
2.根据权利要求1所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述双光梳扫描测距光路模块包括:
主振光学频率梳,其经分束器分成参考光和测量光;以及
本振光学频率梳,其通过分束器分成两束光,一束与所述主振光学频率梳的参考光汇合并送入光电探测器作为测距的参考信号,另一束与所述主振光学频率梳的测量光汇合并送入光电探测器作为测距的测量信号;
其中,所述主振光学频率梳与所述本振光学频率梳的中心频率的频率差为f0,重复频率的频率差为Δfrep,f0与Δfrep保证拍频信号的频率全部为正实数;所述双光梳扫描测距光路模块的测距光路为迈克尔逊干涉光路。
3.根据权利要求1所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述旋转平移模块包括:
旋转部分,包括:
旋转台,其旋转平面垂直于所述双光梳扫描测距光路模块的出射激光;
安装机构,其位于所述旋转台的靠近双光梳扫描测距光路模块的一侧,用于安装被测物;
平移部分,用于固定所述旋转部分,并使所述旋转部分平移,包括:
平移台,其平移方向平行于所述旋转台的旋转平面,为x方向;
其中,所述旋转部分与所述平移部分同时工作,使所述双光梳扫描测距光路模块的出射激光在被测物表面呈螺旋状扫描。
4.根据权利要求3所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述旋转部分还包括旋转台控制电机,其位于所述旋转台的背对所述双光梳扫描测距光路模块的一侧,用于控制旋转台做匀角速度圆周运动。
5.根据权利要求3所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述平移部分还包括平移台控制电机,其连接所述平移台,用于控制所述平移台做匀速直线运动。
6.根据权利要求1所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述数据采集与三维信息处理模块包括数据采集部分,其采样率高于拍频信号的2倍;以及
计算处理部分,其整合所述双光梳扫描测距光路模块测量到的一维测距信息和所述旋转平移模块提供的二维距离信息。
7.根据权利要求1所述的基于双光梳扫描测距的三维形貌测量***,其特征在于,
所述双光梳扫描测距光路模块的测距的计算关系为:
其中,c是空气中光的传播速度,m是正整数,fa和fb是光频梳的不同频率成分,a和b为正整数且a>b,a-b=m,fa-fb=mΔfrep分别是Ja和Jb的测量光路和参考光路的相位差。
8.一种基于双光梳扫描测距的三维形貌测量方法,所述方法利用权利要求1~7任一项所述的基于双光梳扫描测距的三维形貌测量***来实现,其特征在于,所述方法包括以下步骤:
被测物固定在旋转台上,被测物的表面与旋转台的旋转表面保持平行;
平移台在平移台控制电机的控制下做匀速直线运动,旋转台在旋转台控制电机的控制下做匀角速度圆周运动;
双光梳扫描测距光路模块发射出的测量激光打在被测物上,在旋转平移台的运动下,所述测量激光在被测物表面呈螺旋运动,扫描整个样块表面;
数据采集与三维信息处理模块采集平移台控制电机、旋转台控制电机的控制信号重构出被测物表面的x和y方向的二维信息,采集双光梳扫描测距光路模块的两个探测器的输出信号并解算出z方向的一维距离信息。
CN201810726961.9A 2018-07-04 2018-07-04 基于双光梳扫描测距的三维形貌测量***及方法 Active CN108917643B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810726961.9A CN108917643B (zh) 2018-07-04 2018-07-04 基于双光梳扫描测距的三维形貌测量***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810726961.9A CN108917643B (zh) 2018-07-04 2018-07-04 基于双光梳扫描测距的三维形貌测量***及方法

Publications (2)

Publication Number Publication Date
CN108917643A true CN108917643A (zh) 2018-11-30
CN108917643B CN108917643B (zh) 2021-04-20

Family

ID=64425235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810726961.9A Active CN108917643B (zh) 2018-07-04 2018-07-04 基于双光梳扫描测距的三维形貌测量***及方法

Country Status (1)

Country Link
CN (1) CN108917643B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955563A (zh) * 2018-06-19 2018-12-07 天津大学 用于形貌扫描的组合式连续调频激光雷达装置及测量方法
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量***及方法
CN111736165A (zh) * 2020-07-07 2020-10-02 清华大学 一种位姿参数测量方法和装置
CN112505716A (zh) * 2020-11-11 2021-03-16 天津大学 一种高更新频率的电控双光学频率梳测距***
CN113932729A (zh) * 2021-08-24 2022-01-14 西安空间无线电技术研究所 一种基于光频梳的太赫兹天线形面检测***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018906A1 (en) * 2004-08-18 2008-01-24 National University Corporation Tokyo University Of Agriculture And Technology Method And An Apparatus For Shape Measurement, And A Frequency Comb Light Generator
CN102967274A (zh) * 2012-11-14 2013-03-13 广东汉唐量子光电科技有限公司 一种测量物体表面形貌的方法
US20130063728A1 (en) * 2011-09-14 2013-03-14 Canon Kabushiki Kaisha Measuring apparatus
CN103837077A (zh) * 2014-03-21 2014-06-04 清华大学 一种双飞秒激光频率梳合成波干涉测距***
CN107063125A (zh) * 2017-06-15 2017-08-18 清华大学 一种光频梳参考的波长扫描三维形貌测量***
WO2018102915A1 (en) * 2016-12-07 2018-06-14 UNIVERSITé LAVAL Methods for performing dual-comb interferometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018906A1 (en) * 2004-08-18 2008-01-24 National University Corporation Tokyo University Of Agriculture And Technology Method And An Apparatus For Shape Measurement, And A Frequency Comb Light Generator
US20130063728A1 (en) * 2011-09-14 2013-03-14 Canon Kabushiki Kaisha Measuring apparatus
CN102967274A (zh) * 2012-11-14 2013-03-13 广东汉唐量子光电科技有限公司 一种测量物体表面形貌的方法
CN103837077A (zh) * 2014-03-21 2014-06-04 清华大学 一种双飞秒激光频率梳合成波干涉测距***
WO2018102915A1 (en) * 2016-12-07 2018-06-14 UNIVERSITé LAVAL Methods for performing dual-comb interferometry
CN107063125A (zh) * 2017-06-15 2017-08-18 清华大学 一种光频梳参考的波长扫描三维形貌测量***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANZHONG WU等: "Long distance measurement up to 1.2 km by electro-optic dual-comb interferometry", 《APPLIED PHYSICS LETTERS》 *
王国超等: "一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析", 《物理学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955563A (zh) * 2018-06-19 2018-12-07 天津大学 用于形貌扫描的组合式连续调频激光雷达装置及测量方法
CN110007310A (zh) * 2019-03-13 2019-07-12 北京空间飞行器总体设计部 一种基于双光梳测距的大动态范围基线测量***及方法
CN111736165A (zh) * 2020-07-07 2020-10-02 清华大学 一种位姿参数测量方法和装置
CN111736165B (zh) * 2020-07-07 2023-08-25 清华大学 一种位姿参数测量方法和装置
CN112505716A (zh) * 2020-11-11 2021-03-16 天津大学 一种高更新频率的电控双光学频率梳测距***
CN112505716B (zh) * 2020-11-11 2022-05-17 天津大学 一种高更新频率的电控双光学频率梳测距***
CN113932729A (zh) * 2021-08-24 2022-01-14 西安空间无线电技术研究所 一种基于光频梳的太赫兹天线形面检测***及方法
CN113932729B (zh) * 2021-08-24 2024-02-09 西安空间无线电技术研究所 一种基于光频梳的太赫兹天线形面检测***及方法

Also Published As

Publication number Publication date
CN108917643B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN108917643A (zh) 基于双光梳扫描测距的三维形貌测量***及方法
Schaffer et al. High-speed pattern projection for three-dimensional shape measurement using laser speckles
CN100491907C (zh) 三维形状测量装置
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
US5069548A (en) Field shift moire system
CN109163672A (zh) 一种基于白光干涉零光程差位置拾取算法的微观形貌测量方法
CN106197322B (zh) 一种面结构光三维测量***及其测量方法
CN110376596B (zh) 一种物体表面三维坐标测量***以及测量方法
CN103115585B (zh) 基于受激辐射的荧光干涉显微测量方法与装置
Berger et al. Non-contact metrology of aspheric surfaces based on MWLI technology
CN107144235A (zh) 一种物品表面形貌检测方法及装置
CN103076090B (zh) 一种激光干涉仪光程差定位方法及***
CN103528524A (zh) 透视测量树脂基复合材料内部离面位移场分布的装置及方法
CN105333815B (zh) 一种基于光谱色散线扫描的超横向分辨率表面三维在线干涉测量***
CN106018345B (zh) 一种基于短相干的光学平板玻璃折射率测量***及方法
CN115371587A (zh) 表面形貌测量装置及方法、物体表面高度计算方法
CN109341554B (zh) 一种测量膜厚的装置及方法
CN108844493A (zh) 电光调制双光梳形貌测量装置及其校验方法
CN106352985B (zh) 一种非对称空间外差光谱仪结构
CN109579782A (zh) 一种高精度大工作距自准直三维角度测量装置与方法
CN108982510A (zh) 利用90°光学混波器数字剪切散斑动态检测***及方法
CN108931298B (zh) 一种紧凑型高通量高稳定性干涉成像光谱仪
CN103674220A (zh) 测振***
CN109579778A (zh) 一种基于双波长分光自准直三维角度测量装置与方法
CN108507679A (zh) 一种宽谱段高分辨光谱干涉测量方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant