CN108899951A - 基于稳压输出式的超级电容双闭环升降压充电控制电路 - Google Patents

基于稳压输出式的超级电容双闭环升降压充电控制电路 Download PDF

Info

Publication number
CN108899951A
CN108899951A CN201810796757.4A CN201810796757A CN108899951A CN 108899951 A CN108899951 A CN 108899951A CN 201810796757 A CN201810796757 A CN 201810796757A CN 108899951 A CN108899951 A CN 108899951A
Authority
CN
China
Prior art keywords
resistance
voltage
capacitor
electric current
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810796757.4A
Other languages
English (en)
Other versions
CN108899951B (zh
Inventor
陈雪亭
陈德传
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronic Systems Technology Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810796757.4A priority Critical patent/CN108899951B/zh
Publication of CN108899951A publication Critical patent/CN108899951A/zh
Application granted granted Critical
Publication of CN108899951B publication Critical patent/CN108899951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路。本发明包括电源与升降压主电路、测控电路,具体包括超级电容、MOS管、芯片、电压运放、电流运放、检测运放、电源稳压管、给定稳压管、驱动稳压管、二极管、滤波电感、变压电感、电源电容、给定电容、驱动电容、变压电容、反馈电容、电压正端电容、电压负端电容、电流负端电容、电流正端电容、检测电容等。本发明具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的稳压充电与稳压控制,本发明电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。

Description

基于稳压输出式的超级电容双闭环升降压充电控制电路
技术领域
本发明属于工业测控领域,涉及一种电路,特别涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路,适用于使用超级电容储能、供电与续航控制的应用场合。
背景技术
超级电容在现代新能源储能、各类军民设备续航供电与控制方面,得到日益广泛的应用。超级电容应用技术中的一个重要问题之一就是在电源电压宽广范围内,根据超级电容的额定电压约束要求,进行稳压快速充电控制问题,目前常用的稳压式充电方法存在的不足之处在于:一是初始充电电流冲击大无法控制,且过渡过程时间长;二是基于专用恒流稳压充电芯片的方案适用的超级电容储能容量小,且现有方案中的电路较复杂,成本较高。因此,如何设计一种在超级电容额定电压约束下,在宽广的充电电源供电电压条件进行高效、快速、安全的超级电容充电控制方案,特别是能适于新能源电力转换中的高压大容量储能应用场合,是本发明的出发点。
发明内容
本发明的目的是针对现有技术存在的不足,提出一种基于稳压输出式的超级电容双闭环升降压充电控制电路。该电路以运行于PWM控制方式的大功率MOS管为充电过程的高效功率控制元件,以PWM电源芯片作为大功率MOS管的栅极驱动电路,充电主电路采用同极性输出式的升降压型DC/DC变换电路,并以满幅运放(rail to rail运放)为双闭环控制电路,具有动态恒流充电、稳态稳压充电的控制能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制。
本发明电路包括电源与升降压主电路、测控电路。
电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接。
测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C10C10、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C10C10的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C10C10的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。
本发明的有益效果如下:
本发明以功率MOS管、PWM芯片、运算放大器等为主的简单电路方案,具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制,该电路方案电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。
附图说明
图1为本发明的电路图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1所示,一种基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路。
电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接。
测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C10、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C10的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C10的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。
本发明所使用的包括MOS管VT1、PWM芯片IC1、电压运放IC2、电流运放IC3、检测运放IC4、电流传感电阻Rs等在内的所有器件均采用现有的成熟产品,可以通过市场取得。例如:MOS管采用IRF系列MOSFET管,PWM芯片采用LM2575ADJ,电压运放、电流运放、检测运放均采用TLC2264,电流传感电阻采用LRA型锰铜电阻等。
本发明中的主要电路参数配合关系如下:
设:电路供电电压为Us(单位:V),电路辅助电源电压为Vcc(单位:V),充电给定电压为Vref(单位:V),超级电容的额定电压为UscN(单位:V),超级电容的最大充电电流为Iscm(单位:A),MOS管栅源极驱动电压阈值为Ugsth(单位:V),限压稳压管DW2的稳压值为Udw2(单位:V),R2、R3、R5、R6分别为稳压电阻R2、分压电阻R3、驱动电阻R4、上输出电阻R5、下输出电阻R6的阻值(单位:Ω),R7、R8、R9、R10分别为电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10的阻值(单位:Ω),R11、R12、R13、R14分别为电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14的阻值(单位:Ω),R15、R16分别为负端检测电阻R15、放大电阻R16的阻值(单位:Ω),C6、C7、C8、C9分别为电电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9的电容值(单位:F),电压运放IC2、电流运放IC3、检测运放IC4均为满幅运放(Rail to Rail运放)。则,电路的参数配合关系如下:
R7=R9 (1)
R8=R10 (2)
R11=R12 (3)
R13=R14 (4)
C6=C7 (5)
C8=C9 (6)
Ugsth<Us (7)
本发明工作过程如下:
(1)辅助电源电压的产生:由限流电阻R1、电源电容C1、电源稳压管DW1构成稳压电路,其稳压值即为辅助电源电压Vcc(单位:V),作为控制电路的电源。
(2)充电电压的给定电压信号Vref的产生:由稳压电阻R2、给定电容C2、给定稳压管DW2等产生。
(3)电路工作过程:在本发明电路中,电压运放IC2及其***RC元件组成PI型充电电压闭环调节器,电压反馈信号取自上输出电阻R5、下输出电阻R6、反馈电容C5构成的电压检测电路,电压运放IC2的输出值作为以电流运放IC2及其***RC元件组成PI型充电电流闭环调节器的给定值,而电流反馈信号取自电流传感电阻Rs与检测运放IC4及其***电路等构成的电流放大电路,其中的参数配合关系如式(9)所示。因在充电的动态过程中,电压运放IC2输出饱和,使充电电流保持最大以实现快速充电,稳态时,使超级电容充电电压保持在其额定电压。此外,电流运放IC2的输出信号作为PWM芯片的指令信号以驱动MOS管VT1,并经以MOS管VT1、二极管D1、滤波电感L1、变压电感L2、变压电容C4、超级电容SC1等组成的升降压型DC/DC变换电路进行自动充电控制。

Claims (2)

1.基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路,其特征在于:
电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接;
测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C9、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C9的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C9的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。
2.根据权利要求1所述的基于稳压输出式的超级电容双闭环升降压充电控制电路,其特征在于电路参数配合关系如下:
设:电路供电电压为Us,电路辅助电源电压为Vcc,充电给定电压为Vref,超级电容的额定电压为UscN,超级电容的最大充电电流为Iscm,MOS管栅源极驱动电压阈值为Ugsth,限压稳压管DW2的稳压值为Udw2,R2、R3、R5、R6分别为稳压电阻R2、分压电阻R3、驱动电阻R4、上输出电阻R5、下输出电阻R6的阻值,R7、R8、R9、R10分别为电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10的阻值,R11、R12、R13、R14分别为电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14的阻值,R15、R16分别为负端检测电阻R15、放大电阻R16的阻值,C6、C7、C8、C9分别为电电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9的电容值,电压运放IC2、电流运放IC3、检测运放IC4均为满幅运放;则电路的参数配合关系如下:
R7=R9 (1)
R8=R10 (2)
R11=R12 (3)
R13=R14 (4)
C6=C7 (5)
C8=C9 (6)
Ugsth<Us (7)
CN201810796757.4A 2018-07-19 2018-07-19 基于稳压输出式的超级电容双闭环升降压充电控制电路 Active CN108899951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810796757.4A CN108899951B (zh) 2018-07-19 2018-07-19 基于稳压输出式的超级电容双闭环升降压充电控制电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810796757.4A CN108899951B (zh) 2018-07-19 2018-07-19 基于稳压输出式的超级电容双闭环升降压充电控制电路

Publications (2)

Publication Number Publication Date
CN108899951A true CN108899951A (zh) 2018-11-27
CN108899951B CN108899951B (zh) 2020-08-04

Family

ID=64351081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810796757.4A Active CN108899951B (zh) 2018-07-19 2018-07-19 基于稳压输出式的超级电容双闭环升降压充电控制电路

Country Status (1)

Country Link
CN (1) CN108899951B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445236A (zh) * 2019-07-30 2019-11-12 成都信息工程大学 一种能量转换装置及其工作方法
CN113727264A (zh) * 2020-09-09 2021-11-30 深圳市汇顶科技股份有限公司 用于高电容性负载的驱动器电路装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821386A2 (en) * 2006-02-17 2007-08-22 Power Systems Co., Ltd. Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US20090091300A1 (en) * 2007-10-04 2009-04-09 Broadcom Corporation Collapsing Adaptor Battery Charger
CN202258818U (zh) * 2011-10-09 2012-05-30 黄淮学院 超级电容器电压均衡电路、单级和二级超级电容器模块
CN103956708A (zh) * 2014-04-21 2014-07-30 杭州电子科技大学 低压直流负载过载测控电路
CN105406542A (zh) * 2015-12-11 2016-03-16 上海空间电源研究所 一种超级电容器组压控限流充电电路
CN106410919A (zh) * 2016-11-28 2017-02-15 丽水学院 一种超级电容模组充电电源的控制方法
CN106740153A (zh) * 2016-12-29 2017-05-31 西安电子科技大学 一种用于纯电动车的智能动力电源***
CN107196341A (zh) * 2017-07-10 2017-09-22 华北电力大学(保定) 变功率点跟踪的两级式无储能光伏虚拟同步机控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821386A2 (en) * 2006-02-17 2007-08-22 Power Systems Co., Ltd. Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US20090091300A1 (en) * 2007-10-04 2009-04-09 Broadcom Corporation Collapsing Adaptor Battery Charger
CN202258818U (zh) * 2011-10-09 2012-05-30 黄淮学院 超级电容器电压均衡电路、单级和二级超级电容器模块
CN103956708A (zh) * 2014-04-21 2014-07-30 杭州电子科技大学 低压直流负载过载测控电路
CN105406542A (zh) * 2015-12-11 2016-03-16 上海空间电源研究所 一种超级电容器组压控限流充电电路
CN106410919A (zh) * 2016-11-28 2017-02-15 丽水学院 一种超级电容模组充电电源的控制方法
CN106740153A (zh) * 2016-12-29 2017-05-31 西安电子科技大学 一种用于纯电动车的智能动力电源***
CN107196341A (zh) * 2017-07-10 2017-09-22 华北电力大学(保定) 变功率点跟踪的两级式无储能光伏虚拟同步机控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋凯等: "变负载无线充电***的恒流充电技术", 《电工技术学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445236A (zh) * 2019-07-30 2019-11-12 成都信息工程大学 一种能量转换装置及其工作方法
CN110445236B (zh) * 2019-07-30 2024-04-30 成都信息工程大学 一种能量转换装置及其工作方法
CN113727264A (zh) * 2020-09-09 2021-11-30 深圳市汇顶科技股份有限公司 用于高电容性负载的驱动器电路装置
CN113727264B (zh) * 2020-09-09 2023-10-27 深圳市汇顶科技股份有限公司 用于高电容性负载的驱动器电路装置

Also Published As

Publication number Publication date
CN108899951B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN105356734B (zh) 一种基于COT控制含纹波补偿的Buck电路电源管理芯片
CN106374599A (zh) 一种电动车智能充电器
CN106787088A (zh) 应用于非连续压电能量采集***的自供电电源管理电路
CN201674260U (zh) 一种智能型充电器
CN103856086A (zh) 一种电流互感器取电控制方法及***
CN108899951A (zh) 基于稳压输出式的超级电容双闭环升降压充电控制电路
CN201674261U (zh) 一种智能型电池充电器
CN207218539U (zh) 一种双管正激式恒流电源
CN204578367U (zh) 一种boost电路拓扑结构的开关电源
CN206673569U (zh) 开关电源的输出保护电路
CN203553910U (zh) 蓄电池充电保护电路
CN102075093B (zh) 一种宽范围输入电压高精度自动稳压输出电路
CN204304810U (zh) 一种桥式电路及其驱动电路
CN206117268U (zh) 基于cm6800芯片的数控动态输出充电机
CN205092770U (zh) 电源升压管理电路
CN110696672B (zh) 一种实现动力电池快速充电的***
CN109066946A (zh) 一种基于限压跟踪式的超级电容双闭环降压充电控制电路
CN107658941A (zh) 一种车载发电机组直流操作电源的充电装置
CN103944386B (zh) Dc-dc升压转换装置及其升压转换工作方法
CN209299141U (zh) 一种可调电压变换器
CN113489120A (zh) 一种智能充电电路及智能充电方法
CN206743112U (zh) 一种低成本高可靠性彝药生产隔离型开关电源
CN209217735U (zh) 充电器输出电压自动调节电路
CN106160528A (zh) 一种开关电源
CN206712666U (zh) 一种光伏输入型开关电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220217

Address after: Room 2242, No. 3, Xuanhua Road, Changning District, Shanghai 200050

Patentee after: CHINA ELECTRONIC SYSTEMS TECHNOLOGY Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University

TR01 Transfer of patent right