CN108896470B - 基于led阵列的微流通道旋转细胞相衬成像方法及*** - Google Patents

基于led阵列的微流通道旋转细胞相衬成像方法及*** Download PDF

Info

Publication number
CN108896470B
CN108896470B CN201810856988.XA CN201810856988A CN108896470B CN 108896470 B CN108896470 B CN 108896470B CN 201810856988 A CN201810856988 A CN 201810856988A CN 108896470 B CN108896470 B CN 108896470B
Authority
CN
China
Prior art keywords
cell
rotating
phase contrast
module
contrast imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810856988.XA
Other languages
English (en)
Other versions
CN108896470A (zh
Inventor
刘子骥
张铭
郭泽宇
石***
徐灿明
蒋亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810856988.XA priority Critical patent/CN108896470B/zh
Publication of CN108896470A publication Critical patent/CN108896470A/zh
Application granted granted Critical
Publication of CN108896470B publication Critical patent/CN108896470B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

发明公开了一种基于LED阵列的微流通道旋转细胞相衬成像方法及***,沿着光路传递方向依次包括:LED阵列、微流通道、显微镜、Cmos相机采集模块,还包括旋转细胞特征提取和识别模块、测细胞旋转量模块、细胞模糊消除模块、图像细胞旋转校正模块、旋转细胞相衬成像模块;相衬成像是透明样品成像的最有效方法,它可以获得普通强度成像无法看到的样本的轮廓细节,本发明方法能消除微流通道中在一个曝光时间内细胞快速运动造成的模糊。此发明方法中使用LED作为非对称光源来分析研究微流通道中旋转细胞图像相衬成像,在针对非对称照明情况下,微流通道所有运动形式的细胞都能得到完美的成像,辅助我们的细胞形态学分析和学习。

Description

基于LED阵列的微流通道旋转细胞相衬成像方法及***
技术领域
本发明属于显微相衬成像技术领域,具体涉及一种基于LED阵列的微流通道旋转细胞相衬成像方法及***。
背景技术
实验室芯片(LOC)装置的最新技术最近发生了令人印象深刻的增长,它允许在微观尺度上实现了紧凑的结构,使得能够处理诸如反应剂、微细胞等的样品。在这个结构中,应用于微流器件的光学显微镜已经成为越来越多关注的问题,用于实时观察微流道中的生物化学过程、计数、速度测量等。
生物和医学方面在生物细胞样本形态分析、结构、识别等中都有着显著的成像,和在生物样本分析向微型化、细节化、活体、运动和机体样本介入式多维动态观测的振幅、相位梯度、三维信息需求,促使生物样本在微流通道中显微成像应用,比如HOM(HolographicOptofluidic Microscopy)、OFM(Optofluidic Microscopy)、DH(Digital Holography)、ML-DH(Multi-Look Digital Holography microscopy)等在微流通道方面得到应用,他们普遍采用的是LED单光源、X射线、角度调制激光光源、Mach-Zelnder调制激光光源等,实现非染色活体细胞相位梯度信息提取。这些光源在细胞相位信息获取方面可以产生调制的非对称光,普遍具有较为复杂的运动同步机械结构,且在视场较小,结构复杂(单像素、扫描式)。因此在这方面我们提出了一种全新的可编程的基于静态照明技术的LED阵列结构光源来替代这些光源,这可以使我们获得更大的FOV和高NA值的视场,以提高图像的高频细节分辨力,同时非对称光照明图样布局灵活和控制简单,在应用中更为灵活,如Laura团队关于定量相位成像(QPI)、三维多层成像、实时定量相位成像以及Zheng团队在超分辨FPM成像等一系列方面的应用,LED平台显微镜应用广泛,在同一硬件平台下能实现不同的应用需求,具有高速多模式多维度的特点。
在微流通道中,大部分悬浮样本细胞在高响应曝光时间下基本无旋转和运动情况基本一致,但是少部分细胞运动速度过快和旋转,造成最后相衬成像情况下,不能精确将旋转细胞进行匹配和校正。但是在于生物分析中,需要将更加全面和和准确的细胞相衬信息,因此,本发明中,我们创新性的提出了旋转细胞处理方法。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于LED阵列的微流通道旋转细胞相衬成像方法及***。
为实现上述发明目的,本发明技术方案如下:
一种基于LED阵列的微流通道旋转细胞相衬成像***,顺着光路传递方向依次包括:LED阵列、微流通道、显微镜、Cmos相机采集模块,还包括旋转细胞特征提取和识别模块、测细胞旋转量模块、细胞模糊消除模块、图像细胞旋转校正模块、旋转细胞相衬成像模块;
LED阵列平行设置于微流通道的上方,微流通道置于显微镜的载物平台上,Cmos相机采集模块置于显微镜的前端摄像出口;
其中LED阵列用于产生相衬成像所需的非对称光,该非对称光照射在通有流通细胞样本的微流通道,微流通道用于控制悬浮细胞液的定向运动,显微镜用于放大微流通道中样本信息,Cmos相机采集模块与LED阵列之间电压信息相互反馈控制,Cmos相机采集模块依照非对称照明花样变化顺序连续采集微流通道中旋转细胞图像信息,然后在计算机中利用旋转细胞特征提取和识别模块提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况。
作为优选方式,旋转细胞相衬成像模块在细胞模糊消除模块完成重影消除之后直接利用上下、左右半圆照明模式进行上下对比相衬成像和左右对比相衬成像。
作为优选方式,细胞模糊消除模块使用最小二乘法对采集的细胞样本图像进行重影消除。
作为优选方式,本***在利用旋转细胞相衬成像模块对流动旋转细胞相衬结构成像时,是基于非对称照明方式来编辑LED照明花样,形成非对称光,使通过样本细胞光程发生差异产生相位变化,结合相衬成像原理以及利用旋转细胞特征提取和识别模块和图像细胞旋转校正模块,达到对个别旋转细胞的精确相衬成像。
为实现上述发明目的,本发明还提供一种基于LED阵列的微流通道旋转细胞相衬成像的方法,所述方法为:LED阵列产生相衬成像的非对称光,该非对称光照射在通有流通细胞样本的微流通道,微流通道控制悬浮细胞液的定向运动,显微镜放大微流通道中样本信息,Cmos相机采集模块与LED阵列之间电压信息相互反馈控制,Cmos相机采集模块连续采集在非对称照明下微流通道中旋转细胞图像信息,然后在计算机中利用图像中旋转细胞特征提取和识别模块提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况。
作为优选方式,旋转细胞相衬成像模块在细胞模糊消除模块完成重影消除之后直接利用上下、左右半圆照明模式进行上下相衬成像和左右相衬成像。
作为优选方式,细胞模糊消除模块使用最小二乘法对采集的细胞样本图像进行重影消除。
作为优选方式,本***在利用旋转细胞相衬成像模块对流动旋转细胞相衬结构成像时,是基于非对称照明方式来编辑LED照明花样,形成非对称光,使通过样本细胞光程发生差异产生相位变化,结合相衬成像原理以及利用旋转细胞特征提取和识别模块和图像细胞旋转校正模块,达到对个别旋转细胞的精确相衬成像。
作为优选方式,所述方法包括如下步骤:
(1)基于LED阵列光源对显微镜***进行校准,使LED灯板亮场情况下完全处于显微镜物镜视场之中;
(2)设置LED阵列照明花样,使Cmos相机采集和LED阵列照明花样变化同步;
(3)在微流通道中注入细胞悬浮液;
(4)控制相机和LED阵列照明花样变化,采集细胞通过微流通道的光强度图像;
(5)针对旋转细胞进行细胞边缘提取,识别和匹配下一幅LED照明花样采集图像中同一旋转细胞;
(6)对相匹配细胞的旋转量进行计算,并且对细胞在快速流动过程产生的模糊进行消除;
(7)基于旋转方向和旋转角度大小对连续采集两幅图像之间旋转细胞校正;
(8)利用非对称照明相衬成像原理合成这些旋转细胞相衬成像结果。
作为优选方式,步骤(1)中校准利用视场中心正方形分布的9颗LED,在4倍物镜下衍射图样呈左右上下镜像分布。
本发明利用LED阵列照明的微流道中旋转细胞暗场、DPC成像的显微方法,包括运动模糊消除、旋转细胞校正、非对称照明成像。LED非对称照明圆半径由实验中使用的物镜的最大视场下LED阵列中最大LED的颗数决定,LED阵列与相机同步,以100Hz帧速率捕获流细胞图像,并恢复和提取暗场和DPC图像。可以获取通道中的细胞的3D和层析成像信息。通过LED照明***的驱动方式和功率的优化,相机的工作速度和灵敏度的改进,可以有效降低曝光时间,从而能更准确地检测通道中流速更快的目标特征。
本发明的有益效果为:相衬成像是透明样品成像的最有效方法,它可以获得普通强度成像无法看到的样本的轮廓细节。能消除微流通道中在一个曝光时间内细胞快速运动造成的模糊。此发明方法中使用LED作为非对称光源研究微流通道中旋转细胞图像相衬成像手段,在针对非对称照明情况下,微流通道所有运动形式的细胞都能得到很好的成像,辅助我们的细胞形态学分析和学习。
附图说明
图1是本发明中基于LED阵列的微流通道旋转细胞相衬成像的设备示意图;
图2是本发明中获取采集图像信息后的旋转细胞相位信息处理流程图。
图3是本发明中LED阵列照明花样分布图。
图4是本发明中LED阵列照明源显微镜***校准效果图。
1为LED阵列、2为微流通道、3为显微镜、4为Cmos相机采集模块、5为旋转细胞特征提取和识别模块、6为测细胞旋转量模块、7为细胞模糊消除模块、8为图像细胞旋转校正模块、9为旋转细胞相衬成像模块。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
图3是本发明中LED阵列照明花样分布图,从左往右分别为左半圆照明,右半圆照明,暗场照明,上半圆照明和下半圆照明五种模式。
图4是本发明中LED阵列照明源显微镜***校准效果图,其校准利用视场中心正方形分布的9颗LED,在4倍物镜下获得的呈左右上下镜像分布的衍射图样。
一种基于LED阵列的微流通道旋转细胞相衬成像***,顺着光路传递方向依次包括:LED阵列1、微流通道2、显微镜3、Cmos相机采集模块4,还包括旋转细胞特征提取和识别模块5、测细胞旋转量模块6、细胞模糊消除模块7、图像细胞旋转校正模块8、旋转细胞相衬成像模块9;
LED阵列1平行设置于微流通道2的上方,微流通道2置于显微镜3的载物平台上,Cmos相机采集模块4置于显微镜3的前端摄像出口。
其中LED阵列用于产生相衬成像所需的非对称光,该非对称光照射在通有流通细胞样本的微流通道2,微流通道2用于控制悬浮细胞液的定向运动,显微镜3用于放大微流通道中样本信息,Cmos相机采集模块4与LED阵列1之间电压信息相互反馈控制,Cmos相机采集模块4依照非对称照明花样变化顺序连续采集微流通道2中旋转细胞图像信息,然后在计算机中利用旋转细胞特征提取和识别模块5提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块6测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块7对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块8利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块9对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况。
旋转细胞相衬成像模块9在细胞模糊消除模块7完成重影消除之后直接利用上下、左右半圆照明模式进行上下对比相衬成像和左右对比相衬成像。
细胞模糊消除模块7使用最小二乘法对采集的细胞样本图像进行重影消除。
本***在利用旋转细胞相衬成像模块9对流动旋转细胞相衬结构成像时,是基于非对称照明方式来编辑LED照明花样,形成非对称光,使通过样本细胞光程发生差异产生相位变化,结合相衬成像原理以及利用旋转细胞特征提取和识别模块5和图像细胞旋转校正模块8,达到对个别旋转细胞的精确相衬成像。
本实施例还提供一种基于LED阵列的微流通道旋转细胞相衬成像的方法,所述方法为:LED阵列产生相衬成像的非对称光,该非对称光照射在通有流通细胞样本的微流通道2,微流通道2控制悬浮细胞液的定向运动,显微镜3放大微流通道中样本信息,Cmos相机采集模块4与LED阵列1之间电压信息相互反馈控制,Cmos相机采集模块4连续采集在非对称照明下微流通道2中旋转细胞图像信息,然后在计算机中利用图像中旋转细胞特征提取和识别模块5提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块6测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块7对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块8利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块9对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况。
所述方法具体包括如下步骤:
(1)基于LED阵列光源对显微镜***进行校准,使LED灯板亮场情况下完全处于显微镜物镜视场之中;
(2)设置LED阵列照明花样,使Cmos相机采集和LED阵列照明花样变化同步;
(3)在微流通道中注入细胞悬浮液;
(4)控制相机和LED阵列照明花样变化,采集细胞通过微流通道的光强度图像;
(5)针对旋转细胞进行细胞边缘提取,识别和匹配下一幅LED照明花样采集图像中同一旋转细胞;
(6)对相匹配细胞的旋转量进行计算,并且对细胞在快速流动过程产生的模糊进行消除;
(7)基于旋转方向和旋转角度大小对连续采集两幅图像之间旋转细胞校正;
(8)利用非对称照明相衬成像原理合成这些旋转细胞相衬成像结果。
作为优选方式,步骤(1)中校准利用视场中心正方形分布的9颗LED,在4倍物镜下衍射图样呈左右上下镜像分布。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

1.一种基于LED阵列的微流通道旋转细胞相衬成像***,其特征在于:顺着光路传递方向依次包括:LED阵列(1)、微流通道(2)、显微镜(3)、Cmos相机采集模块(4),还包括旋转细胞特征提取和识别模块(5)、测细胞旋转量模块(6)、细胞模糊消除模块(7)、图像细胞旋转校正模块(8)、旋转细胞相衬成像模块(9);
LED阵列(1)平行设置于微流通道(2)的上方,微流通道(2)置于显微镜(3)的载物平台上,Cmos相机采集模块(4)置于显微镜(3)的前端摄像出口;
其中LED阵列用于产生相衬成像所需的非对称光,该非对称光照射在通有流通细胞样本的微流通道(2)上,微流通道(2)用于控制悬浮细胞液的定向运动,显微镜(3)用于放大微流通道中样本信息,Cmos相机采集模块(4)与LED阵列(1)之间电压信息相互反馈控制,Cmos相机采集模块(4)依照非对称照明花样变化顺序连续采集微流通道(2)中旋转细胞图像信息,然后在计算机中利用旋转细胞特征提取和识别模块(5)提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块(6)测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块(7)对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块(8)利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块(9)对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况;
旋转细胞相衬成像模块(9)在细胞模糊消除模块(7)完成重影消除之后直接利用上下、左右半圆照明模式进行上下对比相衬成像和左右对比相衬成像;
细胞模糊消除模块(7)使用最小二乘法对采集的细胞样本图像进行重影消除;
本***在利用旋转细胞相衬成像模块(9)对流动旋转细胞相衬结构成像时,是基于非对称照明方式来编辑LED照明花样,形成非对称光,使通过样本细胞光程发生差异产生相位变化,结合相衬成像原理以及利用旋转细胞特征提取和识别模块(5)和图像细胞旋转校正模块(8),达到对个别旋转细胞的精确相衬成像。
2.一种基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:
LED阵列产生相衬成像的非对称光,该非对称光照射在通有流通细胞样本的微流通道(2),微流通道(2)控制悬浮细胞液的定向运动,显微镜(3)放大微流通道中样本信息,Cmos相机采集模块(4)与LED阵列(1)之间电压信息相互反馈控制,Cmos相机采集模块(4)连续采集在非对称照明下微流通道(2)中旋转细胞图像信息,然后在计算机中利用图像中旋转细胞特征提取和识别模块(5)提取连续相邻采集两幅图像之间的旋转细胞位置信息和识别相邻两幅图中是否为同一旋转细胞,测细胞旋转量模块(6)测量旋转细胞的旋转方向和旋转角度大小,细胞模糊消除模块(7)对采集的细胞样本图像进行重影消除,图像细胞旋转校正模块(8)利用同一旋转细胞之间的旋转量对连续相邻两幅图像依照旋转方向和旋转角度进行旋转细胞旋转复原,利用旋转细胞相衬成像模块(9)对细胞图像进行上下、左右相衬对比成像观察细胞流动过程中形态变化情况。
3.根据权利要求2的基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:旋转细胞相衬成像模块(9)在细胞模糊消除模块(7)完成重影消除之后直接利用上下、左右半圆照明模式进行上下相衬成像和左右相衬成像。
4.根据权利要求2的基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:细胞模糊消除模块(7)使用最小二乘法对采集的细胞样本图像进行重影消除。
5.根据权利要求2的基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:本方法在利用旋转细胞相衬成像模块(9)对流动旋转细胞相衬结构成像时,是基于非对称照明方式来编辑LED照明花样,形成非对称光,使通过样本细胞光程发生差异产生相位变化,结合相衬成像原理以及利用旋转细胞特征提取和识别模块(5)和图像细胞旋转校正模块(8),达到对个别旋转细胞的精确相衬成像。
6.根据权利要求2的基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:包括如下步骤:
(1)基于LED阵列光源对显微镜***进行校准,使LED灯板亮场情况下完全处于显微镜物镜视场之中;
(2)设置LED阵列照明花样,使Cmos相机采集和LED阵列照明花样变化同步;
(3)在微流通道中注入细胞悬浮液;
(4)控制相机和LED阵列照明花样变化,采集细胞通过微流通道的光强度图像;
(5)针对旋转细胞进行细胞边缘提取,识别和匹配下一幅LED照明花样采集图像中同一旋转细胞;
(6)对相匹配细胞的旋转量进行计算,并且对细胞在快速流动过程产生的模糊进行消除;
(7)基于旋转方向和旋转角度大小对连续采集两幅图像之间旋转细胞校正;
(8)利用非对称照明相衬成像原理合成这些旋转细胞相衬成像结果。
7.根据权利要求6的基于LED阵列的微流通道旋转细胞相衬成像的方法,其特征在于:步骤(1)中校准利用视场中心正方形分布的9颗LED,在4倍物镜下衍射图样呈左右上下镜像分布。
CN201810856988.XA 2018-07-31 2018-07-31 基于led阵列的微流通道旋转细胞相衬成像方法及*** Expired - Fee Related CN108896470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810856988.XA CN108896470B (zh) 2018-07-31 2018-07-31 基于led阵列的微流通道旋转细胞相衬成像方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810856988.XA CN108896470B (zh) 2018-07-31 2018-07-31 基于led阵列的微流通道旋转细胞相衬成像方法及***

Publications (2)

Publication Number Publication Date
CN108896470A CN108896470A (zh) 2018-11-27
CN108896470B true CN108896470B (zh) 2021-03-16

Family

ID=64352769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810856988.XA Expired - Fee Related CN108896470B (zh) 2018-07-31 2018-07-31 基于led阵列的微流通道旋转细胞相衬成像方法及***

Country Status (1)

Country Link
CN (1) CN108896470B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123497B (zh) * 2020-01-21 2021-07-20 电子科技大学 一种基于led阵列照明的显微镜光学装置及其校准方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765138A (zh) * 2015-04-17 2015-07-08 南京理工大学 基于led阵列的多模式显微成像***及其方法
CN108537842A (zh) * 2017-12-29 2018-09-14 南京理工大学 差分相衬显微成像中背景非均匀性的校正与补偿方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043506A1 (en) * 2002-08-30 2004-03-04 Horst Haussecker Cascaded hydrodynamic focusing in microfluidic channels
US8293524B2 (en) * 2006-03-31 2012-10-23 Fluxion Biosciences Inc. Methods and apparatus for the manipulation of particle suspensions and testing thereof
CN105158887B (zh) * 2015-09-29 2017-09-22 南京理工大学 基于可编程led阵列照明的多模式显微成像方法
CN107300762A (zh) * 2016-04-15 2017-10-27 南京理工大学 一种相衬显微成像装置及方法
CN106768396A (zh) * 2016-12-23 2017-05-31 电子科技大学 一种基于微分相衬成像还原定量相位图像的方法及***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765138A (zh) * 2015-04-17 2015-07-08 南京理工大学 基于led阵列的多模式显微成像***及其方法
CN108537842A (zh) * 2017-12-29 2018-09-14 南京理工大学 差分相衬显微成像中背景非均匀性的校正与补偿方法

Also Published As

Publication number Publication date
CN108896470A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
US11307398B2 (en) Method for generating and analyzing an overview contrast image
Yasuda et al. Development of a high speed imaging microscope and new software for nuclear track detector analysis
Taylor et al. The new vision of light microscopy
US20110001036A1 (en) system for imaging an object
CN107966801A (zh) 一种基于环形照明的高速傅立叶叠层成像装置及重构方法
CN112130309B (zh) 一种小型化、低成本、多衬度无标记显微成像***
CN110246083B (zh) 一种荧光显微图像超分辨率成像方法
CN112236705A (zh) 借助于光场相机对医学样本进行三维分析的分析仪
Moscelli et al. An imaging system for real-time monitoring of adherently grown cells
WO2019010897A1 (zh) 一种微纳米纤维素的动态表征方法
US20170045439A1 (en) Method and system for detecting at least one particle in a bodily fluid, and associated method for diagnosing meningitis
CN105954194B (zh) 一种基于光锥的便携式光流控显微成像装置及***
CN108896470B (zh) 基于led阵列的微流通道旋转细胞相衬成像方法及***
Guo et al. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip
JP2015031831A (ja) 細胞追跡装置及び方法、細胞追跡プログラム
CN111123497B (zh) 一种基于led阵列照明的显微镜光学装置及其校准方法
Ma et al. Light-field tomographic fluorescence lifetime imaging microscopy
JP7256125B2 (ja) 細胞分析方法及び装置
CN115629072A (zh) 一种骨髓涂片图像分析诊断方法及病理切片扫描仪装置
CN115774327A (zh) 一种集成照明调制和瞳孔调制的定量差分相衬显微镜
CN112798504B (zh) 大视场高通量流式细胞分析***及分析方法
CN114926357A (zh) 计算显微成像***的led阵列光源位姿自校正方法
Chen et al. Random positional deviations correction for each LED via ePIE in Fourier ptychographic microscopy
US11422355B2 (en) Method and system for acquisition of fluorescence images of live-cell biological samples
Dai et al. Cell image reconstruction for a lens-free imaging system based on linear array sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210316

Termination date: 20210731