CN108871262A - 大埋深洞室挤压型围岩大变形判别方法 - Google Patents

大埋深洞室挤压型围岩大变形判别方法 Download PDF

Info

Publication number
CN108871262A
CN108871262A CN201810245461.3A CN201810245461A CN108871262A CN 108871262 A CN108871262 A CN 108871262A CN 201810245461 A CN201810245461 A CN 201810245461A CN 108871262 A CN108871262 A CN 108871262A
Authority
CN
China
Prior art keywords
stress
rock
large deformation
cavern
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810245461.3A
Other languages
English (en)
Other versions
CN108871262B (zh
Inventor
丁秀丽
黄书岭
裴启涛
张雨霆
秦洋
吴勇进
刘登学
董志宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Original Assignee
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang River Scientific Research Institute Changjiang Water Resources Commission filed Critical Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority to CN201810245461.3A priority Critical patent/CN108871262B/zh
Publication of CN108871262A publication Critical patent/CN108871262A/zh
Application granted granted Critical
Publication of CN108871262B publication Critical patent/CN108871262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种大埋深洞室挤压型围岩大变形判别方法,能够快速可靠地预测出深埋洞室工程围岩的计算点是否会发生大变形,步骤包括:进行原位地应力测试,并获取侧压力系数λ和最大主应力值σ0max;钻取岩芯,加工成圆柱形岩样;对岩样进行单轴压缩试验,获得天然含水率下岩石单轴抗压强度σc;根据地下洞室的应力环境计算获得自重应力场或者构造应力场下的岩石强度应力比值SSR;根据获得的自重应力场或者构造应力场下的岩石强度应力比值SSR判断是否会发生围岩挤压大变形。本发明用于大埋深洞室围岩挤压大变形发生的判断和预测,能够对深埋洞室的稳定性评价和永久支护设计的优化。

Description

大埋深洞室挤压型围岩大变形判别方法
技术领域
本发明涉及地质勘探技术领域,具体地指一种大埋深洞室挤压型围岩大变形判别方法,适用于以挤压型破坏模式为主的大埋深洞室围岩稳定性评价和永久支护设计的优化。
背景技术
深埋复杂地质环境下赋存的高地应力与软弱围岩的低强度之间存在十分突出的矛盾,洞室开挖卸荷后,洞周围压迅速解除,在高应力差的作用下围岩极易产生大变形失稳。工程实践和研究表明,深埋地下工程中围岩大变形主要包括挤压型、膨胀型和坍塌型三类。在高地应力环境下洞室发生的大变形灾害大多是因为开挖引起的重分布应力超过了岩体强度而使围岩产生显著的塑性变形,即挤压型大变形。可见,围岩挤压型大变形失稳是深埋地下洞室施工中最常见且难以控制的灾变模式之一,开展围岩挤压型大变形的分析及预测对于指导深埋洞室的设计与施工具有十分重要的意义。
与一般的浅埋洞室工程相比,深埋洞室工程的赋存环境较为复杂,常面临着高地应力、高地温、高水压等“三高”问题以及其它难以预料的地质灾害。高地应力作为影响深埋洞室工程围岩稳定性的关键控制因素之一,使得围岩大部分处于高围压状态,从岩石力学室内试验和现场测试的角度来揭示围岩强度应力比的影响效应,进而为围岩大变形特征的识别提供了一种行之有效的途径。然而,该方面的现有成果相对较少,尚未建立起合理反映高应力条件下围岩大变形的分析理论与方法。如何构建深埋洞室工程挤压型围岩大变形的发生判据,并结合简易的室内试验及现场测试成果,准确、快速、高效地判别深埋洞室挤压型围岩大变形的发生部位,是亟需解决的关键技术问题。
发明内容
本发明要解决的技术问题是:针对上述存在的问题,提供一种大埋深洞室挤压型围岩大变形判别方法,其形式简单、物理意义明确、指标易获取,可以较为准确且快速地预测出深埋洞室围岩大变形的发生部位,为提高深埋洞室的整体稳定和支护时机的优化设计提供了技术支撑。
为达到上述目的,本发明提及的一种大埋深洞室挤压型围岩大变形判别方法,其特殊之处在于,所述方法包括如下步骤:
步骤1:在施工现场勘探平硐内进行原位地应力测试,获取该断面处应力张量主平面上的最大侧压力系数λ及原位最大主应力值σ0max,当λ≤1时地下洞室的应力环境为自重应力场,λ>1时地下洞室的应力环境为构造应力场;
步骤2:在地应力测试部位钻取岩芯;及时将岩芯加工成圆柱形岩样;
步骤3:对所述圆柱形岩样进行单轴压缩试验,获得圆柱形岩样在天然含水率下的单轴抗压强度σc
步骤4:根据地下洞室的应力环境计算自重应力场下或者构造应力场下的岩石强度应力比值其中σθmax_grav为自重应力场下的洞室应力集中最大值,σθmax_tect为构造应力场下的洞室应力集中最大值;
步骤5:根据获得的自重应力场或者构造应力场下的岩石强度应力比值采用判断是否会发生围岩挤压大变形,当SSR大于1时,判别为会发生围岩挤压大变形,否则判别为不会发生围岩挤压大变形。
优选地,所述步骤1中,所述原位地应力测试通过地应力测试仪器实现,为地应力测试仪器为空心包体式钻孔三向应变计。
优选地,所述步骤2中,将钻取的岩芯加工成直径和高度比为1:2的圆柱形岩样,并进行岩芯蜡封和保湿处理,及时将岩芯加工成圆柱形岩样,防止岩样的强度应力比值SSR受其它外界因素的影响。
优选地,所述步骤3中,所述单轴压缩试验通过单轴压缩仪实现,所述单轴压缩仪为伺服刚性试验机。
优选地,所述步骤4中,自重应力场下的洞室应力集中最大值σθmax_grav的计算方法为σθmax_grav=(3-λ)σ0max
优选地,所述步骤4中,构造应力场下的洞室应力集中最大值σθmax_tect的计算方法为
与现有技术相比,本发明一种大埋深洞室挤压型围岩大变形判别方法,能够准确快速地对大埋深洞室围岩挤压大变形发生进行判断和预测,当SSR的值大于1时,判别为会发生围岩挤压大变形,否则判别为不会发生围岩挤压大变形。本发明提出的大埋深洞室挤压型围岩大变形判别方法可为提高深埋洞室的整体稳定和支护时机的优化设计提供技术支撑,提高施工效率,降低了工程造价。
附图说明
图1为本发明大埋深洞室挤压型围岩大变形判别方法的流程图。
具体实施方式
下面结合附图及实施例对本发明作进一步的详细描述,但该实施例不应理解为对本发明的限制。
如图1所示,本发明一种大埋深洞室挤压型围岩大变形判别方法的实施步骤如下:
步骤1:在施工现场勘探平硐内选取典型断面进行原位地应力测试,本例中地应力测试仪器为空心包体式钻孔三向应变计,测试方法为应力解除法,获取该断面处的空间应力分布状态以及应力张量在主平面上的最大侧压力系数λ及原位最大主应力值σ0max,当λ≤1时地下洞室的应力环境为自重应力场,λ>1时地下洞室的应力环境为构造应力场。
步骤2:在步骤1地应力测试部位附近钻取岩芯,并蜡封和保湿;及时将岩芯加工成直径和高度比为1:2的圆柱形岩样,防止岩样的强度应力比值SSR受其它外界因素的影响;该圆柱形岩样的直径为50mm、高度为100mm。
步骤3:采用伺服刚性试验机对上述圆柱形岩样进行单轴压缩试验,获得圆柱形岩样在天然含水率下的单轴抗压强度σc
步骤4:根据地下洞室的应力环境计算自重应力场下的洞室应力集中最大值σθmax_grav=(3-λ)σ0max或者构造应力场下的洞室应力集中最大值进而计算获得自重应力场或者构造应力场下的岩石强度应力比值用于大埋深洞室围岩挤压大变形发生的判断和预测。
步骤5:根据获得的自重应力场或者构造应力场下的岩石强度应力比值采用判断是否会发生围岩挤压大变形。当SSR大于1时,判别为会发生围岩挤压大变形,否则判别为不会发生围岩挤压大变形。
判别为会发生围岩挤压大变形,则采取加强支护及优化支护时机的措施,判别为不会发生围岩挤压大变形,则优化支护设计、降低地应力测试部位区域的支护强度。
上述自重应力场和构造应力场下的岩石强度应力比值SSRgrav及SSRtect两个公式的推导过程如下:
对于深埋洞室工程,假设洞室开挖前岩石处于各向同性的弹性状态,将洞室当作平面应变问题,可利用弹性力学理论求解在极坐标系下距洞室中心距离r处的任意一点应力张量在主平面上的地应力状态,如下
式中,σr为计算点在极坐标系下的径向应力,σ1、σ2分别为应力张量在主平面上的两个主应力(当忽略剪切应力时,σ1、σ2分别为水平方向及铅直方向的主应力),a为洞室半径,r为计算点距离洞室中心的距离,θ为极坐标下的计算点与洞室中心连线绕r轴的转角,下同。
式中,σθ为计算点在极坐标系下的切向应力。
式中,τ为计算点在极坐标系下的剪切应力。
对于以自重应力场为主的深埋洞室工程,即最大侧压力系数
当cos2θ=1时,洞周围岩最大切向应力σθmax为:
当a=r时,洞周最大应力集中系数为:
则洞周最大集中应力为:
σθmax_grav=(3-λ)σ0max (6)
洞室开挖后,岩石单轴抗压强度与洞周最大切向应力的强度应力比值SSR为:
式中,σc是天然含水率下的岩石单轴抗压强度。
对于以构造应力场为主的深埋洞室工程,即最大侧压力系数当cos2θ=-1时,洞周围岩最大切向应力为:
当a=r时,洞周最大应力集中系数为:
则洞周最大集中应力为:
洞室开挖后,岩石单轴抗压强度与洞周最大切向应力的强度应力比值SSR为:
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式的具体变换,这些均属于本发明的保护范围内。

Claims (6)

1.一种大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述方法包括如下步骤:
步骤1:在施工现场勘探平硐内进行原位地应力测试,获取该断面处应力张量主平面上的最大侧压力系数λ及原位最大主应力值σ0max,当λ≤1时地下洞室的应力环境为自重应力场,λ>1时地下洞室的应力环境为构造应力场;
步骤2:在地应力测试部位钻取岩芯;及时将岩芯加工成圆柱形岩样;
步骤3:对所述圆柱形岩样进行单轴压缩试验,获得圆柱形岩样在天然含水率下的单轴抗压强度σc
步骤4:根据地下洞室的应力环境计算自重应力场下或者构造应力场下的岩石强度应力比值其中σθmax_grav为自重应力场下的洞室应力集中最大值,σθmax_tect为构造应力场下的洞室应力集中最大值;
步骤5:根据获得的自重应力场或者构造应力场下的岩石强度应力比值采用判断是否会发生围岩挤压大变形,当SSR大于1时,判别为会发生围岩挤压大变形,否则判别为不会发生围岩挤压大变形。
2.根据权利要求1所述的大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述步骤1中,所述原位地应力测试采用应力解除法通过地应力测试仪器实现,地应力测试仪器为空心包体式钻孔三向应变计。
3.根据权利要求1所述的大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述步骤2中,将钻取的岩芯加工成直径和高度比为1:2的圆柱形岩样,并进行岩芯蜡封和保湿处理。
4.根据权利要求1所述的大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述步骤3中,所述单轴压缩试验通过单轴压缩仪实现,所述单轴压缩仪为伺服刚性试验机。
5.根据权利要求1所述的大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述步骤4中,自重应力场下的洞室应力集中最大值σθmax_grav的计算方法为σθmax_grav=(3-λ)σ0max
6.根据权利要求1所述的大埋深洞室挤压型围岩大变形判别方法,其特征在于:所述步骤4中,构造应力场下的洞室应力集中最大值σθmax_tect的计算方法为
CN201810245461.3A 2018-03-23 2018-03-23 大埋深洞室挤压型围岩大变形判别方法 Active CN108871262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810245461.3A CN108871262B (zh) 2018-03-23 2018-03-23 大埋深洞室挤压型围岩大变形判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810245461.3A CN108871262B (zh) 2018-03-23 2018-03-23 大埋深洞室挤压型围岩大变形判别方法

Publications (2)

Publication Number Publication Date
CN108871262A true CN108871262A (zh) 2018-11-23
CN108871262B CN108871262B (zh) 2019-06-18

Family

ID=64326201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810245461.3A Active CN108871262B (zh) 2018-03-23 2018-03-23 大埋深洞室挤压型围岩大变形判别方法

Country Status (1)

Country Link
CN (1) CN108871262B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110569606A (zh) * 2019-09-11 2019-12-13 长江水利委员会长江科学院 峡谷高应力区硬岩大型地下洞室轴线布置量化设计方法
CN111412885A (zh) * 2020-04-23 2020-07-14 长江水利委员会长江科学院 大埋深隧洞挤压型围岩大变形预测方法
CN111425252A (zh) * 2020-03-31 2020-07-17 中铁二院工程集团有限责任公司 隧道构造软岩大变形分级方法
CN111504252A (zh) * 2020-04-23 2020-08-07 长江水利委员会长江科学院 一种长距离隧洞膨胀性围岩变形超前预测预报方法
CN111551427A (zh) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 一种深埋长隧洞软质岩大变形超前量化预报方法
CN111551438A (zh) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 大埋深隧洞软岩大变形锚固控制效果评价方法
CN112985988A (zh) * 2021-02-18 2021-06-18 水电水利规划设计总院有限公司 一种用于非圆形断面坚硬完整围岩片帮破坏深度判别方法
CN115660420A (zh) * 2022-10-26 2023-01-31 中铁二院工程集团有限责任公司 一种无砟轨道铁路隧道底部***变形风险等级的分级方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120761A1 (en) * 2002-10-31 2004-06-24 Naum Sapozhnikov Concrete pavement with the preset strength safety level for highways and streets
CN102645383A (zh) * 2012-04-06 2012-08-22 中冶集团资源开发有限公司 利用三轴压缩测量岩石不连续剪切面抗剪强度的方法
CN103076245A (zh) * 2012-12-28 2013-05-01 长江水利委员会长江科学院 一种深埋硬岩力学参数变化规律与取值的测定方法
CN103198218A (zh) * 2013-04-01 2013-07-10 中铁工程设计咨询集团有限公司 近接隧道对高速铁路路基的风险评估方法和装置
CN103266902A (zh) * 2013-06-14 2013-08-28 中国水电顾问集团成都勘测设计研究院 地下洞室群布置设计方法
CN103362551A (zh) * 2013-07-23 2013-10-23 中国矿业大学 一种冲击矿压的综合指数评估方法
CN103744128A (zh) * 2014-01-20 2014-04-23 中水北方勘测设计研究有限责任公司 一种用于地下洞室岩爆烈度等级的综合预报方法
CN105928649A (zh) * 2016-04-15 2016-09-07 长江水利委员会长江科学院 深埋高储能岩体应力释放时滞特性测定***及方法
CN106777772A (zh) * 2017-01-09 2017-05-31 辽宁工程技术大学 一种基于煤岩动力***的矿井冲击地压危险性预测方法
CN106952003A (zh) * 2017-04-14 2017-07-14 中国电建集团成都勘测设计研究院有限公司 高地应力区层状岩体地下洞室围岩破坏类型预测方法
CN107748103A (zh) * 2017-09-01 2018-03-02 中国科学院武汉岩土力学研究所 一种隧道岩爆预测方法、设备、存储介质和***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040120761A1 (en) * 2002-10-31 2004-06-24 Naum Sapozhnikov Concrete pavement with the preset strength safety level for highways and streets
CN102645383A (zh) * 2012-04-06 2012-08-22 中冶集团资源开发有限公司 利用三轴压缩测量岩石不连续剪切面抗剪强度的方法
CN103076245A (zh) * 2012-12-28 2013-05-01 长江水利委员会长江科学院 一种深埋硬岩力学参数变化规律与取值的测定方法
CN103198218A (zh) * 2013-04-01 2013-07-10 中铁工程设计咨询集团有限公司 近接隧道对高速铁路路基的风险评估方法和装置
CN103266902A (zh) * 2013-06-14 2013-08-28 中国水电顾问集团成都勘测设计研究院 地下洞室群布置设计方法
CN103362551A (zh) * 2013-07-23 2013-10-23 中国矿业大学 一种冲击矿压的综合指数评估方法
CN103744128A (zh) * 2014-01-20 2014-04-23 中水北方勘测设计研究有限责任公司 一种用于地下洞室岩爆烈度等级的综合预报方法
CN105928649A (zh) * 2016-04-15 2016-09-07 长江水利委员会长江科学院 深埋高储能岩体应力释放时滞特性测定***及方法
CN106777772A (zh) * 2017-01-09 2017-05-31 辽宁工程技术大学 一种基于煤岩动力***的矿井冲击地压危险性预测方法
CN106952003A (zh) * 2017-04-14 2017-07-14 中国电建集团成都勘测设计研究院有限公司 高地应力区层状岩体地下洞室围岩破坏类型预测方法
CN107748103A (zh) * 2017-09-01 2018-03-02 中国科学院武汉岩土力学研究所 一种隧道岩爆预测方法、设备、存储介质和***

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张月征等: "初始应力场岩体稳定性与冲击地压动力灾害相关性研究", 《金属矿山》 *
袁亮等: "煤矿深部岩巷围岩控制理论与支护技术", 《煤炭学报》 *
陆铁彬等: "深部巷道地应力测量及岩爆倾向性分析岩爆倾向性分析", 《工程建设与技术》 *
魏来等: "高地应力软岩隧道大变形机理及控制对策研究综述", 《公路》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110569606A (zh) * 2019-09-11 2019-12-13 长江水利委员会长江科学院 峡谷高应力区硬岩大型地下洞室轴线布置量化设计方法
CN111425252B (zh) * 2020-03-31 2021-07-20 中铁二院工程集团有限责任公司 隧道构造软岩大变形分级方法
CN111425252A (zh) * 2020-03-31 2020-07-17 中铁二院工程集团有限责任公司 隧道构造软岩大变形分级方法
CN111412885B (zh) * 2020-04-23 2021-07-27 长江水利委员会长江科学院 大埋深隧洞挤压型围岩大变形预测方法
CN111551427A (zh) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 一种深埋长隧洞软质岩大变形超前量化预报方法
CN111551438A (zh) * 2020-04-23 2020-08-18 长江水利委员会长江科学院 大埋深隧洞软岩大变形锚固控制效果评价方法
CN111504252B (zh) * 2020-04-23 2021-07-02 长江水利委员会长江科学院 一种长距离隧洞膨胀性围岩变形超前预测预报方法
CN111504252A (zh) * 2020-04-23 2020-08-07 长江水利委员会长江科学院 一种长距离隧洞膨胀性围岩变形超前预测预报方法
CN111412885A (zh) * 2020-04-23 2020-07-14 长江水利委员会长江科学院 大埋深隧洞挤压型围岩大变形预测方法
CN111551438B (zh) * 2020-04-23 2023-01-17 长江水利委员会长江科学院 大埋深隧洞软岩大变形锚固控制效果评价方法
CN111551427B (zh) * 2020-04-23 2023-01-17 长江水利委员会长江科学院 一种深埋长隧洞软质岩大变形超前量化预报方法
CN112985988A (zh) * 2021-02-18 2021-06-18 水电水利规划设计总院有限公司 一种用于非圆形断面坚硬完整围岩片帮破坏深度判别方法
CN115660420A (zh) * 2022-10-26 2023-01-31 中铁二院工程集团有限责任公司 一种无砟轨道铁路隧道底部***变形风险等级的分级方法
CN115660420B (zh) * 2022-10-26 2024-01-23 中铁二院工程集团有限责任公司 一种无砟轨道铁路隧道底部***变形风险等级的分级方法

Also Published As

Publication number Publication date
CN108871262B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
CN108871262B (zh) 大埋深洞室挤压型围岩大变形判别方法
Wang et al. The analytical predictions on displacement and stress around shallow tunnels subjected to surcharge loadings
CN108614035B (zh) 大埋深洞室硬岩岩爆孕灾风险识别方法
CN103471923B (zh) 一种多直径岩芯液压致裂抗拉强度快速试验机
CN109459311A (zh) 一种模拟不同受力条件下隧道管环受力变形的实验装置
CN110927362A (zh) 一种土木工程建筑监测***
CN107907409B (zh) 一种确定岩石起裂应力的方法、设备及存储设备
Liu et al. Design optimization of the soil nail wall-retaining pile-anchor cable supporting system in a large-scale deep foundation pit
CN104655820A (zh) 隧道硬质岩岩爆的判断、等级划分及处理方法
CN108871946B (zh) 大埋深洞室硬岩岩爆灾变风险等级评估方法
Lv et al. Elastic-softening-plasticity around a borehole: an analytical and experimental study
KR20090106257A (ko) 시공 중 터널에 대한 실시간, 정량적 안정성 평가판단방법및 그 장치
CN111504252B (zh) 一种长距离隧洞膨胀性围岩变形超前预测预报方法
CN106295040B (zh) 滑坡灾害监测预警地表测斜仪阈值判定方法
CN111881612B (zh) 一种正应力和剪应力不同权重二维应力场反演方法及***
CN103806906A (zh) 岩/土体钻孔原位测试装置及方法
Du et al. A new approach for evaluation of slope stability in large open-pit mines: a case study at the Dexing Copper Mine, China
CN107842394B (zh) 大跨度地下硐室开采顶板稳定性的动弹模探测方法
CN208206682U (zh) 一种基于相对压缩应变确定岩石起裂应力的***
CN106932129A (zh) 煤矿深立井井壁安全监测装置及其监测方法
Ferrero et al. In situ stress measurements interpretations in large underground marble quarry by 3D modeling
CN103742163B (zh) 一种确定地面出入式盾构施工盾构机土仓控制压力的方法
Nazir et al. Appraisal of reliable skin friction variation in a bored pile
CN114662360A (zh) 一种利用多软件联合构建复杂地质三维地应力场反演方法
CN110987082B (zh) 钢筋混凝土建筑结构安全性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant