CN108866610B - 一种电解阳极 - Google Patents

一种电解阳极 Download PDF

Info

Publication number
CN108866610B
CN108866610B CN201810558389.XA CN201810558389A CN108866610B CN 108866610 B CN108866610 B CN 108866610B CN 201810558389 A CN201810558389 A CN 201810558389A CN 108866610 B CN108866610 B CN 108866610B
Authority
CN
China
Prior art keywords
titanium
substrate
electrolytic anode
layer
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810558389.XA
Other languages
English (en)
Other versions
CN108866610A (zh
Inventor
薛军威
陈宏源
赵奇特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magneto Special Anodes Suzhou Co Ltd
Original Assignee
Magneto Special Anodes Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneto Special Anodes Suzhou Co Ltd filed Critical Magneto Special Anodes Suzhou Co Ltd
Priority to CN201810558389.XA priority Critical patent/CN108866610B/zh
Publication of CN108866610A publication Critical patent/CN108866610A/zh
Application granted granted Critical
Publication of CN108866610B publication Critical patent/CN108866610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种电解阳极,包括基体、通过磁控溅射法形成在所述基体任一表面的多层金属过渡层以及形成在所述多层金属过渡层表面的催化剂层;所述基体为阀金属或阀金属合金,所述阀金属为选自钛、钽、铌、锆、铪、钒、钼和钨中的一种;所述金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨;所述催化剂层为含催化活性元素和催化稳定元素的氧化物层,所述催化活性元素为选自铱、铂、锇、铑、钯和钌中的一种或多种,所述催化稳定元素为选自钛、钽、铌、钨和锆中的一种或多种。这样获得的复合金属过渡层结合力强,具有较高的热稳定性能,对基体具有很好的保护作用。此外,磁控溅射所用的靶材为单金属,相对于合金靶材避免了镀层比例与靶材比例不一致的情况。

Description

一种电解阳极
技术领域
本发明属于电解电极制造领域,涉及一种阳极,具体涉及一种电解阳极。
背景技术
在铜箔生产中或者钢铁电镀锌、电镀锡过程中需要使用钛阳极作为析氧反应电极。钛阳极通常由基体以及涂覆在基体表面的催化剂层组成,基体通常采用阀型金属钛材质,催化剂层为几微米厚的贵金属氧化物(主要由氧化铱和氧化钽的混合物组成)。
由于钛阳极在使用过程中通过的电流密度达到近万安培每平方米,电极表面的催化剂层往往未使用完,就在催化剂层与钛基体之间形成一层绝缘的氧化物层或者电解液进入涂层内部与基材发生腐蚀反应形成空隙,从而导致电流输出受阻,析氧电位增加。通过增加中间层的方式可以有效减缓这一趋势。尽管钛或/和钽氧化物是业内已知的常用中间层,但在高电流密度条件下,仍很难达到预期的效果;又如授权公告号为CN 101550557B、CN101550558B 等中国发明专利公开了使用电弧离子镀的方式在基体钛表面镀一层钛钽合金的中间层,并经过加热烧结使其中的金属钽形成氧化物状态。但由于电弧离子镀工艺存在液滴现象,且很难避免,容易造成中间层的缺陷;而且靶材是钛钽合金,镀层的比例往往与靶材的比例有偏差,两者熔点相差极大,加工困难,价格昂贵,靶材的回收价值不大;也有包括等离子或电弧热喷涂的方式形成几十微米厚的含钽或钽合金的中间层,但是存在涂层明显过厚的缺陷,造成原料的浪费,而且其孔隙率也较高(JP 05-033177A等公开的)。
发明内容
本发明目的是为了克服现有技术的不足而提供一种电解阳极。
为解决以上技术问题,本发明采取的一种技术方案是:一种电解阳极,它包括基体、通过磁控溅射法形成在所述基体任一表面的多层金属过渡层以及形成在所述多层金属过渡层表面的催化剂层;所述基体为阀金属或阀金属合金,所述阀金属为选自钛、钽、铌、锆、铪、钒、钼和钨中的一种;所述金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨;所述催化剂层为含催化活性元素和催化稳定元素的氧化物层,所述催化活性元素为选自铱、铂、锇、铑、钯和钌中的一种或多种,所述催化稳定元素为选自钛、钽、铌、钨和锆中的一种或多种。
优化地,所述基体的材质为金属钛。
进一步地,所述催化剂层为涂覆含有所述催化活性元素和催化稳定元素的前驱体溶液,干燥后经烧结形成。
进一步地,所述金属过渡层的材质为钽或钛,且相邻两层所述金属过渡层的材质不同;优选与基体相邻为钽层,与催化剂层相邻为钛层。
优化地,所述磁控溅射法为:在氩气、真空的条件下,以所述金属过渡层的材质为靶材在所述基体任一表面进行磁控溅射即可。上述磁控溅射法的参数优选为:所述磁控溅射的靶材与工件距离为30~100mm、溅射时间为1~40min、直流电源功率为100~500W且真空度≤ 0.5Pa。进一步地,进行磁控溅射时,控制所述基体的温度≤500℃。进一步地,将所述基体进行清洁,随后经喷砂或/和刻蚀后获得粗糙度为3~12μm的表面,再进行磁控溅射。
优化地,每层所述过渡层的厚度为0.1~5μm。
优化地,所述催化剂层中所述催化活性元素含量为5~50g/m2
本发明带来的有益效果是:本发明电解阳极,通过采用磁控溅射法在催化剂层和基体之间形成多层单金属组成的金属过渡层,该金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨,这样获得的过渡层致密且耐腐蚀、无液滴造成的缺陷,结合力强,较高的热稳定性能,从而对基体具有很好的保护作用。此外,磁控溅射所用的靶材为单金属,相对于合金靶材避免了镀层比例与靶材比例不一致的情况,而且相应的价格更具竞争力和回收再利用价值。
附图说明
图1为实施例1中电解阳极的结构示意图;
图2为实施例3中电解阳极的断面SEM图;
图3为对比例1中电解阳极失效后的断面SEM图。
具体实施方式
本发明电解阳极,它包括基体、通过磁控溅射法形成在所述基体任一表面的多层金属过渡层以及形成在所述多层金属过渡层表面的催化剂层;所述基体为阀金属或阀金属合金,所述阀金属为选自钛、钽、铌、锆、铪、钒、钼和钨中的一种;所述金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨;所述催化剂层为含催化活性元素和催化稳定元素的氧化物层,所述催化活性元素为选自铱、铂、锇、铑、钯和钌中的一种或多种,所述催化稳定元素为选自钛、钽、铌、钨和锆中的一种或多种。通过采用磁控溅射法在催化剂层和基体之间形成多层单金属组成的金属过渡层,该金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨,这样获得的过渡层致密且耐腐蚀、无液滴造成的缺陷,结合力强,较高的热稳定性能,从而对基体具有很好的保护作用。此外,磁控溅射所用的靶材为单金属,相对于合金靶材避免了镀层比例与靶材比例不一致的情况,而且相应的价格更具竞争力和回收再利用价值。
上述基体的材质通常为金属钛,在满足使用性能的同时具有较低的成本。所述催化剂层通常为涂覆含有所述催化活性元素和催化稳定元素的前驱体溶液(可以是混合溶液),干燥后经烧结形成;烧结温度通常为400~600℃、烧结时间通常为10~30min;最终催化剂层中催化活性元素含量优选为5~50g/m2,通常为了保证催化剂层中催化活性元素的均匀分布,最终的催化剂层是重复进行前述的涂覆、烧结过程多次(5~20次)而获得的。相邻两层金属过渡层的材质不同,其材质通常为钽或钛;更优选,与基体相邻为钽层,与催化剂层相邻为钛层。每层金属过渡层的厚度优选为0.1~5μm。上述磁控溅射法为:在氩气、真空的条件下,以所述金属过渡层的材质为靶材在所述基体任一表面进行磁控溅射即可;具体参数优选为:所述磁控溅射的靶材与工件距离为30~100mm、溅射时间为1~40min、直流电源功率为100~500W 且真空度≤0.5Pa。进一步地,进行磁控溅射时,控制所述基体的温度≤500℃。进一步地,将所述基体进行清洁,随后经喷砂或/和刻蚀后获得粗糙度为3~12μm的表面,再进行磁控溅射,从而提高层金属过渡层的结合强度。
下面将结合附图对本发明优选实施方案进行详细说明:
实施例1
本实施例提供一种电解阳极,如图1所示,它包括基体1、催化剂层2、金属过渡层3和金属过渡层3’;金属过渡层3通过磁控溅射法形成在基体1的上表面,而金属过渡层3’通过磁控溅射法形成在金属过渡层3的外表面;催化剂层2则形成在金属过渡层3’的表面上;
其制备过程具体为:
将工业纯钛板表面经喷砂处理后裁切成35mm×35mm×1mm的尺寸,沸腾的10%草酸溶液浸泡酸洗1小时后获得粗糙度Ra为3~12μm的钛基体;
然后将钛基体置于JGP045CA圆形单室磁控溅射***中,控制钛基体温度为300℃进行磁控溅射,其参数为:工作气体为市售高纯氩气、真空度为0.3Pa、直流电源功率为200W、靶基距为50mm;先采用钽靶材溅射20分钟,形成2μm的钽层(即金属过渡层3);随后采用钛靶材溅射2分钟,形成100nm的钛层(即金属过渡层3’);
随后在钛层表面涂覆氯铱酸和五氯化钽的正丁醇溶液(氯铱酸的浓度为0.23mol/L,Ir与 Ta摩尔比为65∶35),在120℃烘干半小时,随后置于500℃空气电炉中进行热处理20分钟;如此重复15次,获得催化剂层2(催化剂层2中铱含量达到15g/m2)。
实施例2
本实施例提供一种电解阳极,它与实施例1中的基本一致,不同的是:金属过渡层3’采用钛靶材溅射4分钟,形成200nm的钛层。
实施例3
本实施例提供一种电解阳极,它与实施例1中的基本一致,不同的是:金属过渡层3’采用钛靶材溅射10分钟,形成500nm的钛层。样品断面扫描电镜照片如图2。
对比例1
本实施例提供一种电解阳极,钛基体处理方法和催化剂层与实施例1中的基本一致,不同的是:在基体1表面涂覆含钛酸四丁酯和五氯化钽的正丁醇溶液3次,获得500nm厚的氧化物层(钛酸四丁酯的浓度为0.1mol/L,Ti和Ta的摩尔比为95∶5),烘干后在500℃烧结形成钛钽氧化物过渡层。
对比例2
本实施例提供一种电解阳极,它与实施例1中的基本一致,不同的是:金属过渡层3’采用钛靶材溅射1分钟,形成50nm的钛层。
对比例3
本实施例提供一种电解阳极,它与实施例1中的基本一致,不同的是:仅采用钽靶材溅射20分钟,形成2μm的钽层。
对比例4
本实施例提供一种电解阳极,它与实施例1中的基本一致,不同的是:仅采用钛靶材溅射40分钟,形成2μm的钛层。
对比例5
本实施例提供一种电解阳极,它与实施例1中的基本一致,采用磁控溅射法形成过渡层,不同的是该过渡层是参考申请号为200910133002.7的中国发明专利中示例1所采用得钛钽重量比为60∶40的合金层,厚度为2μm。
将实施例1-3、对比例1-5中获得的电解阳极分别进行加速寿命测试:在60℃、H25O4水溶液(浓度为1.0mol/L)中进行恒电流电解(电流密度为30kA/m2),以电压上升1V为寿命终点,其结果见表1。
表1实施例1-3、对比例1-5中电解阳极的加速寿命测试表
从表1中可以看出,采用此复合金属中间层的电解阳极的加速寿命时长远远超过传统的钛钽氧化物中间层。对比例1中样品失效后的断面图如图3所示,钛基体已经被腐蚀。当金属过渡层中钛层的厚度在50nm(同样的在50nm以下)时,其寿命较低,这是由于金属过渡层太薄不耐热氧化。因此需要镀覆的金属钛层达到一定厚度方可保证钽层不被氧化,同时钛层在催化剂制作过程中能形成的氧化物本身也具有很好的抗腐蚀性能。对比例4中的钛层易被腐蚀和对比例3中纯钽在制作催化剂层则易被氧化等缺点,因而都无法达到最佳保护效果。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种电解阳极,其特征在于:所述电解阳极包括基体、通过磁控溅射法形成在所述基体任一表面上的多层金属过渡层以及形成在所述多层金属过渡层表面上的催化剂层;
所述基体为阀金属或阀金属合金,所述阀金属选自钛、钽、铌、锆、铪、钒、钼和钨中的一种;
所述金属过渡层的材质为钛、钽、铌、锆、铪、钒、钼或钨;
所述催化剂层为含催化活性元素和催化稳定元素的氧化物层,所述催化活性元素选自铱、铂、锇、铑、钯和钌中的一种或多种,所述催化稳定元素选自钛、钽、铌、钨和锆中的一种或多种,
与所述催化剂层相邻的所述金属过渡层的厚度为100nm-500nm,
相邻两层所述金属过渡层的材质不同。
2.根据权利要求1所述的电解阳极,其特征在于:所述基体的材质为金属钛。
3.根据权利要求1或2所述的电解阳极,其特征在于:所述催化剂层通过涂覆含有所述催化活性元素和所述催化稳定元素的前驱体溶液、干燥后经烧结形成。
4.根据权利要求1或2所述的电解阳极,其特征在于:所述金属过渡层的材质为钽或钛。
5.根据权利要求1所述的电解阳极,其特征在于,所述磁控溅射法为:在氩气和真空的条件下,以所述金属过渡层的材质为靶材在所述基体任一表面上进行磁控溅射。
6.根据权利要求5所述的电解阳极,其特征在于:所述磁控溅射的所述靶材与工件之间的距离为30~100mm,溅射时间为1~40min,直流电源功率为100~500W且真空度≤0.5Pa。
7.根据权利要求6所述的电解阳极,其特征在于:当进行磁控溅射时,控制所述基体的温度≤500℃。
8.根据权利要求5所述的电解阳极,其特征在于:将所述基体进行清洁,随后经喷砂或/和刻蚀以获得粗糙度为3~12μm的表面,再进行磁控溅射。
9.根据权利要求1所述的电解阳极,其特征在于:与所述基体相邻的所述金属过渡层的厚度为0.1~5μm。
10.根据权利要求1所述的电解阳极,其特征在于:所述催化剂层中所述催化活性元素含量为5~50g/m2
CN201810558389.XA 2018-06-01 2018-06-01 一种电解阳极 Active CN108866610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810558389.XA CN108866610B (zh) 2018-06-01 2018-06-01 一种电解阳极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810558389.XA CN108866610B (zh) 2018-06-01 2018-06-01 一种电解阳极

Publications (2)

Publication Number Publication Date
CN108866610A CN108866610A (zh) 2018-11-23
CN108866610B true CN108866610B (zh) 2023-08-15

Family

ID=64335861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810558389.XA Active CN108866610B (zh) 2018-06-01 2018-06-01 一种电解阳极

Country Status (1)

Country Link
CN (1) CN108866610B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282491A (ja) * 1989-04-21 1990-11-20 Daiso Co Ltd 酸素発生陽極及びその製法
JPH07229000A (ja) * 1993-12-24 1995-08-29 Daiso Co Ltd 酸素発生用陽極
JPH08199384A (ja) * 1995-01-23 1996-08-06 Ishifuku Metal Ind Co Ltd 電解用電極及びその製造方法
US5593556A (en) * 1992-10-14 1997-01-14 Daiki Engineering Co., Ltd. Highly durable electrodes for electrolysis and a method for preparation thereof
JPH1161496A (ja) * 1997-08-25 1999-03-05 Nippon Steel Corp 不溶性電極およびその製造方法
CN101550558A (zh) * 2008-03-31 2009-10-07 培尔梅烈克电极股份有限公司 电解电极的制造工艺
CN101889333A (zh) * 2007-12-17 2010-11-17 日矿金属株式会社 基板和其制造方法
CN103215614A (zh) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法
CN105154915A (zh) * 2015-08-18 2015-12-16 中南大学 一种钛基复合阳极及其制备方法和应用
CN105206850A (zh) * 2015-10-19 2015-12-30 太原理工大学 一种Ti/W/Mo氧化物原位增强铂/钯纳米结构复合催化剂及其制备方法
CN106283125A (zh) * 2016-09-30 2017-01-04 广东省稀有金属研究所 金属电积用涂层钛电极及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282491A (ja) * 1989-04-21 1990-11-20 Daiso Co Ltd 酸素発生陽極及びその製法
US5593556A (en) * 1992-10-14 1997-01-14 Daiki Engineering Co., Ltd. Highly durable electrodes for electrolysis and a method for preparation thereof
JPH07229000A (ja) * 1993-12-24 1995-08-29 Daiso Co Ltd 酸素発生用陽極
JPH08199384A (ja) * 1995-01-23 1996-08-06 Ishifuku Metal Ind Co Ltd 電解用電極及びその製造方法
JPH1161496A (ja) * 1997-08-25 1999-03-05 Nippon Steel Corp 不溶性電極およびその製造方法
CN101889333A (zh) * 2007-12-17 2010-11-17 日矿金属株式会社 基板和其制造方法
CN101550558A (zh) * 2008-03-31 2009-10-07 培尔梅烈克电极股份有限公司 电解电极的制造工艺
CN103215614A (zh) * 2013-04-27 2013-07-24 中国船舶重工集团公司第七二五研究所 一种含冷喷涂钽中间层的金属氧化物阳极的制备方法
CN105154915A (zh) * 2015-08-18 2015-12-16 中南大学 一种钛基复合阳极及其制备方法和应用
CN105206850A (zh) * 2015-10-19 2015-12-30 太原理工大学 一种Ti/W/Mo氧化物原位增强铂/钯纳米结构复合催化剂及其制备方法
CN106283125A (zh) * 2016-09-30 2017-01-04 广东省稀有金属研究所 金属电积用涂层钛电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周生刚等著.《金属基层状复合功能材料的研制与性能》.冶金工业出版社,2015,(第第1版版),第212页. *

Also Published As

Publication number Publication date
CN108866610A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP4394159B2 (ja) 電解用電極の製造方法
KR101073351B1 (ko) 백금 계 금속에 의한 전기촉매 코팅과 그로부터 제조된전극
JP4560089B2 (ja) 次亜塩素酸塩を製造するための水溶液の電気分解に使用する電極
JP4585867B2 (ja) 不溶性陽極
CN109778100B (zh) 一种延寿节能形稳PbO2阳极中间层的电弧热喷涂制备方法
JP2006104502A (ja) 電解用陰極
CN103345958B (zh) 含反应等离子喷涂纳米TiN中间层的复合电极材料及其制备方法
CN103552312A (zh) 一种具有二硼化钛中间涂层的复合材料
JP4335302B1 (ja) 電解用電極の製造方法
JP2011202206A (ja) 不溶性電極及びその製造方法
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP4284387B2 (ja) 電解用電極及びその製造方法
CN108866610B (zh) 一种电解阳极
JP3653296B2 (ja) 電解用電極及びその製造方法
JP2979691B2 (ja) 酸素発生用陽極の製法
JP3621148B2 (ja) 電解用電極及びその製造方法
JP3463966B2 (ja) 電解用電極の製造方法
CN114752971B (zh) 一种具有高电解耐久性的涂层钛阳极的制备方法
CN115332552B (zh) 一种用于燃料电池钛极板的导电预涂层及其制备方法
CN116288510A (zh) 一种电解阳极及其制造方法
KR100992268B1 (ko) 전해용 전극의 제조방법
CN117529579A (zh) 工业用电解工艺的电极
JPH0925591A (ja) 電解用電極の製造方法
JP2006057174A (ja) 不溶性電極
Guo et al. Performance Enhancement of Ti/Iro2-Ta2o5 Anode Through Introduction of Tantalum-Titanium Interlayer Via Double-Glow Plasma Surface Alloying Technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant