CN108832724A - 采用补偿电感传递信号的ecpt***及其参数设计方法 - Google Patents

采用补偿电感传递信号的ecpt***及其参数设计方法 Download PDF

Info

Publication number
CN108832724A
CN108832724A CN201810389438.1A CN201810389438A CN108832724A CN 108832724 A CN108832724 A CN 108832724A CN 201810389438 A CN201810389438 A CN 201810389438A CN 108832724 A CN108832724 A CN 108832724A
Authority
CN
China
Prior art keywords
signal
inductance
compensation inductance
compensation
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810389438.1A
Other languages
English (en)
Other versions
CN108832724B (zh
Inventor
王智慧
卿晓东
苏玉刚
叶兆虹
朱婉婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810389438.1A priority Critical patent/CN108832724B/zh
Publication of CN108832724A publication Critical patent/CN108832724A/zh
Application granted granted Critical
Publication of CN108832724B publication Critical patent/CN108832724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明提供了一种采用补偿电感传递信号的ECPT***及其参数设计方法,***包括用于实现电能无线传输的电场耦合机构,其特征在于:在所述电场耦合机构的原边电路中设置有补偿电感Ls1和补偿电感Ls3,在所述电场耦合机构的副边电路中设置有补偿电感Ls2,补偿电感Ls1,Ls2和Ls3共同补偿电场耦合机构的容抗,补偿电感Ls1和补偿电感Ls2相互耦合构成信号传输通道实现原、副边之间的无线信号传输。本发明的效果是:***无需额外增加线圈或极板,利用ECPT***的补偿电感构建信号传递通道,***的电能传输通过电场耦合通道,信号传输则通过磁场耦合通道,通道分离,串扰较小,实现了稳定可靠的电能与信号并行传输。

Description

采用补偿电感传递信号的ECPT***及其参数设计方法
技术领域
本发明涉及无线电能传输技术,具体涉及一种采用补偿电感传递信号的 ECPT***及其参数设计方法。
背景技术
无线电能传输技术能够实现电能从电网无线的传递到用电设备,吸引了越 来越多来自于全世界研究人员的关注。电场耦合电能传输(Electric-Filed Coupled PowerTransfer,ECPT)技术利用电场作为电能传输介质,具有以下优 点:耦合机构简易轻薄、形状易变、成本低;工作中绝大部分电通量分布于耦 合机构中间,电磁干扰很小;不会在耦合机构周围及其之间的金属导体上产生 涡流损耗;可以穿透金属传递电能。目前,国内外学者围绕移动机器人、生物 装置、手机充电和电动车供电等领域开展了ECPT技术的研究,并取得了许多 研究成果。
为了提升***传输功率和效率、提高***鲁棒性,WPT***需要在*** 原边和副边之间进行实时的信号通讯。除此之外,在一些特殊的应用场合,例 如井下钻井***、医疗遥测装置等,也需要将控制信号从原边传输到副边,或 者将检测信号从副边传递到原边。目前,国内外学者围绕WPT***电能与信 号并行传输已经提出了多种方案,中国专利申请201510562959.9提出了一种基 于共享通道的全双工通信无线电能与信号并行传输ECPT***,给出了抑制同 侧信道干扰策略。中国专利201510546147.5提出了一种基于线圈寄生电容传信 号的电能与信号并行传输IPT***。对于共享通道方案,它有着耦合机构小、 灵活性强等优点,但是电能对信号的串扰可能会很大,必须采取措施加以解决。 对于传统的分离通道方案,其电能对信号的串扰较小,但是需要额外增加线圈 或者极板导致***体积会增加。而对于基于线圈寄生电容传信号的这种方式, 它巧妙的利用了线圈寄生电容和金属屏蔽极板构建电场通道作为信道,但是由 于寄生电容很小,所需载波频率会很高,***参数敏感性也很强。
发明内容
鉴于现有技术的缺陷,本发明提出了一种采用补偿电感传递信号的ECPT ***,该***的电能和信号分别通过电场耦合通道和磁场耦合通道传递,因为 其信号通道是由ECPT***的补偿电感构建的,所以无需额外增加线圈或者极 板,又因为电能与信号传递通过分离的通道来实现,因此电能对信号的串扰较 小。
为了实现上述目的,本发明所采用的具体技术方案如下:
一种采用补偿电感传递信号的ECPT***,包括用于实现电能无线传输的 电场耦合机构,其关键在于:在所述电场耦合机构的原边和副边电路中设置有 补偿电感Ls1,Ls2和Ls3,它们共同补偿电场耦合机构的容抗,所述补偿电感Ls1和补偿电感Ls2相互耦合构成信号传输通道实现原、副边之间的无线信号传输。 基于上述设计,现有ECPT***中的电场耦合机构可以保持原有的电能传输通 道,利用其补偿电感相互耦合实现信号无线传输,该***中的补偿电感既满足 电能传输通道中的谐振需求,又满足信号传输通道中的谐振需求,通道分离降 低了电能对信号的串扰。
可选地,原、副边的补偿电感与耦合机构构成的等效电容构成串联谐振回 路,当然作为本领域普通技术人员也能够理解,原、副边的电感和电容可以实 现多种同等变换,比如原边采用串联谐振,副边采用并联谐振等方式。
可选地,在原边设置信号调制电路,该信号调制电路的输出端经过补偿电 容Cg1与所述补偿电感Ls1相连,在副边设置有补偿电容Cg2、信号检测电阻Rb、 带通滤波器以及信号解调电路,所述补偿电感Ls2与补偿电容Cg2和检测电阻 Rb相连,所述信号检测电阻Rb采集的信号经过带通滤波器滤除杂波后再送入 所述信号解调电路中。
上述特征限定主要针对原边向副边发送信号的应用场景,也可以根据具体 应用需求,将信号调制电路设置在副边,将信号解调电路设置在原边,实现副 边信号向原边传输。
可选地,原边电路中设置有直流电源和高频逆变电路,副边电路中设置有 整流滤波器和负载。
可选地,所述补偿电感Ls1和补偿电感Ls2是由励磁线按照平面线圈绕制而 成,使其在原副边相互靠近时实现更好的耦合。
基于上述***描述,本发明还提出了一种采用补偿电感传递信号的ECPT ***的参数设计方法,按照以下步骤进行:
S1:根据工程经验和实际应用需求确定***拓扑结构和部分参数,包括:
(1)原边设置有直流电源和高频逆变电路,确定直流电源电压Edc,调制 载波幅值us和高频交流电压频率fp
(2)电场耦合机构由两对耦合极板构成,确定其等效电容为Cs1和Cs2
(3)在电场耦合机构的原边电路中设置有补偿电感Ls1和补偿电感Ls3, 在电场耦合机构的副边电路中设置有补偿电感Ls2,补偿电感Ls1、Ls2和Ls3与电场耦合机构的等效耦合电容构成串联谐振回路,在补偿 电感Ls1上连接有补偿电容Cg1,在补偿电感Ls2上连接有补偿电容 Cg2
(4)确定等效负载Re,信号检测电阻Rb,电能增益阈值Gpp*以及信号串 扰阈值Gps*;
S2:根据ECPT***电能传输通道的谐振条件确定补偿电感的总感抗值 Ls1+Ls2+Ls3
S3:根据k的取值范围设定k的初始值,使其满足Ls3=k Ls1=k Ls2
S4:根据***电能增益需大于阈值Gpp*、信号串扰需小于阈值Gps*和λ的 取值范围,求解频率比λ和耦合系数α,其中λ为信号工作角频率和电能工作 角频率的比值,耦合系数M为补偿电感Ls1和补偿电 感Ls2之间的互感值;
S5:根据λ确定信号工作频率fs以及补偿电容Cg1和补偿电容Cg2的电容值;
S6:根据公式计算信号和串扰之比β;
其中,Gss为没有电能串扰时的信号通道增益,Gps为信号串扰值,|us|为 调制载波幅值,|up|为用于能量传输的等效电压源的幅值;
S7:判断信号和串扰之比β是否大于能够正确有效解调的最小信号和串扰 之比β*,若β<β*时,则重新修改电感比值k,直到能够满足信号解调条件; 若满足限定条件,则给出***最终参数。
进一步地,步骤S2中电能传输通道的谐振条件为:
高频交流电压角频率ωp=2πfp
进一步地,等效负载电阻Re上的电流i可以表示为:
根据和λ>Rb/2πfpLs1可得到频率比λ和耦合系数α,其中:up表示逆变器输出的等效交流电源。
与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:
本发明提出的一种采用补偿电感传递信号的ECPT***及其参数设计方 法,无需额外增加线圈或极板,利用ECPT***的补偿电感构建信号传递通道, ***的电能传输通过电场耦合通道,信号传输则通过磁场耦合通道,实现了稳 定可靠的电能与信号并行传输。
附图说明
图1为传统串联补偿ECPT***拓扑结构图;
图2为本发明的***电路原理图;
图3为电能与信号并行传输ECPT***等效电路图;
图4为***电能通道的等效电路图;
图5为***信号通道的等效电路图;
图6为采用补偿电感传递信号的ECPT***的参数设计方法流程图;
图7为传统串联补偿ECPT***仿真波形图;
图8为本发明所提***无信号传输时的电能传输仿真波形图;
图9为本发明所提***无电能传输时的信号传输仿真波形图;
图10为本发明所提***电能与信号并行传输时的仿真波形图。
具体实施方式
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方 式,对上述技术方案进行详细的说明。
如图1所示为传统串联补偿ECPT***的拓扑结构,它包含了直流电源Edc、 由S1-S4四个开关管构成的全桥逆变器、补偿电感Ls1和Ls2、两对金属极板构 成的耦合机构Cs1和Cs2、整流滤波器和负载电阻RL。在这个拓扑中,全桥逆 变器将直流输入电源Edc逆变成一个高频交流电压;两对耦合极板可以等效为 两个耦合电容Cs1和Cs2(如图1);为了提高电能传输效率,补偿电感Ls1和Ls2用于补偿耦合电容的容抗;整流滤波器将高频交流电压转换为直流电压供给负 载RL
本实施例在传统串联补偿ECPT***的基础上,利用原、副边补偿电感的 耦合实现信号无线传输,如图2所示,本例中ECPT***的补偿电感被拆分成 了3部分,即Ls1、Ls2和Ls3,且Ls1=Ls2,耦合电感Ls1和Ls2之间的互感为M。 需要说明的是,这里只用了部分补偿电感构建信号传输磁场通道,一是因为如 果全部补偿电感用于构建信号传输通道,在信号频率下电感的等效串联电阻会 很大,这会极大的影响信号传输;二是因为Ls3既起到补偿作用又可以起到滤 波作用,使得实际应用中开关管的高频噪声对信号传输的影响减小。
从图2可以看出,通过补偿电感Ls1和Ls2构建的磁场耦合通道,信号可以 进行无线传输。信号传输发射端由信号调制电路和串联谐振网络构成,接收端 包含串联谐振网络、带通滤波器和信号解调电路构成。信号经过调制之后加载 在补偿电感Ls1上,通过Ls1和Ls2构建的磁耦合通道,信号从信号发射端无线 的传递到了信号接收端,最后通过对检测电阻的电压波形进行滤波解调,就还 原了信号。为了更有效的传递信号,补偿电容Cg1和Cg2用于补偿信号源驱动 下耦合电感的感抗。
假设开关管工作在连续模态且忽略谐振元件的寄生参数,根据基波近似 法,图2可以简化为如图3所示的等效电路。直流输入Edc和全桥逆变器可以 等效为一个交流电压源up整流滤波器和负载电阻可以整体 看作一个等效电阻Re,Re=8/π2RL。所提出的ECPT***电能通道参数在谐振 条件下满足:
其中,Ls=Ls1+Ls2+Ls3p是这个***的电能工作角频率。一般来说,信号 工作频率远远高于电能工作频率,信号工作角频率可以表示为:
ωs=λωp (2)
其中λ是信号工作角频率和电能工作角频率的比值,在所提出的ECPT系 统信号回路中,补偿电容Cg1和Cg2满足等式:
对于无线电能和信号并行传输***,电能通道增益、信号通道增益和电能 串扰是三个衡量***性能的重要因素。电能通道增益表征***增加信道后电能 传输的状况,信号通道增益反映了信号通道传递的衰减情况,电能串扰指示系 统电能对信号通道的干扰。
接下来我们先对电能通道增益和电能串扰进行分析,当***仅仅由电压源 up驱动时,根据电路叠加原理可以将信号源us视为短路,将耦合电感解耦合, 图3可以等效为如图4所示的等效电路图。为了便于分析计算,根据补偿电感 Ls1、Ls2和Ls3感抗的大小,将耦合电容拆分成了Cs1',Cs2'和Cs3'。即在电能工 作频率下,Ls1,Ls2和Ls3分别和Cs1',Cs2'和Cs3'满足谐振关系,即满足等式:
由图可知,根据基尔霍夫电压定律和电流定律,可以列出以下方程:
其中,i,i1,i2,ig1和ig2分别是流过Re,Ls1,Ls2,Cg1和Cg2的电流;jωpM i1和 jωpMi2分别是耦合电感Ls2和Ls1的感应电压。根据公式(2)、(3)和(4),公 式(5)的前两等式可以简化为:
其中,在电路设计中使得RepLs1<1, Rb/jωsLs1<1,又加之λ>>1,则RbpLs1=λRbsLs1<λ<<λ2。因此为了便 于分析,上式中ig2Rb/jωpLs1这一项可以忽略,则可以得到等式:
根据公式(5)和(7),i1,i2,ig1和ig2可以表示为:
结合公式(5)和(8),等效负载电阻Re上的电流i可以表示为:
因此,等效电压源up对等效负载电压uRe和检测电阻电压uRb可以分别表 示为:
传递函数Gps表示电能串扰,用以表征电能传输对信号通道的串扰影响。 由于在前文所述串联补偿ECPT***中,***的交流电压增益为1。因此Gpp可以表示***存在信号通道时电能的增益,它也用于衡量有无信号传递通道时 电能的衰减程度。
针对信号通道增益而言,当***仅仅由信号源us驱动的时候,根据电路的 叠加原理,电压源up视为短路。将耦合电感解耦合,则图3可以转化为如图5 所示等效电路图。在信号源工作频率下,Ls1和Ls2分别是和谐振电容Cg1和Cg2满足谐振关系的。
根据基尔霍夫定律,可以列出以下方程:
其中,ig1,ig2,i1,i2和i分别是流过Cg1,Cg2,Ls1,Ls2和Re的电流,jωsMi1和 jωsMi2是耦合电感Ls2和Ls1的感应电压。根据谐振关系和参数配置,式(11) 可以简化为:
其中,k为补偿电感Ls3和Ls1的比值。为了使Ls1在信号频率下的等效串联 电阻较小,其取值应该略小,因此比值k>1。又因为λ>>1和Re<ωpLs1,则有 |-2/λ2+Re/jωsLs2|<<k。因此,上式中-2i/λ2+Rei/jωsLs2项可以被忽略,将式 (11)带入(12)后化简得:
其中,Qs为信号通道的品质因数,Qs=ωsLs1/Rb。将式(13)进一步化简, 则可以表示为:
因此,电流i1,i2可以分别表示为
基于公式(11)、(14)、(15)和(16),信号源us到检测电阻Rb上电压的 传递函数Gss可以表示为:
传递函数Gss表征了没有电能串扰时的信号通道增益,其值越大表明信号 在传输过程中的衰减也就越小,它被用来衡量信号通道的增益。
基于上述分析,为了更好的实现电能与信号并行传输,使得电能传输对信 号传输影响小,增加信道后对电能传输性能几乎不影响,需要合理地设计*** 参数。电能与信号并行传输ECPT***电能与信号通道参数设计流程如图6所 示。
首先根据需求和经验确定输入直流电压Edc,调制载波幅值us和激励电压 频率fp,根据实际情况确定耦合电容Cs1和Cs2,等效负载电阻Re和检测电阻 Rb。为了保证ECPT***在加入信号通道后的电能传输性能,需要设定电能增 益Gpp大于一个阈值Gpp*;为了降低电能对信号的串扰,保证信号传输受电能 传输较小,需要给信号串扰Gps设定一个阈值Gps*。
然后,根据公式(1)确定补偿电感Ls。为了使得公式(7)成立,Re需要满 足不等式Re<2πfpLs1,又因为补偿电感满足Ls3=kLs1=kLs2,因此可以计算k的 取值范围为k<2πfpLs/Re-2,根据k的取值范围设定k的初始值。
根据式(10)和阈值Gpp*、Gps*,可以得到:
为了使得公式(13)成立,Rb需要满足不等式Rb<2πfsLs1=2πλfpLs1,可 解得λ的取值范围为:
λ>Rb/2πfpLs1 (19)
根据公式(9),(18)和(19),解得频率之比λ和耦合系数α。由给定电压 源频率fp和计算频率之比λ,根据公式(2)计算信号源频率fs,再根据公式(3)计 算补偿电容Cg1和Cg2
为了使得信号可以正确有效的解调出来,则调制载波幅值与噪声之比应大 于一个阈值。这里设定信号和串扰之比为β:
根据解调模块的特性,信号能够正确有效解调的最小信号和串扰之比为 β*。根据式(10),(17)和(20)计算***的信号和串扰之比β,再判断β和阈值β* 的大小,若β<β*时,则重新修改电感比值k,直到能够满足信号解调条件;若 满足限定条件,则给出***最终参数。
为了验证所提出***及其参数设计方法的有效性和正确性,在MATLAB 仿真平台上建立了仿真模型进行验证。根据所给的参数设计方法,得到一组系 统参数。为了便于比较分析,仿真参数取实验装置实测值,如表1所示。
表1***电能通道仿真参数
图7给出了没有信号回路的典型串联补偿ECPT***仿真波形,从上到下 依次是全桥逆变器的输出电压波形,等效负载电阻Re上的电压波形。图8给出 了所提***无信号传输的电能传输仿真波形,从上到下依次是全桥逆变器的输 出电压,Re上的电压波形,检测电阻上的电压波形。图9给出了所提***无电 能传输的信号传输仿真波形,从上到下依次是信号波形,调制载波波形,检测 电阻的电压波形和解调信号波形。图10给出了所提***电能与信号并行传输 时的仿真波形,从上到下依次是全桥逆变器的输出电压,Re上的电压波形,信 号波形和解调信号波形。
通过对比图7和图8可知,在增加信号通道之后,输出电压降低了5%。 也即***Gpp为0.95,这和理论值0.96很接近。在图8中,电能串扰为2.5V, 也即***Gps为0.04,这是一个很小的值。仿真结果很好的说明了基于分离通 道电容耦合式电能与信号并行传输***的可行性和有效性。无需额外增加电极 或者电感,该***在保证电能传输性能的同时,实现了可靠的信号并行传输。
此外,本申请人还根据图2所示的***拓扑和表1中的参数,搭建了一个 功率为50W的实验装置,耦合机构由4块大小相同的金属极板构成。为了减 少磁损,补偿电感为空心电感;为了减小高频损耗,全桥逆变器采用SiC MOSFETs C2M0080120D。
根据实验数据分析所知,***在构建信号传输通道之后,输出电压下降了 6%,这和仿真值、理论值非常接近。在无信号传输有电能传输的状态下,检 测电压波形为2.8V,可以计算电能串扰Gps为0.05。在无电能有信号传输的状 态下,调制电压和检测电压分别为1.8V和1.9V,则信号增益的实际值为1.06, 而理论信号增益为1.56。这一方面因为参数误差引起的实验结果偏差,另一方 面因为补偿电容和耦合电感的等效串联电阻影响电流。实验中,***传输功率 为50.7W,传输效率为84%。通过实验装置验证,该***在信号传输速率为 50kbps到200kbps范围内,信号都可以可靠稳定的传输,电能传输性能也基 本不受影响。
综上所述,本发明提出的一种采用补偿电感传递信号的ECPT***,无需 额外增加线圈或极板,利用ECPT***的补偿电感构建信号传递通道。***的 电能传输通过电场耦合通道,信号传输则通过磁场耦合通道,因此电能串扰较 小。通过建立了所提***的数学模型,解析了电能和信号通道的工作原理,给 出了电能增益、信号增益和电能串扰的影响因素。同时根据***建模分析,给 出了具体的参数设计方法,以使得***电能串扰小、保证***增加信道后电能 传输性能。根据所给参数设计方法,建立了MATLAB仿真模型和搭建了一个 电能传输功率为50.7W、传输效率为84%、信号传输速率为200kbps的实验 装置,仿真和实验结果证明了***可实现电能与信号并行传输,仿真结果和实 验结果验证了该ECPT***能够实现稳定可靠的电能与信号传输,验证了给出 的参数设计方法能够使得电能传输对信号传输影响小、增加信道后对电能传输 几乎不影响。
最后应当指出的是,上述说明并非是对本发明的限制,本发明也并不仅限 于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变 化、改性、添加或替换,也应属于本发明的保护范围。

Claims (8)

1.一种采用补偿电感传递信号的ECPT***,包括用于实现电能无线传输的电场耦合机构,其特征在于:在所述电场耦合机构的原边电路中设置有补偿电感Ls1和补偿电感Ls3,在所述电场耦合机构的副边电路中设置有补偿电感Ls2,补偿电感Ls1,Ls2和Ls3共同补偿电场耦合机构的容抗,补偿电感Ls1和补偿电感Ls2相互耦合构成信号传输通道实现原、副边之间的无线信号传输。
2.根据权利要求1所述的采用补偿电感传递信号的ECPT***,其特征在于:原、副边的补偿电感与耦合机构构成的等效电容构成串联谐振回路。
3.根据权利要求1或2所述的采用补偿电感传递信号的ECPT***,其特征在于:在原边设置信号调制电路,该信号调制电路的输出端经过补偿电容Cg1与所述补偿电感Ls1相连,在副边设置有补偿电容Cg2、信号检测电阻Rb、带通滤波器以及信号解调电路,所述补偿电感Ls2与补偿电容Cg2和检测电阻Rb相连,所述信号检测电阻Rb采集的信号经过带通滤波器滤除杂波后再送入所述信号解调电路中。
4.根据权利要求3所述的采用补偿电感传递信号的ECPT***,其特征在于:原边电路中设置有直流电源和高频逆变电路,副边电路中设置有整流滤波器和负载。
5.根据权利要求1所述的采用补偿电感传递信号的ECPT***,其特征在于:所述补偿电感Ls1和补偿电感Ls2是由励磁线按照平面线圈绕制而成。
6.一种采用补偿电感传递信号的ECPT***的参数设计方法,其特征在于,按照以下步骤进行:
S1:根据工程经验和实际应用需求确定***拓扑结构和部分参数,包括:
(1)原边设置有直流电源和高频逆变电路,确定直流电源电压Edc,调制载波幅值us和高频交流电压频率fp
(2)电场耦合机构由两对耦合极板构成,确定其等效电容为Cs1和Cs2
(3)在电场耦合机构的原边电路中设置有补偿电感Ls1和补偿电感Ls3,在电场耦合机构的副边电路中设置有补偿电感Ls2,补偿电感Ls1、Ls2和Ls3与电场耦合机构的等效耦合电容构成串联谐振回路,在补偿电感Ls1上连接有补偿电容Cg1,在补偿电感Ls2上连接有补偿电容Cg2
(4)确定等效负载Re,信号检测电阻Rb,电能增益阈值Gpp*以及信号串扰阈值Gps*;
S2:根据ECPT***电能传输通道的谐振条件确定补偿电感的总感抗值Ls1+Ls2+Ls3
S3:根据k的取值范围设定k的初始值,使其满足Ls3=k Ls1=k Ls2
S4:根据***电能增益需大于阈值Gpp*、信号串扰需小于阈值Gps*和λ的取值范围,求解频率比λ和耦合系数α,其中λ为信号工作角频率和电能工作角频率的比值,耦合系数M为补偿电感Ls1和补偿电感Ls2之间的互感值;
S5:根据λ确定信号工作频率fs以及补偿电容Cg1和补偿电容Cg2的电容值;
S6:根据公式计算信号和串扰之比β;
其中,Gss为没有电能串扰时的信号通道增益,Gps为信号串扰值,|us|为调制载波幅值,|up|为用于能量传输的等效电压源的幅值;
S7:判断信号和串扰之比β是否大于能够正确有效解调的最小信号和串扰之比β*,若β<β*时,则重新修改电感比值k,直到能够满足信号解调条件;若满足限定条件,则给出***最终参数。
7.根据权利要求6所述的采用补偿电感传递信号的ECPT***的参数设计方法,其特征在于,步骤S2中电能传输通道的谐振条件为:
高频交流电压角频率ωp=2πfp
8.根据权利要求6所述的采用补偿电感传递信号的ECPT***的参数设计方法,其特征在于,等效负载电阻Re上的电流i可以表示为:
根据和λ>Rb/2πfpLs1可得到频率比λ和耦合系数α,其中:up表示逆变器输出的等效交流电源。
CN201810389438.1A 2018-04-27 2018-04-27 采用补偿电感传递信号的ecpt***及其参数设计方法 Active CN108832724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810389438.1A CN108832724B (zh) 2018-04-27 2018-04-27 采用补偿电感传递信号的ecpt***及其参数设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810389438.1A CN108832724B (zh) 2018-04-27 2018-04-27 采用补偿电感传递信号的ecpt***及其参数设计方法

Publications (2)

Publication Number Publication Date
CN108832724A true CN108832724A (zh) 2018-11-16
CN108832724B CN108832724B (zh) 2020-09-01

Family

ID=64155736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810389438.1A Active CN108832724B (zh) 2018-04-27 2018-04-27 采用补偿电感传递信号的ecpt***及其参数设计方法

Country Status (1)

Country Link
CN (1) CN108832724B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211622A (zh) * 2020-04-21 2020-05-29 北京有感科技有限责任公司 电子设备和电子设备充电***
CN111695319A (zh) * 2020-06-05 2020-09-22 苏州浪潮智能科技有限公司 一种实时补偿连接器串联回路电感的方法和设备
CN111901052A (zh) * 2020-07-28 2020-11-06 中国矿业大学 多调制波复合spwm控制的电能与信号并行无线传输***
CN112636481A (zh) * 2021-01-05 2021-04-09 重庆大学 单电容耦合无线电能传输***能量与信号并行传输装置
CN112713666A (zh) * 2021-01-13 2021-04-27 重庆大学 基于共享能量通道的双频双负载多中继mc-wpt***
CN112737137A (zh) * 2021-01-19 2021-04-30 重庆大学 能量与信号均为单电容耦合的分离式并行传输***
CN115208081A (zh) * 2022-09-15 2022-10-18 西南交通大学 一种基于时间反演等空间角大孔径阵的无线输能方法
CN115276251A (zh) * 2022-07-20 2022-11-01 广西电网有限责任公司电力科学研究院 强耦合式无线能量信号同步传输***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243622A (zh) * 1997-02-13 2000-02-02 道尔玛有限公司和两合公司 用于无接触地传输信息及能量的装置
CN101145811A (zh) * 2006-09-11 2008-03-19 索尼株式会社 通信***、通信装置以及高频耦合器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243622A (zh) * 1997-02-13 2000-02-02 道尔玛有限公司和两合公司 用于无接触地传输信息及能量的装置
CN101145811A (zh) * 2006-09-11 2008-03-19 索尼株式会社 通信***、通信装置以及高频耦合器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
苏玉刚等: "基于FFT解调的ECPT***全双工通信技术研究", 《电工电能新技术》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211622A (zh) * 2020-04-21 2020-05-29 北京有感科技有限责任公司 电子设备和电子设备充电***
CN111695319A (zh) * 2020-06-05 2020-09-22 苏州浪潮智能科技有限公司 一种实时补偿连接器串联回路电感的方法和设备
CN111901052A (zh) * 2020-07-28 2020-11-06 中国矿业大学 多调制波复合spwm控制的电能与信号并行无线传输***
CN111901052B (zh) * 2020-07-28 2021-11-19 中国矿业大学 多调制波复合spwm控制的电能与信号并行无线传输***
CN112636481A (zh) * 2021-01-05 2021-04-09 重庆大学 单电容耦合无线电能传输***能量与信号并行传输装置
CN112713666A (zh) * 2021-01-13 2021-04-27 重庆大学 基于共享能量通道的双频双负载多中继mc-wpt***
CN112713666B (zh) * 2021-01-13 2023-08-18 重庆大学 基于共享能量通道的双频双负载多中继mc-wpt***
CN112737137A (zh) * 2021-01-19 2021-04-30 重庆大学 能量与信号均为单电容耦合的分离式并行传输***
CN115276251A (zh) * 2022-07-20 2022-11-01 广西电网有限责任公司电力科学研究院 强耦合式无线能量信号同步传输***
CN115208081A (zh) * 2022-09-15 2022-10-18 西南交通大学 一种基于时间反演等空间角大孔径阵的无线输能方法
CN115208081B (zh) * 2022-09-15 2022-11-22 西南交通大学 一种基于时间反演等空间角大孔径阵的无线输能方法

Also Published As

Publication number Publication date
CN108832724B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN108832724A (zh) 采用补偿电感传递信号的ecpt***及其参数设计方法
CN102882286B (zh) 一种基于电场耦合的无线电能传输***
CN109302070A (zh) 电力变换器电路拓扑结构及其控制方法
CN107317401B (zh) 抗偏移恒压输出无线电能传输***
CN109617250B (zh) 一种基于组合型拓扑的抗偏移无线电能传输***
CN110429720A (zh) 一种实现恒流恒压输出切换的感应式无线电能传输***
CN106740220A (zh) 一种恒流恒压复合拓扑的无线充电电路
CN110350673A (zh) 一种无线电能传输***在最大效率跟踪下的阻抗匹配网络优化方法
CN103560593B (zh) 一种电场耦合型无线电能传输***的控制方法
CN109831035B (zh) 一种基于正交双通道算法的无线充电***用互感辨识方法
CN106533185A (zh) 无线电能传输***补偿拓扑结构
CN105186718B (zh) 复合谐振式ecpt***及其参数设计方法
CN111987813B (zh) 基于单线圈耦合机构的同步全双工通信无线功率传输***
CN207184330U (zh) 一种宽范围软开关直流变换电路
CN109638983A (zh) 一种基于共享信道的全双工通信icpt***
CN106410978B (zh) 一种无线电能传输***中耦合线圈互感系数在线测量方法
CN109546758B (zh) 一种利用分布电容传输信号的水下无线电能传输***
CN206406776U (zh) 一种恒流恒压复合拓扑的无线充电电路
CN109120072A (zh) S/sp型无线充电***恒压及效率优化控制方法
Zhang et al. The charging control and efficiency optimization strategy for WPT system based on secondary side controllable rectifier
CN104065178A (zh) 一种三相负载单相无线供电***及其设计方法
CN111532151B (zh) 一种电动汽车无线充电的***及方法
CN108173353A (zh) 基于f-f/t变拓扑网络的恒压-恒流型ecpt***及参数设计方法
CN105226952A (zh) 一种恒流恒频感应耦合传输***及其设计方法
CN106451819A (zh) 一种无线电能传输***及其等效阻抗的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant