CN108827922B - 基于多重仿生识别的农药残留可视化快速检测技术 - Google Patents

基于多重仿生识别的农药残留可视化快速检测技术 Download PDF

Info

Publication number
CN108827922B
CN108827922B CN201810605610.2A CN201810605610A CN108827922B CN 108827922 B CN108827922 B CN 108827922B CN 201810605610 A CN201810605610 A CN 201810605610A CN 108827922 B CN108827922 B CN 108827922B
Authority
CN
China
Prior art keywords
pesticide
organophosphorus
agent
extraction
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810605610.2A
Other languages
English (en)
Other versions
CN108827922A (zh
Inventor
王淼
佘永新
王静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Original Assignee
Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS filed Critical Institute of Agricultural Quality Standards and Testing Technology for Agro Products of CAAS
Priority to CN201810605610.2A priority Critical patent/CN108827922B/zh
Publication of CN108827922A publication Critical patent/CN108827922A/zh
Application granted granted Critical
Publication of CN108827922B publication Critical patent/CN108827922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Abstract

本发明涉及农药残留检测技术领域,尤其是基于多重仿生识别的农药残留可视化快速检测技术。该检测方法包括以下步骤:(1)在农药提取和富集净化阶段利用优化后的萃取溶剂、脱水剂、除杂剂和除色素对农产品中的农药残留实现提取和净化;(2)在富集筛选阶段,利用合成的有机磷类特异性分子印迹聚合物对有机磷农药进行了筛选和富集;(3)在响应识别阶段,利用合成的光学探针可在碱催化下与有机磷酸酯类农药发生磷酰化反应,实现荧光增强和显色反应的高灵敏度二元响应。本发明通过对有机磷农药快速分析过程中农药提取、富集净化、特异性识别筛选、高灵敏度可视化响应等步骤分别研发了新对策,保证了检测的高灵敏度和高准确性。

Description

基于多重仿生识别的农药残留可视化快速检测技术
技术领域
本发明涉及农药残留检测技术领域,尤其是基于多重仿生识别的农药残留可视化快速检测技术。
背景技术
有机磷农药大多属于磷酸酯类或酰胺类化合物,可用于杀菌、杀虫和除草,是全球使用最广泛的一类农药。但是施用农药中对靶生物起效的只有不到 1%,其余部分则通过降雨、沉降和径流等造成水体污染或者可通过直接喷洒或从土壤中吸收进入农作物中,形成在了食物中的农药残留。据统计,我国每年农药中毒的人数占世界同类事故中毒人数的50%,每年中毒人数超过1000万 (包括生活性中毒),其中急性有机磷农药中毒(AcuteOrganophosphorus Pesticide Poisoning。AOPP)约占70%-90%,平均病死率3%~8%。
因此,亟需快速识别与检测技术来及时发现食品中的有机磷农药。
发明内容
本发明要解决的技术问题是:为了解决现有的检测方法无法快速识别的不足,本发明提供了一种基于多重仿生识别的农药残留可视化快速检测技术,通过对有机磷农药快速分析过程中农药提取、富集净化、特异性识别筛选、高灵敏度可视化响应等步骤分别研发了新对策,保证了检测的高灵敏度和高准确性。
本发明解决其技术问题所采用的技术方案是:
一种基于多重仿生识别的农药残留可视化快速检测技术,该检测方法包括以下步骤:
(1)在农药提取和富集净化阶段利用优化后的萃取溶剂、脱水剂、除杂剂和除色素对农产品中的农药残留实现提取和净化,去除农产品中基质对检测结果的干扰;
(2)在富集筛选阶段,利用合成的有机磷类特异性分子印迹聚合物对有机磷农药进行了筛选和富集,保证只有且足量的有机磷类农药在接下来的识别阶段能与识别元件进行接触;
(3)在响应识别阶段,利用合成的光学探针可在碱催化下与有机磷酸酯类农药发生磷酰化反应,实现荧光增强和显色反应的高灵敏度二元响应。
具体地,所述农药提取方法为,取20mL乙腈作为萃取溶剂,2.5g无水硫酸镁作为脱水剂,500mg C18和500mg PSA作为除杂吸附剂,200mg多壁碳纳米管作为除色素剂对蔬菜中有机磷农药进行提取。
具体地,所述有机磷类特异性分子印迹聚合物的合成方法为,取甲基丙烯酸作为功能单体、***磷作为模板分子,二甲基丙烯酸乙二醇酯作为交联剂,按照1:6:12的比例进行组装,以三氯甲烷作为制孔剂,乙腈作为溶剂,在无氧条件下采用溶剂热沉淀聚合的方法合成了有机磷类特异性分子印迹聚合物。
具体地,所述光学探针为,有机磷酸酯特异性可视化响应探针(Z)-3-(1H-苯并[d]咪唑-2-基)-2-羟基-5-甲基苯甲醛肟。
本发明的有益效果是:本发明提供了一种基于多重仿生识别的农药残留可视化快速检测技术,通过对有机磷农药快速分析过程中农药提取、富集净化、特异性识别筛选、高灵敏度可视化响应等步骤分别研发了新对策,保证了检测的高灵敏度和高准确性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的荧光法曲线图;
图2是本发明的比色法曲线图;
具体实施方式
现在结合附图对本发明作进一步详细的说明。
图1是本发明的荧光法曲线图,图2是本发明的比色法曲线图。
(1)本申请首先在农药的提取过程中,优选20mL乙腈作为萃取溶剂,2.5g 无水硫酸镁作为脱水剂,500mg C18和500mg PSA作为除杂吸附剂,200mg多壁碳纳米管作为除色素剂对蔬菜中有机磷农药进行提取,提取回收率在90%以上。
(2)本申请通过优化实验,优选甲基丙烯酸(MAA)作为功能单体、***磷作为模板分子,二甲基丙烯酸乙二醇酯(EGDMA)作为交联剂,按照1:6:12 的比例进行组装,以三氯甲烷作为制孔剂,乙腈作为溶剂,在无氧条件下采用溶剂热沉淀聚合的方法合成了有机磷类特异性分子印迹聚合物,能够特异性识别筛选甲胺磷、对硫磷、***磷等有机磷类农药。
(3)本申请合成了(Z)-3-(1H-苯并[d]咪唑-2-基)-2-羟基-5-甲基苯甲醛肟作为有机磷酸酯特异性可视化响应探针。此探针可在碱催化下与有机磷酸酯类农药发生磷酰化反应,导致探针母环上的电子密度发生改变,从而实现荧光增强和显色反应的高灵敏度二元响应机制,识别浓度可低至纳摩尔级。
(4)本申请将上述分技术串联耦合,在农药提取和富集净化阶段利用优化后的萃取溶剂、脱水剂、除杂剂和除色素对农产品中的农药残留实现高效提取和净化,有效去除了农产品中基质对检测结果的干扰;在富集筛选阶段,利用合成的有机磷类特异性分子印迹聚合物对有机磷农药进行了筛选和富集,保证只有且足量的有机磷类农药在接下来的识别阶段能与识别元件进行接触;在响应识别阶段,利用合成的光学探针可在碱催化下与有机磷酸酯类农药发生磷酰化反应,实现荧光增强和显色反应的高灵敏度二元响应。
实施例1:以甲胺磷为有机磷农药代表,配制0.05ppm、0.1ppm、0.2ppm、 0.5ppm、1ppm五个浓度的甲醇10%标准溶液作为模拟样品,分别经过本研究中上述的基质分散萃取、分子印迹萃取筛选、探针荧光及比色识别反应,记录不同浓度在365纳米波长激发下415纳米发射波长的荧光强度(Intensity),以及 570nm下的可见光吸光度值(OD),并分别制作标准标准曲线,结果表明在 0.05ppm-1ppm之间本方法具有良好的线性范围和检测灵敏度。如附图1所示,线性相关系数为0.9762(荧光法),如附图2所示,线性相关系数为0.9142(比色法),检测灵敏度为0.05ppm。
实施例2:以黄瓜为检测对象,将其切碎成小块,分别称取2g并添加0.2ppm,0.5ppm,1ppm三个不同浓度的甲胺磷,作为模拟实际基质样品,分别经过本研究中上述的基质分散萃取、分子印迹萃取筛选、探针荧光及比色识别反应,记录不同浓度在365纳米波长激发下415纳米发射波长的荧光强度(Intensity),以及570nm下的可见光吸光度值(OD),根据此前制作的标准曲线进行校正。结果表明,三个不同浓度的回收率分别为82.55%(荧光法),91.32%(荧光法) 和103%(比色法)。说明此方法可用于实际农产品中有机磷农药的快速检测。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (3)

1.一种基于多重仿生识别的农药残留可视化快速检测技术,其特征在于,该检测方法包括以下步骤:
(1)在农药提取和富集净化阶段利用优化后的萃取溶剂、脱水剂、除杂剂和除色素对农产品中的农药残留实现提取和净化,去除农产品中基质对检测结果的干扰;
(2)在富集筛选阶段,利用合成的有机磷类特异性分子印迹聚合物对有机磷农药进行了筛选和富集,保证只有且足量的有机磷类农药在接下来的识别阶段能与识别元件进行接触;
(3)在响应识别阶段,利用合成的光学探针可在碱催化下与有机磷酸酯类农药发生磷酰化反应,实现荧光增强和显色反应的高灵敏度二元响应,光学探针为有机磷酸酯特异性可视化响应探针(Z)-3-(1H-苯并[d]咪唑-2-基)-2-羟基-5-甲基苯甲醛肟。
2.根据权利要求1所述的基于多重仿生识别的农药残留可视化快速检测技术,其特征在于:所述农药提取方法为,取20mL乙腈作为萃取溶剂,2.5g无水硫酸镁作为脱水剂,500mgC18和500mg PSA作为除杂吸附剂,200mg多壁碳纳米管作为除色素剂对蔬菜中有机磷农药进行提取。
3.根据权利要求1所述的基于多重仿生识别的农药残留可视化快速检测技术,其特征在于:所述有机磷类特异性分子印迹聚合物的合成方法为,取甲基丙烯酸作为功能单体、***磷作为模板分子,二甲基丙烯酸乙二醇酯作为交联剂,按照1:6:12的比例进行组装,以三氯甲烷作为制孔剂,乙腈作为溶剂,在无氧条件下采用溶剂热沉淀聚合的方法合成了有机磷类特异性分子印迹聚合物。
CN201810605610.2A 2018-06-13 2018-06-13 基于多重仿生识别的农药残留可视化快速检测技术 Active CN108827922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810605610.2A CN108827922B (zh) 2018-06-13 2018-06-13 基于多重仿生识别的农药残留可视化快速检测技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810605610.2A CN108827922B (zh) 2018-06-13 2018-06-13 基于多重仿生识别的农药残留可视化快速检测技术

Publications (2)

Publication Number Publication Date
CN108827922A CN108827922A (zh) 2018-11-16
CN108827922B true CN108827922B (zh) 2021-01-08

Family

ID=64144899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810605610.2A Active CN108827922B (zh) 2018-06-13 2018-06-13 基于多重仿生识别的农药残留可视化快速检测技术

Country Status (1)

Country Link
CN (1) CN108827922B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827922B (zh) * 2018-06-13 2021-01-08 中国农业科学院农业质量标准与检测技术研究所 基于多重仿生识别的农药残留可视化快速检测技术
CN109991204A (zh) * 2019-04-24 2019-07-09 杭州嘉灏生态农业科技有限公司 一种农产品残留农药的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532390A (zh) * 2011-12-05 2012-07-04 中国农业科学院农业质量标准与检测技术研究所 三嗪类除草剂及其代谢物分子印迹聚合物微球、其制备方法及应用
CN103930422A (zh) * 2011-07-19 2014-07-16 无限药品股份有限公司 杂环化合物及其用途
CN108732158A (zh) * 2018-06-13 2018-11-02 中国农业科学院农业质量标准与检测技术研究所 适用于检测农产品中三嗪类农药残留的MIPs-SERS检测方法
CN108827922A (zh) * 2018-06-13 2018-11-16 中国农业科学院农业质量标准与检测技术研究所 基于多重仿生识别的农药残留可视化快速检测技术

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0018002D0 (en) * 2000-07-21 2000-09-13 Glaxo Group Ltd Novel detection technique
US20060062786A1 (en) * 2000-11-08 2006-03-23 Human Genome Sciences, Inc. Antibodies that immunospecifically bind to TRAIL receptors
US7364908B2 (en) * 2004-06-17 2008-04-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Separation of fluorous compounds
CN1773287A (zh) * 2005-09-30 2006-05-17 国家***第一海洋研究所 有机磷农药仿生识别检测试剂盒
CN102516047B (zh) * 2011-12-13 2013-11-06 联化科技股份有限公司 一种邻三氟甲基苯甲醛及其中间体的制备方法
CN103558203B (zh) * 2013-11-22 2015-07-01 中国农业科学院农业质量标准与检测技术研究所 磁性分子印迹聚合物-荧光分析方法
CN103728294B (zh) * 2013-12-17 2016-05-11 中国科学院化学研究所 二苯并咪唑联咔唑类化合物在用于特异性结合核酸g-四链体结构及在抗肿瘤药物中的应用
WO2016028804A1 (en) * 2014-08-21 2016-02-25 Discoverx Corporation Homogenous thermal shift ligand binding assay
CN106317325B (zh) * 2016-09-14 2019-06-07 中国农业科学院农业质量标准与检测技术研究所 ***类农药分子印迹聚合物微球,固相萃取柱及其应用
CN107727637B (zh) * 2017-10-17 2020-04-07 云南技师学院 一种农产品农药残留检测方法
CN108120707A (zh) * 2018-01-04 2018-06-05 山西大学 分子印迹荧光传感材料的制备及其在高通量检测乐果中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103930422A (zh) * 2011-07-19 2014-07-16 无限药品股份有限公司 杂环化合物及其用途
CN102532390A (zh) * 2011-12-05 2012-07-04 中国农业科学院农业质量标准与检测技术研究所 三嗪类除草剂及其代谢物分子印迹聚合物微球、其制备方法及应用
CN108732158A (zh) * 2018-06-13 2018-11-02 中国农业科学院农业质量标准与检测技术研究所 适用于检测农产品中三嗪类农药残留的MIPs-SERS检测方法
CN108827922A (zh) * 2018-06-13 2018-11-16 中国农业科学院农业质量标准与检测技术研究所 基于多重仿生识别的农药残留可视化快速检测技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecularly Imprinted Nanospheres by Nonaqueous Emulsion Polymerization;Dvorakova G. et al.,;《Macromolecular Rapid Communications》;20101231;第31卷(第23期);第2035-2040页 *

Also Published As

Publication number Publication date
CN108827922A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
Huang et al. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals
Huppertsberg et al. Instrumental analysis of microplastics—benefits and challenges
Zhou et al. Effects of copper ions on removal of nutrients from swine wastewater and on release of dissolved organic matter in duckweed systems
Cui et al. Assessment of phytotoxicity grade during composting based on EEM/PARAFAC combined with projection pursuit regression
Kieber et al. Photooxidation of triglycerides and fatty acids in seawater: Implication toward the formation of marine humic substances
Andrade-Eiroa et al. Environmental applications of excitation-emission spectrofluorimetry: an in-depth review II
Liu et al. Photodegradation of algae and macrophyte-derived dissolved organic matter: A multi-method assessment of DOM transformation
CN108827922B (zh) 基于多重仿生识别的农药残留可视化快速检测技术
CN109342385B (zh) 一种用于快速检测食品和环境中亚硝酸盐含量的碳量子点及其应用方法
Ghidotti et al. Source and biological response of biochar organic compounds released into water; relationships with bio-oil composition and carbonization degree
Yang et al. Characterization of fluorescent dissolved organic matter from green macroalgae (Ulva prolifera)-derived biochar by excitation-emission matrix combined with parallel factor and self-organizing maps analyses
Gauthier et al. Metabolome response to anthropogenic contamination on microalgae: a review
Debenest et al. Comparative toxicity of a brominated flame retardant (tetrabromobisphenol A) on microalgae with single and multi-species bioassays
CN107607507B (zh) 一种有机磷农药残留的荧光检测方法
Zhang et al. Characteristics of dissolved organic carbon revealed by ultraviolet‐visible absorbance and fluorescence spectroscopy: The current status and future exploration
Kajiura et al. Quantifying bubbling emission (ebullition) of methane from a rice paddy using high-time-resolution concentration data obtained during a closed-chamber measurement
KR101753289B1 (ko) 조류 흡수 디스크를 이용한 토양 질 측정방법
Tian et al. Quantification of polyethylene terephthalate micro-and nanoplastics in domestic wastewater using a simple three-step method
Silva et al. Analytical methodologies used for screening micro (nano) plastics in (eco) toxicity tests
Singh et al. Advances in microplastics detection: A comprehensive review of methodologies and their effectiveness
WO2019176825A1 (ja) 分離膜の汚染状況評価方法
Lee et al. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review
Zhou et al. Impact of drying/wetting conditions on the binding characteristics of Cu (ii) and Cd (ii) with sediment dissolved organic matter
US20220236242A1 (en) Methods and systems for assessing plant conditions by volatile detection
CN108732158A (zh) 适用于检测农产品中三嗪类农药残留的MIPs-SERS检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant